reflectorch 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of reflectorch might be problematic. Click here for more details.
- reflectorch/__init__.py +23 -0
- reflectorch/data_generation/__init__.py +130 -0
- reflectorch/data_generation/dataset.py +196 -0
- reflectorch/data_generation/likelihoods.py +86 -0
- reflectorch/data_generation/noise.py +371 -0
- reflectorch/data_generation/priors/__init__.py +66 -0
- reflectorch/data_generation/priors/base.py +61 -0
- reflectorch/data_generation/priors/exp_subprior_sampler.py +304 -0
- reflectorch/data_generation/priors/independent_priors.py +201 -0
- reflectorch/data_generation/priors/multilayer_models.py +311 -0
- reflectorch/data_generation/priors/multilayer_structures.py +110 -0
- reflectorch/data_generation/priors/no_constraints.py +212 -0
- reflectorch/data_generation/priors/parametric_models.py +767 -0
- reflectorch/data_generation/priors/parametric_subpriors.py +354 -0
- reflectorch/data_generation/priors/params.py +258 -0
- reflectorch/data_generation/priors/sampler_strategies.py +306 -0
- reflectorch/data_generation/priors/scaler_mixin.py +65 -0
- reflectorch/data_generation/priors/subprior_sampler.py +377 -0
- reflectorch/data_generation/priors/utils.py +124 -0
- reflectorch/data_generation/process_data.py +47 -0
- reflectorch/data_generation/q_generator.py +232 -0
- reflectorch/data_generation/reflectivity/__init__.py +56 -0
- reflectorch/data_generation/reflectivity/abeles.py +81 -0
- reflectorch/data_generation/reflectivity/kinematical.py +58 -0
- reflectorch/data_generation/reflectivity/memory_eff.py +92 -0
- reflectorch/data_generation/reflectivity/numpy_implementations.py +120 -0
- reflectorch/data_generation/reflectivity/smearing.py +123 -0
- reflectorch/data_generation/scale_curves.py +118 -0
- reflectorch/data_generation/smearing.py +67 -0
- reflectorch/data_generation/utils.py +154 -0
- reflectorch/extensions/__init__.py +6 -0
- reflectorch/extensions/jupyter/__init__.py +12 -0
- reflectorch/extensions/jupyter/callbacks.py +40 -0
- reflectorch/extensions/matplotlib/__init__.py +11 -0
- reflectorch/extensions/matplotlib/losses.py +38 -0
- reflectorch/inference/__init__.py +22 -0
- reflectorch/inference/inference_model.py +734 -0
- reflectorch/inference/multilayer_fitter.py +171 -0
- reflectorch/inference/multilayer_inference_model.py +193 -0
- reflectorch/inference/preprocess_exp/__init__.py +7 -0
- reflectorch/inference/preprocess_exp/attenuation.py +36 -0
- reflectorch/inference/preprocess_exp/cut_with_q_ratio.py +31 -0
- reflectorch/inference/preprocess_exp/footprint.py +81 -0
- reflectorch/inference/preprocess_exp/interpolation.py +16 -0
- reflectorch/inference/preprocess_exp/normalize.py +21 -0
- reflectorch/inference/preprocess_exp/preprocess.py +121 -0
- reflectorch/inference/record_time.py +43 -0
- reflectorch/inference/sampler_solution.py +56 -0
- reflectorch/inference/scipy_fitter.py +171 -0
- reflectorch/inference/torch_fitter.py +87 -0
- reflectorch/ml/__init__.py +37 -0
- reflectorch/ml/basic_trainer.py +286 -0
- reflectorch/ml/callbacks.py +86 -0
- reflectorch/ml/dataloaders.py +27 -0
- reflectorch/ml/loggers.py +38 -0
- reflectorch/ml/schedulers.py +246 -0
- reflectorch/ml/trainers.py +126 -0
- reflectorch/ml/utils.py +9 -0
- reflectorch/models/__init__.py +22 -0
- reflectorch/models/activations.py +50 -0
- reflectorch/models/encoders/__init__.py +27 -0
- reflectorch/models/encoders/conv_encoder.py +211 -0
- reflectorch/models/encoders/conv_res_net.py +119 -0
- reflectorch/models/encoders/fno.py +127 -0
- reflectorch/models/encoders/transformers.py +56 -0
- reflectorch/models/networks/__init__.py +18 -0
- reflectorch/models/networks/mlp_networks.py +256 -0
- reflectorch/models/networks/residual_net.py +131 -0
- reflectorch/paths.py +33 -0
- reflectorch/runs/__init__.py +35 -0
- reflectorch/runs/config.py +31 -0
- reflectorch/runs/slurm_utils.py +99 -0
- reflectorch/runs/train.py +85 -0
- reflectorch/runs/utils.py +300 -0
- reflectorch/test_config.py +4 -0
- reflectorch/train.py +4 -0
- reflectorch/train_on_cluster.py +4 -0
- reflectorch/utils.py +74 -0
- reflectorch-1.0.0.dist-info/LICENSE.txt +621 -0
- reflectorch-1.0.0.dist-info/METADATA +115 -0
- reflectorch-1.0.0.dist-info/RECORD +83 -0
- reflectorch-1.0.0.dist-info/WHEEL +5 -0
- reflectorch-1.0.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,211 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
#
|
|
3
|
+
#
|
|
4
|
+
# This source code is licensed under the GPL license found in the
|
|
5
|
+
# LICENSE file in the root directory of this source tree.
|
|
6
|
+
|
|
7
|
+
import logging
|
|
8
|
+
from pathlib import Path
|
|
9
|
+
|
|
10
|
+
import torch
|
|
11
|
+
from torch import nn, load
|
|
12
|
+
|
|
13
|
+
from reflectorch.models.activations import activation_by_name
|
|
14
|
+
from reflectorch.paths import SAVED_MODELS_DIR
|
|
15
|
+
|
|
16
|
+
__all__ = [
|
|
17
|
+
"ConvEncoder",
|
|
18
|
+
"ConvDecoder",
|
|
19
|
+
"ConvAutoencoder",
|
|
20
|
+
"ConvVAE",
|
|
21
|
+
]
|
|
22
|
+
|
|
23
|
+
logger = logging.getLogger(__name__)
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class ConvEncoder(nn.Module):
|
|
27
|
+
"""A 1D CNN encoder / embedding network
|
|
28
|
+
|
|
29
|
+
Args:
|
|
30
|
+
in_channels (int, optional): the number of input channels. Defaults to 1.
|
|
31
|
+
hidden_channels (tuple, optional): the number of intermediate channels of each convolutional layer. Defaults to (32, 64, 128, 256, 512).
|
|
32
|
+
dim_latent (int, optional): the dimension of the output latent embedding. Defaults to 64.
|
|
33
|
+
dim_avpool (int, optional): the output size of the adaptive average pooling layer. Defaults to 1.
|
|
34
|
+
use_batch_norm (bool, optional): whether to use batch normalization. Defaults to True.
|
|
35
|
+
activation (str, optional): the type of activation function. Defaults to 'relu'.
|
|
36
|
+
"""
|
|
37
|
+
def __init__(self,
|
|
38
|
+
in_channels: int = 1,
|
|
39
|
+
hidden_channels: tuple = (32, 64, 128, 256, 512),
|
|
40
|
+
dim_latent: int = 64,
|
|
41
|
+
dim_avpool: int = 1,
|
|
42
|
+
use_batch_norm: bool = True,
|
|
43
|
+
activation: str = 'relu',
|
|
44
|
+
):
|
|
45
|
+
super().__init__()
|
|
46
|
+
|
|
47
|
+
modules = []
|
|
48
|
+
|
|
49
|
+
activation = activation_by_name(activation)
|
|
50
|
+
|
|
51
|
+
for h in hidden_channels:
|
|
52
|
+
layers = [
|
|
53
|
+
nn.Conv1d(in_channels, out_channels=h, kernel_size=3, stride=2, padding=1),
|
|
54
|
+
activation(),
|
|
55
|
+
]
|
|
56
|
+
|
|
57
|
+
if use_batch_norm:
|
|
58
|
+
layers.insert(1, nn.BatchNorm1d(h))
|
|
59
|
+
|
|
60
|
+
modules.append(nn.Sequential(*layers))
|
|
61
|
+
in_channels = h
|
|
62
|
+
|
|
63
|
+
self.core = nn.Sequential(*modules)
|
|
64
|
+
self.avpool = nn.AdaptiveAvgPool1d(dim_avpool)
|
|
65
|
+
self.fc = nn.Linear(hidden_channels[-1] * dim_avpool, dim_latent)
|
|
66
|
+
|
|
67
|
+
def forward(self, x):
|
|
68
|
+
""""""
|
|
69
|
+
if len(x.shape) < 3:
|
|
70
|
+
x = x.unsqueeze(1)
|
|
71
|
+
x = self.core(x)
|
|
72
|
+
x = self.avpool(x).view(x.size(0), -1)
|
|
73
|
+
x = self.fc(x)
|
|
74
|
+
return x
|
|
75
|
+
|
|
76
|
+
def load_weights(self, path: str or Path = None, strict: bool = False):
|
|
77
|
+
if not path:
|
|
78
|
+
return
|
|
79
|
+
|
|
80
|
+
if isinstance(path, str):
|
|
81
|
+
if not path.endswith('.pt'):
|
|
82
|
+
path = path + '.pt'
|
|
83
|
+
path = SAVED_MODELS_DIR / path
|
|
84
|
+
|
|
85
|
+
if not path.is_file():
|
|
86
|
+
logger.error(f'File {str(path)} is not found.')
|
|
87
|
+
return
|
|
88
|
+
try:
|
|
89
|
+
state_dict = load(path)
|
|
90
|
+
self.load_state_dict(state_dict, strict=strict)
|
|
91
|
+
except Exception as err:
|
|
92
|
+
logger.exception(err)
|
|
93
|
+
|
|
94
|
+
|
|
95
|
+
class ConvDecoder(nn.Module):
|
|
96
|
+
"""A 1D CNN decoder
|
|
97
|
+
|
|
98
|
+
Args:
|
|
99
|
+
hidden_dims (tuple, optional): the number of intermediate channels of each convolutional layer. Defaults to (512, 256, 128, 64, 32).
|
|
100
|
+
latent_dim (int, optional): the dimension of the input latent embedding. Defaults to 64.
|
|
101
|
+
in_size (int, optional): the initial size for upscaling. Defaults to 8.
|
|
102
|
+
use_batch_norm (bool, optional): whether to use batch normalization. Defaults to True.
|
|
103
|
+
activation (str, optional): the type of activation function. Defaults to 'relu'.
|
|
104
|
+
"""
|
|
105
|
+
def __init__(self,
|
|
106
|
+
hidden_channels: tuple = (512, 256, 128, 64, 32),
|
|
107
|
+
dim_latent: int = 64,
|
|
108
|
+
in_size: int = 8,
|
|
109
|
+
use_batch_norm: bool = True,
|
|
110
|
+
activation: str = 'relu',
|
|
111
|
+
):
|
|
112
|
+
|
|
113
|
+
super().__init__()
|
|
114
|
+
|
|
115
|
+
self.in_size = in_size
|
|
116
|
+
modules = []
|
|
117
|
+
|
|
118
|
+
self.decoder_input = nn.Linear(dim_latent, hidden_channels[0] * in_size)
|
|
119
|
+
|
|
120
|
+
activation = activation_by_name(activation)
|
|
121
|
+
|
|
122
|
+
for i in range(len(hidden_channels) - 1):
|
|
123
|
+
modules.append(
|
|
124
|
+
nn.Sequential(
|
|
125
|
+
nn.ConvTranspose1d(
|
|
126
|
+
hidden_channels[i],
|
|
127
|
+
hidden_channels[i + 1],
|
|
128
|
+
kernel_size=3,
|
|
129
|
+
stride=2,
|
|
130
|
+
padding=1,
|
|
131
|
+
output_padding=1,
|
|
132
|
+
),
|
|
133
|
+
nn.BatchNorm1d(hidden_channels[i + 1]) if use_batch_norm else nn.Identity(),
|
|
134
|
+
activation(),
|
|
135
|
+
)
|
|
136
|
+
)
|
|
137
|
+
|
|
138
|
+
self.decoder = nn.Sequential(*modules)
|
|
139
|
+
|
|
140
|
+
self.final_layer = nn.Sequential(
|
|
141
|
+
nn.ConvTranspose1d(hidden_channels[-1],
|
|
142
|
+
hidden_channels[-1],
|
|
143
|
+
kernel_size=3,
|
|
144
|
+
stride=2,
|
|
145
|
+
padding=1,
|
|
146
|
+
output_padding=1),
|
|
147
|
+
nn.BatchNorm1d(hidden_channels[-1]) if use_batch_norm else nn.Identity(),
|
|
148
|
+
activation(),
|
|
149
|
+
nn.Conv1d(hidden_channels[-1], out_channels=1,
|
|
150
|
+
kernel_size=3, padding=1)
|
|
151
|
+
)
|
|
152
|
+
|
|
153
|
+
def forward(self, x):
|
|
154
|
+
batch_size = x.shape[0]
|
|
155
|
+
x = self.decoder_input(x).view(batch_size, -1, self.in_size)
|
|
156
|
+
x = self.decoder(x)
|
|
157
|
+
x = self.final_layer(x).flatten(1)
|
|
158
|
+
return x
|
|
159
|
+
|
|
160
|
+
|
|
161
|
+
class ConvAutoencoder(nn.Module):
|
|
162
|
+
"""A 1D convolutional denoising autoencoder"""
|
|
163
|
+
def __init__(self,
|
|
164
|
+
in_channels: int = 1,
|
|
165
|
+
encoder_hidden_channels: tuple = (32, 64, 128, 256, 512),
|
|
166
|
+
decoder_hidden_channels: tuple = (512, 256, 128, 64, 32),
|
|
167
|
+
dim_latent: int = 64,
|
|
168
|
+
dim_avpool: int = 1,
|
|
169
|
+
use_batch_norm: bool = True,
|
|
170
|
+
activation: str = 'relu',
|
|
171
|
+
decoder_in_size: int = 8,
|
|
172
|
+
**kwargs
|
|
173
|
+
):
|
|
174
|
+
super().__init__()
|
|
175
|
+
self.encoder = ConvEncoder(in_channels, encoder_hidden_channels, dim_latent, dim_avpool, use_batch_norm, activation, **kwargs)
|
|
176
|
+
self.decoder = ConvDecoder(decoder_hidden_channels, dim_latent, decoder_in_size, use_batch_norm, activation, **kwargs)
|
|
177
|
+
|
|
178
|
+
def forward(self, x):
|
|
179
|
+
return self.decoder(self.encoder(x))
|
|
180
|
+
|
|
181
|
+
class ConvVAE(nn.Module):
|
|
182
|
+
"""A 1D convolutional variational autoencoder"""
|
|
183
|
+
def __init__(self,
|
|
184
|
+
in_channels: int = 1,
|
|
185
|
+
encoder_hidden_channels: tuple = (32, 64, 128, 256, 512),
|
|
186
|
+
decoder_hidden_channels: tuple = (512, 256, 128, 64, 32),
|
|
187
|
+
dim_latent: int = 64,
|
|
188
|
+
dim_avpool: int = 1,
|
|
189
|
+
use_batch_norm: bool = True,
|
|
190
|
+
activation: str = 'relu',
|
|
191
|
+
decoder_in_size: int = 8,
|
|
192
|
+
**kwargs
|
|
193
|
+
):
|
|
194
|
+
super().__init__()
|
|
195
|
+
self.encoder = ConvEncoder(in_channels, encoder_hidden_channels, 2*dim_latent, dim_avpool, use_batch_norm, activation, **kwargs)
|
|
196
|
+
self.decoder = ConvDecoder(decoder_hidden_channels, dim_latent, decoder_in_size, use_batch_norm, activation, **kwargs)
|
|
197
|
+
|
|
198
|
+
def forward(self, x):
|
|
199
|
+
z_mu, z_logvar = self.encoder(x).chunk(2, dim=-1)
|
|
200
|
+
z = self.reparameterize(z_mu, z_logvar)
|
|
201
|
+
|
|
202
|
+
x_r_mu, x_r_logvar = self.decoder(z).chunk(2, dim=-1)
|
|
203
|
+
x = self.reparameterize(x_r_mu, x_r_logvar)
|
|
204
|
+
|
|
205
|
+
return x, (z_mu, z_logvar, x_r_mu, x_r_logvar)
|
|
206
|
+
|
|
207
|
+
@staticmethod
|
|
208
|
+
def reparameterize(mu, logvar):
|
|
209
|
+
std = torch.exp(0.5 * logvar)
|
|
210
|
+
eps = torch.randn_like(std).to(std)
|
|
211
|
+
return mu + eps * std
|
|
@@ -0,0 +1,119 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
#
|
|
3
|
+
#
|
|
4
|
+
# This source code is licensed under the GPL license found in the
|
|
5
|
+
# LICENSE file in the root directory of this source tree.
|
|
6
|
+
|
|
7
|
+
from torch import nn
|
|
8
|
+
from torch.nn import functional as F
|
|
9
|
+
from torch.nn import init
|
|
10
|
+
|
|
11
|
+
__all__ = [
|
|
12
|
+
'ConvResidualNet1D',
|
|
13
|
+
]
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class ConvResidualBlock1D(nn.Module):
|
|
17
|
+
def __init__(
|
|
18
|
+
self,
|
|
19
|
+
channels,
|
|
20
|
+
activation=F.gelu,
|
|
21
|
+
dropout_probability=0.0,
|
|
22
|
+
use_batch_norm=False,
|
|
23
|
+
zero_initialization=True,
|
|
24
|
+
kernel_size: int = 3,
|
|
25
|
+
dilation: int = 1,
|
|
26
|
+
padding: int = 1,
|
|
27
|
+
):
|
|
28
|
+
super().__init__()
|
|
29
|
+
self.activation = activation
|
|
30
|
+
|
|
31
|
+
self.use_batch_norm = use_batch_norm
|
|
32
|
+
|
|
33
|
+
if use_batch_norm:
|
|
34
|
+
self.batch_norm_layers = nn.ModuleList(
|
|
35
|
+
[nn.BatchNorm1d(channels, eps=1e-3) for _ in range(2)]
|
|
36
|
+
)
|
|
37
|
+
self.conv_layers = nn.ModuleList(
|
|
38
|
+
[nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding, dilation=dilation)
|
|
39
|
+
for _ in range(2)]
|
|
40
|
+
)
|
|
41
|
+
self.dropout = nn.Dropout(p=dropout_probability)
|
|
42
|
+
|
|
43
|
+
if zero_initialization:
|
|
44
|
+
init.uniform_(self.conv_layers[-1].weight, -1e-3, 1e-3)
|
|
45
|
+
init.uniform_(self.conv_layers[-1].bias, -1e-3, 1e-3)
|
|
46
|
+
|
|
47
|
+
def forward(self, inputs):
|
|
48
|
+
temps = inputs
|
|
49
|
+
if self.use_batch_norm:
|
|
50
|
+
temps = self.batch_norm_layers[0](temps)
|
|
51
|
+
temps = self.activation(temps)
|
|
52
|
+
temps = self.conv_layers[0](temps)
|
|
53
|
+
if self.use_batch_norm:
|
|
54
|
+
temps = self.batch_norm_layers[1](temps)
|
|
55
|
+
|
|
56
|
+
temps = self.activation(temps)
|
|
57
|
+
temps = self.dropout(temps)
|
|
58
|
+
temps = self.conv_layers[1](temps)
|
|
59
|
+
|
|
60
|
+
return inputs + temps
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
class ConvResidualNet1D(nn.Module):
|
|
64
|
+
def __init__(
|
|
65
|
+
self,
|
|
66
|
+
in_channels: int = 1,
|
|
67
|
+
out_channels: int = 64,
|
|
68
|
+
hidden_channels: int = 128,
|
|
69
|
+
num_blocks=5,
|
|
70
|
+
activation=F.gelu,
|
|
71
|
+
dropout_probability=0.0,
|
|
72
|
+
use_batch_norm=True,
|
|
73
|
+
kernel_size: int = 3,
|
|
74
|
+
dilation: int = 1,
|
|
75
|
+
padding: int = 1,
|
|
76
|
+
avpool: int = 8,
|
|
77
|
+
|
|
78
|
+
):
|
|
79
|
+
super().__init__()
|
|
80
|
+
|
|
81
|
+
self.hidden_channels = hidden_channels
|
|
82
|
+
|
|
83
|
+
self.initial_layer = nn.Conv1d(
|
|
84
|
+
in_channels=in_channels,
|
|
85
|
+
out_channels=hidden_channels,
|
|
86
|
+
kernel_size=1,
|
|
87
|
+
padding=0,
|
|
88
|
+
)
|
|
89
|
+
self.blocks = nn.ModuleList(
|
|
90
|
+
[
|
|
91
|
+
ConvResidualBlock1D(
|
|
92
|
+
channels=hidden_channels,
|
|
93
|
+
activation=activation,
|
|
94
|
+
dropout_probability=dropout_probability,
|
|
95
|
+
use_batch_norm=use_batch_norm,
|
|
96
|
+
kernel_size=kernel_size,
|
|
97
|
+
dilation=dilation,
|
|
98
|
+
padding=padding,
|
|
99
|
+
)
|
|
100
|
+
for _ in range(num_blocks)
|
|
101
|
+
]
|
|
102
|
+
)
|
|
103
|
+
|
|
104
|
+
self.avpool = nn.AdaptiveAvgPool1d(avpool)
|
|
105
|
+
|
|
106
|
+
self.final_layer = nn.Linear(
|
|
107
|
+
hidden_channels * avpool, out_channels
|
|
108
|
+
)
|
|
109
|
+
|
|
110
|
+
def forward(self, x):
|
|
111
|
+
temps = self.initial_layer(x.unsqueeze(1))
|
|
112
|
+
|
|
113
|
+
for block in self.blocks:
|
|
114
|
+
temps = block(temps)
|
|
115
|
+
|
|
116
|
+
temps = self.avpool(temps).view(temps.size(0), -1)
|
|
117
|
+
outputs = self.final_layer(temps)
|
|
118
|
+
|
|
119
|
+
return outputs
|
|
@@ -0,0 +1,127 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import torch.nn as nn
|
|
3
|
+
import torch.nn.functional as F
|
|
4
|
+
|
|
5
|
+
from reflectorch.models.activations import activation_by_name
|
|
6
|
+
|
|
7
|
+
class SpectralConv1d(nn.Module):
|
|
8
|
+
def __init__(self, in_channels, out_channels, modes):
|
|
9
|
+
super().__init__()
|
|
10
|
+
|
|
11
|
+
"""
|
|
12
|
+
1D Fourier layer. It does FFT, linear transform, and Inverse FFT.
|
|
13
|
+
"""
|
|
14
|
+
|
|
15
|
+
self.in_channels = in_channels
|
|
16
|
+
self.out_channels = out_channels
|
|
17
|
+
self.modes = modes #Number of Fourier modes to multiply, at most floor(N/2) + 1
|
|
18
|
+
|
|
19
|
+
self.scale = (1 / (in_channels*out_channels))
|
|
20
|
+
self.weights1 = nn.Parameter(self.scale * torch.rand(in_channels, out_channels, modes, dtype=torch.cfloat))
|
|
21
|
+
|
|
22
|
+
# Complex multiplication
|
|
23
|
+
def compl_mul1d(self, input, weights):
|
|
24
|
+
# (batch, in_channel, x ), (in_channel, out_channel, x) -> (batch, out_channel, x)
|
|
25
|
+
return torch.einsum("bix,iox->box", input, weights)
|
|
26
|
+
|
|
27
|
+
def forward(self, x):
|
|
28
|
+
batchsize = x.shape[0]
|
|
29
|
+
#Compute Fourier coeffcients up to factor of e^(- something constant)
|
|
30
|
+
x_ft = torch.fft.rfft(x)
|
|
31
|
+
|
|
32
|
+
# Multiply relevant Fourier modes
|
|
33
|
+
out_ft = torch.zeros(batchsize, self.out_channels, x.size(-1)//2 + 1, device=x.device, dtype=torch.cfloat)
|
|
34
|
+
out_ft[:, :, :self.modes] = self.compl_mul1d(x_ft[:, :, :self.modes], self.weights1)
|
|
35
|
+
|
|
36
|
+
#Return to physical space
|
|
37
|
+
x = torch.fft.irfft(out_ft, n=x.size(-1))
|
|
38
|
+
return x
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
class FnoEncoder(nn.Module):
|
|
42
|
+
"""An embedding network based on the Fourier Neural Operator (FNO) architecture
|
|
43
|
+
|
|
44
|
+
.. image:: ../documentation/fig_reflectometry_embedding_networks.png
|
|
45
|
+
:width: 400px
|
|
46
|
+
:align: center
|
|
47
|
+
|
|
48
|
+
Args:
|
|
49
|
+
ch_in (int): number of input channels
|
|
50
|
+
dim_embedding (int): dimension of the output embedding
|
|
51
|
+
modes (int): number of Fourier modes
|
|
52
|
+
width_fno (int): number of channels of the intermediate representations
|
|
53
|
+
n_fno_blocks (int): number of FNO blocks
|
|
54
|
+
activation (str): the activation function
|
|
55
|
+
fusion_self_attention (bool): if ``True`` a fusion layer is used after the FNO blocks to produce the final embedding
|
|
56
|
+
"""
|
|
57
|
+
def __init__(
|
|
58
|
+
self,
|
|
59
|
+
ch_in: int = 2,
|
|
60
|
+
dim_embedding: int = 128,
|
|
61
|
+
modes: int = 32,
|
|
62
|
+
width_fno: int = 64,
|
|
63
|
+
n_fno_blocks: int = 6,
|
|
64
|
+
activation: str = 'gelu',
|
|
65
|
+
fusion_self_attention: bool = False,
|
|
66
|
+
):
|
|
67
|
+
super().__init__()
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
self.ch_in = ch_in
|
|
71
|
+
self.dim_embedding = dim_embedding
|
|
72
|
+
|
|
73
|
+
self.modes = modes
|
|
74
|
+
self.width_fno = width_fno
|
|
75
|
+
self.n_fno_blocks = n_fno_blocks
|
|
76
|
+
self.activation = activation_by_name(activation)()
|
|
77
|
+
self.fusion_self_attention = fusion_self_attention
|
|
78
|
+
|
|
79
|
+
|
|
80
|
+
self.fc0 = nn.Linear(ch_in, width_fno) #(r(q), q)
|
|
81
|
+
self.spectral_convs = nn.ModuleList([SpectralConv1d(in_channels=width_fno, out_channels=width_fno, modes=modes) for _ in range(n_fno_blocks)])
|
|
82
|
+
self.w_convs = nn.ModuleList([nn.Conv1d(in_channels=width_fno, out_channels=width_fno, kernel_size=1) for _ in range(n_fno_blocks)])
|
|
83
|
+
self.fc_out = nn.Linear(width_fno, dim_embedding)
|
|
84
|
+
|
|
85
|
+
if fusion_self_attention:
|
|
86
|
+
self.fusion = FusionSelfAttention(width_fno, 2*width_fno)
|
|
87
|
+
|
|
88
|
+
def forward(self, x):
|
|
89
|
+
""""""
|
|
90
|
+
|
|
91
|
+
x = x.permute(0, 2, 1) #(B, D, S) -> (B, S, D)
|
|
92
|
+
x = self.fc0(x)
|
|
93
|
+
x = x.permute(0, 2, 1) #(B, S, D) -> (B, D, S)
|
|
94
|
+
|
|
95
|
+
for i in range(self.n_fno_blocks):
|
|
96
|
+
x1 = self.spectral_convs[i](x)
|
|
97
|
+
x2 = self.w_convs[i](x)
|
|
98
|
+
|
|
99
|
+
x = x1 + x2
|
|
100
|
+
x = self.activation(x)
|
|
101
|
+
|
|
102
|
+
if self.fusion_self_attention:
|
|
103
|
+
x = x.permute(0, 2, 1)
|
|
104
|
+
x = self.fusion(x)
|
|
105
|
+
else:
|
|
106
|
+
x = x.mean(dim=-1)
|
|
107
|
+
|
|
108
|
+
x = self.fc_out(x)
|
|
109
|
+
|
|
110
|
+
return x
|
|
111
|
+
|
|
112
|
+
class FusionSelfAttention(nn.Module):
|
|
113
|
+
def __init__(self,
|
|
114
|
+
embed_dim: int = 64,
|
|
115
|
+
hidden_dim: int = 64,
|
|
116
|
+
activation=nn.Tanh,
|
|
117
|
+
):
|
|
118
|
+
super().__init__()
|
|
119
|
+
self.fuser = nn.Sequential(nn.Linear(embed_dim, hidden_dim),
|
|
120
|
+
activation(),
|
|
121
|
+
nn.Linear(hidden_dim, 1, bias=False))
|
|
122
|
+
|
|
123
|
+
def forward(self, c): # (batch_size x seq_len x embed_dim)
|
|
124
|
+
a = self.fuser(c)
|
|
125
|
+
alpha = torch.exp(a)
|
|
126
|
+
alpha = alpha/alpha.sum(dim=1, keepdim=True)
|
|
127
|
+
return (alpha*c).sum(dim=1) # (batch_size x embed_dim)
|
|
@@ -0,0 +1,56 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
#
|
|
3
|
+
#
|
|
4
|
+
# This source code is licensed under the GPL license found in the
|
|
5
|
+
# LICENSE file in the root directory of this source tree.
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
import torch
|
|
9
|
+
from torch import nn
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class TransformerEncoder(nn.Module):
|
|
13
|
+
def __init__(
|
|
14
|
+
self,
|
|
15
|
+
dim: int = 64,
|
|
16
|
+
nhead: int = 8,
|
|
17
|
+
num_encoder_layers: int = 4,
|
|
18
|
+
num_decoder_layers: int = 2,
|
|
19
|
+
dim_feedforward: int = 512,
|
|
20
|
+
dropout: float = 0.01,
|
|
21
|
+
activation: str = 'gelu',
|
|
22
|
+
in_dim: int = 2,
|
|
23
|
+
out_dim: int = None,
|
|
24
|
+
):
|
|
25
|
+
|
|
26
|
+
super().__init__()
|
|
27
|
+
|
|
28
|
+
self.in_projector = nn.Linear(in_dim, dim)
|
|
29
|
+
|
|
30
|
+
self.dim = dim
|
|
31
|
+
|
|
32
|
+
self.transformer = nn.Transformer(
|
|
33
|
+
dim, nhead=nhead,
|
|
34
|
+
num_encoder_layers=num_encoder_layers,
|
|
35
|
+
num_decoder_layers=num_decoder_layers,
|
|
36
|
+
dim_feedforward=dim_feedforward,
|
|
37
|
+
dropout=dropout,
|
|
38
|
+
activation=activation
|
|
39
|
+
)
|
|
40
|
+
|
|
41
|
+
if out_dim:
|
|
42
|
+
self.out_projector = nn.Linear(dim, out_dim)
|
|
43
|
+
else:
|
|
44
|
+
self.out_projector = None
|
|
45
|
+
|
|
46
|
+
def forward(self, src, tgt, src_key_padding_mask=None, tgt_key_padding_mask=None, **kwargs):
|
|
47
|
+
src = self.in_projector(src.transpose(1, 2)).transpose(0, 1)
|
|
48
|
+
|
|
49
|
+
res = self.transformer(
|
|
50
|
+
src, tgt, src_key_padding_mask=src_key_padding_mask, tgt_key_padding_mask=tgt_key_padding_mask, **kwargs
|
|
51
|
+
)
|
|
52
|
+
|
|
53
|
+
if self.out_projector:
|
|
54
|
+
res = self.out_projector(res).squeeze(-1)
|
|
55
|
+
|
|
56
|
+
return res.squeeze(0)
|
|
@@ -0,0 +1,18 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
#
|
|
3
|
+
#
|
|
4
|
+
# This source code is licensed under the GPL license found in the
|
|
5
|
+
# LICENSE file in the root directory of this source tree.
|
|
6
|
+
|
|
7
|
+
from reflectorch.models.networks.mlp_networks import (
|
|
8
|
+
NetworkWithPriorsConvEmb,
|
|
9
|
+
NetworkWithPriorsFnoEmb,
|
|
10
|
+
)
|
|
11
|
+
from reflectorch.models.networks.residual_net import ResidualMLP
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
__all__ = [
|
|
15
|
+
"ResidualMLP",
|
|
16
|
+
"NetworkWithPriorsConvEmb",
|
|
17
|
+
"NetworkWithPriorsFnoEmb",
|
|
18
|
+
]
|