rapidtide 3.0.7.1__py3-none-any.whl → 3.0.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- rapidtide/RapidtideDataset.py +1 -1
- rapidtide/_version.py +3 -3
- rapidtide/calcnullsimfunc.py +1 -3
- rapidtide/data/examples/src/test_findmaxlag.py +1 -1
- rapidtide/data/examples/src/testfmri +19 -7
- rapidtide/data/examples/src/testnewrefine +0 -23
- rapidtide/fMRIData_class.py +29 -52
- rapidtide/fit.py +4 -4
- rapidtide/happy_supportfuncs.py +1 -1
- rapidtide/helper_classes.py +0 -1099
- rapidtide/linfitfiltpass.py +82 -4
- rapidtide/makelaggedtcs.py +10 -0
- rapidtide/refinedelay.py +11 -20
- rapidtide/refineregressor.py +1 -1
- rapidtide/resample.py +8 -8
- rapidtide/simFuncClasses.py +1132 -0
- rapidtide/simfuncfit.py +30 -30
- rapidtide/stats.py +5 -2
- rapidtide/tests/.coveragerc +6 -0
- rapidtide/tests/cleanposttest +1 -1
- rapidtide/tests/runlocaltest +2 -2
- rapidtide/tests/test_cleanregressor.py +3 -3
- rapidtide/tests/test_congrid.py +1 -1
- rapidtide/tests/test_corrpass.py +3 -3
- rapidtide/tests/test_delayestimation.py +9 -8
- rapidtide/tests/test_findmaxlag.py +2 -2
- rapidtide/tests/test_fullrunrapidtide_v3.py +2 -1
- rapidtide/tests/test_fullrunrapidtide_v8.py +66 -0
- rapidtide/tests/test_getparsers.py +14 -6
- rapidtide/tests/test_io.py +2 -6
- rapidtide/tests/test_nullcorr.py +3 -3
- rapidtide/tests/test_refinedelay.py +20 -5
- rapidtide/tidepoolTemplate_alt.py +1 -1
- rapidtide/util.py +7 -0
- rapidtide/voxelData.py +3 -6
- rapidtide/workflows/calcSimFuncMap.py +271 -0
- rapidtide/workflows/cleanregressor.py +2 -2
- rapidtide/workflows/delayvar.py +45 -59
- rapidtide/workflows/fitSimFuncMap.py +427 -0
- rapidtide/workflows/happy.py +1 -1
- rapidtide/workflows/rapidtide.py +499 -877
- rapidtide/workflows/rapidtide_parser.py +26 -38
- rapidtide/workflows/refineDelayMap.py +138 -0
- rapidtide/{RegressorRefiner.py → workflows/refineRegressor.py} +200 -28
- rapidtide/workflows/regressfrommaps.py +38 -30
- rapidtide/workflows/retrolagtcs.py +5 -6
- rapidtide/workflows/retroregress.py +73 -191
- rapidtide/workflows/showarbcorr.py +2 -2
- rapidtide/workflows/showxcorrx.py +5 -5
- rapidtide/workflows/tidepool.py +5 -5
- {rapidtide-3.0.7.1.dist-info → rapidtide-3.0.9.dist-info}/METADATA +2 -2
- {rapidtide-3.0.7.1.dist-info → rapidtide-3.0.9.dist-info}/RECORD +56 -52
- rapidtide/workflows/delayestimation.py +0 -483
- {rapidtide-3.0.7.1.dist-info → rapidtide-3.0.9.dist-info}/WHEEL +0 -0
- {rapidtide-3.0.7.1.dist-info → rapidtide-3.0.9.dist-info}/entry_points.txt +0 -0
- {rapidtide-3.0.7.1.dist-info → rapidtide-3.0.9.dist-info}/licenses/LICENSE +0 -0
- {rapidtide-3.0.7.1.dist-info → rapidtide-3.0.9.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,427 @@
|
|
|
1
|
+
#!/usr/bin/env python
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
#
|
|
4
|
+
# Copyright 2016-2025 Blaise Frederick
|
|
5
|
+
#
|
|
6
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
7
|
+
# you may not use this file except in compliance with the License.
|
|
8
|
+
# You may obtain a copy of the License at
|
|
9
|
+
#
|
|
10
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
11
|
+
#
|
|
12
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
13
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
14
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
15
|
+
# See the License for the specific language governing permissions and
|
|
16
|
+
# limitations under the License.
|
|
17
|
+
#
|
|
18
|
+
#
|
|
19
|
+
import numpy as np
|
|
20
|
+
from scipy import ndimage
|
|
21
|
+
|
|
22
|
+
import rapidtide.io as tide_io
|
|
23
|
+
import rapidtide.patchmatch as tide_patch
|
|
24
|
+
import rapidtide.peakeval as tide_peakeval
|
|
25
|
+
import rapidtide.resample as tide_resample
|
|
26
|
+
import rapidtide.simfuncfit as tide_simfuncfit
|
|
27
|
+
import rapidtide.util as tide_util
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
def fitSimFunc(
|
|
31
|
+
fmri_data_valid,
|
|
32
|
+
validsimcalcstart,
|
|
33
|
+
validsimcalcend,
|
|
34
|
+
osvalidsimcalcstart,
|
|
35
|
+
osvalidsimcalcend,
|
|
36
|
+
initial_fmri_x,
|
|
37
|
+
os_fmri_x,
|
|
38
|
+
theMutualInformationator,
|
|
39
|
+
cleaned_referencetc,
|
|
40
|
+
corrout,
|
|
41
|
+
outputname,
|
|
42
|
+
validvoxels,
|
|
43
|
+
nativespaceshape,
|
|
44
|
+
bidsbasedict,
|
|
45
|
+
numspatiallocs,
|
|
46
|
+
gaussout,
|
|
47
|
+
theinitialdelay,
|
|
48
|
+
windowout,
|
|
49
|
+
R2,
|
|
50
|
+
thesizes,
|
|
51
|
+
internalspaceshape,
|
|
52
|
+
numvalidspatiallocs,
|
|
53
|
+
theinputdata,
|
|
54
|
+
theheader,
|
|
55
|
+
theFitter,
|
|
56
|
+
fitmask,
|
|
57
|
+
lagtimes,
|
|
58
|
+
lagstrengths,
|
|
59
|
+
lagsigma,
|
|
60
|
+
failreason,
|
|
61
|
+
outmaparray,
|
|
62
|
+
trimmedcorrscale,
|
|
63
|
+
similaritytype,
|
|
64
|
+
thepass,
|
|
65
|
+
optiondict,
|
|
66
|
+
LGR,
|
|
67
|
+
TimingLGR,
|
|
68
|
+
simplefit=False,
|
|
69
|
+
upsampfac=8,
|
|
70
|
+
rt_floatset=np.float64,
|
|
71
|
+
rt_floattype="float64",
|
|
72
|
+
):
|
|
73
|
+
# Do a peak prefit if doing hybrid
|
|
74
|
+
if optiondict["similaritymetric"] == "hybrid":
|
|
75
|
+
LGR.info(f"\n\nPeak prefit calculation, pass {thepass}")
|
|
76
|
+
TimingLGR.info(f"Peak prefit calculation start, pass {thepass}")
|
|
77
|
+
|
|
78
|
+
tide_util.disablemkl(optiondict["nprocs_peakeval"], debug=optiondict["threaddebug"])
|
|
79
|
+
voxelsprocessed_pe, thepeakdict = tide_peakeval.peakevalpass(
|
|
80
|
+
fmri_data_valid[:, validsimcalcstart : validsimcalcend + 1],
|
|
81
|
+
cleaned_referencetc,
|
|
82
|
+
initial_fmri_x[validsimcalcstart : validsimcalcend + 1],
|
|
83
|
+
os_fmri_x[osvalidsimcalcstart : osvalidsimcalcend + 1],
|
|
84
|
+
theMutualInformationator,
|
|
85
|
+
trimmedcorrscale,
|
|
86
|
+
corrout,
|
|
87
|
+
nprocs=optiondict["nprocs_peakeval"],
|
|
88
|
+
alwaysmultiproc=optiondict["alwaysmultiproc"],
|
|
89
|
+
bipolar=optiondict["bipolar"],
|
|
90
|
+
oversampfactor=optiondict["oversampfactor"],
|
|
91
|
+
interptype=optiondict["interptype"],
|
|
92
|
+
showprogressbar=optiondict["showprogressbar"],
|
|
93
|
+
chunksize=optiondict["mp_chunksize"],
|
|
94
|
+
rt_floatset=rt_floatset,
|
|
95
|
+
rt_floattype=rt_floattype,
|
|
96
|
+
)
|
|
97
|
+
tide_util.enablemkl(optiondict["mklthreads"], debug=optiondict["threaddebug"])
|
|
98
|
+
|
|
99
|
+
TimingLGR.info(
|
|
100
|
+
f"Peak prefit end, pass {thepass}",
|
|
101
|
+
{
|
|
102
|
+
"message2": voxelsprocessed_pe,
|
|
103
|
+
"message3": "voxels",
|
|
104
|
+
},
|
|
105
|
+
)
|
|
106
|
+
mipeaks = lagtimes * 0.0
|
|
107
|
+
for i in range(numvalidspatiallocs):
|
|
108
|
+
if len(thepeakdict[str(i)]) > 0:
|
|
109
|
+
mipeaks[i] = thepeakdict[str(i)][0][0]
|
|
110
|
+
else:
|
|
111
|
+
thepeakdict = None
|
|
112
|
+
|
|
113
|
+
if simplefit:
|
|
114
|
+
basedelay = trimmedcorrscale[0]
|
|
115
|
+
delaystep = (trimmedcorrscale[1] - trimmedcorrscale[0]) / upsampfac
|
|
116
|
+
for thevox in range(numvalidspatiallocs):
|
|
117
|
+
fitmask[thevox] = 1
|
|
118
|
+
upsampcorrout = tide_resample.upsample(corrout[thevox,:],1, upsampfac, intfac=True, dofilt=False)
|
|
119
|
+
if optiondict["bipolar"]:
|
|
120
|
+
thismax = np.argmax(np.fabs(upsampcorrout))
|
|
121
|
+
else:
|
|
122
|
+
thismax = np.argmax(upsampcorrout)
|
|
123
|
+
lagtimes[thevox] = basedelay + thismax * delaystep
|
|
124
|
+
lagstrengths[thevox] = upsampcorrout[thismax]
|
|
125
|
+
lagsigma[thevox] = 1.0
|
|
126
|
+
internaldespeckleincludemask = None
|
|
127
|
+
else:
|
|
128
|
+
# Similarity function fitting and time lag estimation
|
|
129
|
+
# write out the current version of the run options
|
|
130
|
+
optiondict["currentstage"] = f"presimfuncfit_pass{thepass}"
|
|
131
|
+
tide_io.writedicttojson(optiondict, f"{outputname}_desc-runoptions_info.json")
|
|
132
|
+
LGR.info(f"\n\nTime lag estimation pass {thepass}")
|
|
133
|
+
TimingLGR.info(f"Time lag estimation start, pass {thepass}")
|
|
134
|
+
|
|
135
|
+
theFitter.setfunctype(optiondict["similaritymetric"])
|
|
136
|
+
theFitter.setcorrtimeaxis(trimmedcorrscale)
|
|
137
|
+
|
|
138
|
+
# use initial lags if this is a hybrid fit
|
|
139
|
+
if optiondict["similaritymetric"] == "hybrid" and thepeakdict is not None:
|
|
140
|
+
initlags = mipeaks
|
|
141
|
+
else:
|
|
142
|
+
initlags = None
|
|
143
|
+
|
|
144
|
+
tide_util.disablemkl(optiondict["nprocs_fitcorr"], debug=optiondict["threaddebug"])
|
|
145
|
+
voxelsprocessed_fc = tide_simfuncfit.fitcorr(
|
|
146
|
+
trimmedcorrscale,
|
|
147
|
+
theFitter,
|
|
148
|
+
corrout,
|
|
149
|
+
fitmask,
|
|
150
|
+
failreason,
|
|
151
|
+
lagtimes,
|
|
152
|
+
lagstrengths,
|
|
153
|
+
lagsigma,
|
|
154
|
+
gaussout,
|
|
155
|
+
windowout,
|
|
156
|
+
R2,
|
|
157
|
+
despeckling=False,
|
|
158
|
+
peakdict=thepeakdict,
|
|
159
|
+
nprocs=optiondict["nprocs_fitcorr"],
|
|
160
|
+
alwaysmultiproc=optiondict["alwaysmultiproc"],
|
|
161
|
+
fixdelay=optiondict["fixdelay"],
|
|
162
|
+
initialdelayvalue=theinitialdelay,
|
|
163
|
+
showprogressbar=optiondict["showprogressbar"],
|
|
164
|
+
chunksize=optiondict["mp_chunksize"],
|
|
165
|
+
despeckle_thresh=optiondict["despeckle_thresh"],
|
|
166
|
+
initiallags=initlags,
|
|
167
|
+
rt_floatset=rt_floatset,
|
|
168
|
+
rt_floattype=rt_floattype,
|
|
169
|
+
)
|
|
170
|
+
tide_util.enablemkl(optiondict["mklthreads"], debug=optiondict["threaddebug"])
|
|
171
|
+
|
|
172
|
+
TimingLGR.info(
|
|
173
|
+
f"Time lag estimation end, pass {thepass}",
|
|
174
|
+
{
|
|
175
|
+
"message2": voxelsprocessed_fc,
|
|
176
|
+
"message3": "voxels",
|
|
177
|
+
},
|
|
178
|
+
)
|
|
179
|
+
|
|
180
|
+
# Correlation time despeckle
|
|
181
|
+
if optiondict["despeckle_passes"] > 0:
|
|
182
|
+
LGR.info(f"\n\n{similaritytype} despeckling pass {thepass}")
|
|
183
|
+
LGR.info(f"\tUsing despeckle_thresh = {optiondict['despeckle_thresh']:.3f}")
|
|
184
|
+
TimingLGR.info(f"{similaritytype} despeckle start, pass {thepass}")
|
|
185
|
+
|
|
186
|
+
# find lags that are very different from their neighbors, and refit starting at the median lag for the point
|
|
187
|
+
voxelsprocessed_fc_ds = 0
|
|
188
|
+
despecklingdone = False
|
|
189
|
+
lastnumdespeckled = 1000000
|
|
190
|
+
for despecklepass in range(optiondict["despeckle_passes"]):
|
|
191
|
+
LGR.info(f"\n\n{similaritytype} despeckling subpass {despecklepass + 1}")
|
|
192
|
+
outmaparray *= 0.0
|
|
193
|
+
outmaparray[validvoxels] = eval("lagtimes")[:]
|
|
194
|
+
|
|
195
|
+
# find voxels to despeckle
|
|
196
|
+
medianlags = ndimage.median_filter(outmaparray.reshape(nativespaceshape), 3).reshape(
|
|
197
|
+
numspatiallocs
|
|
198
|
+
)
|
|
199
|
+
# voxels that we're happy with have initlags set to -1000000.0
|
|
200
|
+
initlags = np.where(
|
|
201
|
+
np.abs(outmaparray - medianlags) > optiondict["despeckle_thresh"],
|
|
202
|
+
medianlags,
|
|
203
|
+
-1000000.0,
|
|
204
|
+
)[validvoxels]
|
|
205
|
+
|
|
206
|
+
if len(initlags) > 0:
|
|
207
|
+
numdespeckled = len(np.where(initlags != -1000000.0)[0])
|
|
208
|
+
if lastnumdespeckled > numdespeckled > 0:
|
|
209
|
+
lastnumdespeckled = numdespeckled
|
|
210
|
+
tide_util.disablemkl(
|
|
211
|
+
optiondict["nprocs_fitcorr"], debug=optiondict["threaddebug"]
|
|
212
|
+
)
|
|
213
|
+
voxelsprocessed_thispass = tide_simfuncfit.fitcorr(
|
|
214
|
+
trimmedcorrscale,
|
|
215
|
+
theFitter,
|
|
216
|
+
corrout,
|
|
217
|
+
fitmask,
|
|
218
|
+
failreason,
|
|
219
|
+
lagtimes,
|
|
220
|
+
lagstrengths,
|
|
221
|
+
lagsigma,
|
|
222
|
+
gaussout,
|
|
223
|
+
windowout,
|
|
224
|
+
R2,
|
|
225
|
+
despeckling=True,
|
|
226
|
+
peakdict=thepeakdict,
|
|
227
|
+
nprocs=optiondict["nprocs_fitcorr"],
|
|
228
|
+
alwaysmultiproc=optiondict["alwaysmultiproc"],
|
|
229
|
+
fixdelay=optiondict["fixdelay"],
|
|
230
|
+
initialdelayvalue=theinitialdelay,
|
|
231
|
+
showprogressbar=optiondict["showprogressbar"],
|
|
232
|
+
chunksize=optiondict["mp_chunksize"],
|
|
233
|
+
despeckle_thresh=optiondict["despeckle_thresh"],
|
|
234
|
+
initiallags=initlags,
|
|
235
|
+
rt_floatset=rt_floatset,
|
|
236
|
+
rt_floattype=rt_floattype,
|
|
237
|
+
)
|
|
238
|
+
tide_util.enablemkl(optiondict["mklthreads"], debug=optiondict["threaddebug"])
|
|
239
|
+
|
|
240
|
+
voxelsprocessed_fc_ds += voxelsprocessed_thispass
|
|
241
|
+
optiondict[
|
|
242
|
+
"despecklemasksize_pass" + str(thepass) + "_d" + str(despecklepass + 1)
|
|
243
|
+
] = voxelsprocessed_thispass
|
|
244
|
+
optiondict[
|
|
245
|
+
"despecklemaskpct_pass" + str(thepass) + "_d" + str(despecklepass + 1)
|
|
246
|
+
] = (100.0 * voxelsprocessed_thispass / optiondict["corrmasksize"])
|
|
247
|
+
else:
|
|
248
|
+
despecklingdone = True
|
|
249
|
+
else:
|
|
250
|
+
despecklingdone = True
|
|
251
|
+
if despecklingdone:
|
|
252
|
+
LGR.info("Nothing left to do! Terminating despeckling")
|
|
253
|
+
break
|
|
254
|
+
|
|
255
|
+
internaldespeckleincludemask = np.where(
|
|
256
|
+
np.abs(outmaparray - medianlags) > optiondict["despeckle_thresh"],
|
|
257
|
+
medianlags,
|
|
258
|
+
0.0,
|
|
259
|
+
)
|
|
260
|
+
if optiondict["savedespecklemasks"] and (optiondict["despeckle_passes"] > 0):
|
|
261
|
+
despecklesavemask = np.where(internaldespeckleincludemask[validvoxels] == 0.0, 0, 1)
|
|
262
|
+
if thepass == optiondict["passes"]:
|
|
263
|
+
if theinputdata.filetype != "text":
|
|
264
|
+
if theinputdata.filetype == "cifti":
|
|
265
|
+
timeindex = theheader["dim"][0] - 1
|
|
266
|
+
spaceindex = theheader["dim"][0]
|
|
267
|
+
theheader["dim"][timeindex] = 1
|
|
268
|
+
theheader["dim"][spaceindex] = numspatiallocs
|
|
269
|
+
else:
|
|
270
|
+
theheader["dim"][0] = 3
|
|
271
|
+
theheader["dim"][4] = 1
|
|
272
|
+
theheader["pixdim"][4] = 1.0
|
|
273
|
+
masklist = [
|
|
274
|
+
(
|
|
275
|
+
despecklesavemask,
|
|
276
|
+
"despeckle",
|
|
277
|
+
"mask",
|
|
278
|
+
None,
|
|
279
|
+
"Voxels that underwent despeckling in the final pass",
|
|
280
|
+
)
|
|
281
|
+
]
|
|
282
|
+
tide_io.savemaplist(
|
|
283
|
+
outputname,
|
|
284
|
+
masklist,
|
|
285
|
+
validvoxels,
|
|
286
|
+
nativespaceshape,
|
|
287
|
+
theheader,
|
|
288
|
+
bidsbasedict,
|
|
289
|
+
filetype=theinputdata.filetype,
|
|
290
|
+
rt_floattype=rt_floattype,
|
|
291
|
+
cifti_hdr=theinputdata.cifti_hdr,
|
|
292
|
+
)
|
|
293
|
+
LGR.info(
|
|
294
|
+
f"\n\n{voxelsprocessed_fc_ds} voxels despeckled in "
|
|
295
|
+
f"{optiondict['despeckle_passes']} passes"
|
|
296
|
+
)
|
|
297
|
+
TimingLGR.info(
|
|
298
|
+
f"{similaritytype} despeckle end, pass {thepass}",
|
|
299
|
+
{
|
|
300
|
+
"message2": voxelsprocessed_fc_ds,
|
|
301
|
+
"message3": "voxels",
|
|
302
|
+
},
|
|
303
|
+
)
|
|
304
|
+
else:
|
|
305
|
+
internaldespeckleincludemask = None
|
|
306
|
+
|
|
307
|
+
# Patch shifting
|
|
308
|
+
if optiondict["patchshift"]:
|
|
309
|
+
outmaparray *= 0.0
|
|
310
|
+
outmaparray[validvoxels] = eval("lagtimes")[:]
|
|
311
|
+
# new method
|
|
312
|
+
masklist = [
|
|
313
|
+
(
|
|
314
|
+
outmaparray[validvoxels],
|
|
315
|
+
f"lagtimes_prepatch_pass{thepass}",
|
|
316
|
+
"map",
|
|
317
|
+
None,
|
|
318
|
+
f"Input lagtimes map prior to patch map generation pass {thepass}",
|
|
319
|
+
),
|
|
320
|
+
]
|
|
321
|
+
tide_io.savemaplist(
|
|
322
|
+
outputname,
|
|
323
|
+
masklist,
|
|
324
|
+
validvoxels,
|
|
325
|
+
nativespaceshape,
|
|
326
|
+
theheader,
|
|
327
|
+
bidsbasedict,
|
|
328
|
+
filetype=theinputdata.filetype,
|
|
329
|
+
rt_floattype=rt_floattype,
|
|
330
|
+
cifti_hdr=theinputdata.cifti_hdr,
|
|
331
|
+
)
|
|
332
|
+
|
|
333
|
+
# create list of anomalous 3D regions that don't match surroundings
|
|
334
|
+
if theinputdata.nim_affine is not None:
|
|
335
|
+
# make an atlas of anomalous patches - each patch shares the same integer value
|
|
336
|
+
step1 = tide_patch.calc_DoG(
|
|
337
|
+
outmaparray.reshape(nativespaceshape).copy(),
|
|
338
|
+
theinputdata.nim_affine,
|
|
339
|
+
thesizes,
|
|
340
|
+
fwhm=optiondict["patchfwhm"],
|
|
341
|
+
ratioopt=False,
|
|
342
|
+
debug=True,
|
|
343
|
+
)
|
|
344
|
+
masklist = [
|
|
345
|
+
(
|
|
346
|
+
step1.reshape(internalspaceshape)[validvoxels],
|
|
347
|
+
f"DoG_pass{thepass}",
|
|
348
|
+
"map",
|
|
349
|
+
None,
|
|
350
|
+
f"DoG map for pass {thepass}",
|
|
351
|
+
),
|
|
352
|
+
]
|
|
353
|
+
tide_io.savemaplist(
|
|
354
|
+
outputname,
|
|
355
|
+
masklist,
|
|
356
|
+
validvoxels,
|
|
357
|
+
nativespaceshape,
|
|
358
|
+
theheader,
|
|
359
|
+
bidsbasedict,
|
|
360
|
+
filetype=theinputdata.filetype,
|
|
361
|
+
rt_floattype=rt_floattype,
|
|
362
|
+
cifti_hdr=theinputdata.cifti_hdr,
|
|
363
|
+
)
|
|
364
|
+
step2 = tide_patch.invertedflood3D(
|
|
365
|
+
step1,
|
|
366
|
+
1,
|
|
367
|
+
)
|
|
368
|
+
masklist = [
|
|
369
|
+
(
|
|
370
|
+
step2.reshape(internalspaceshape)[validvoxels],
|
|
371
|
+
f"invertflood_pass{thepass}",
|
|
372
|
+
"map",
|
|
373
|
+
None,
|
|
374
|
+
f"Inverted flood map for pass {thepass}",
|
|
375
|
+
),
|
|
376
|
+
]
|
|
377
|
+
tide_io.savemaplist(
|
|
378
|
+
outputname,
|
|
379
|
+
masklist,
|
|
380
|
+
validvoxels,
|
|
381
|
+
nativespaceshape,
|
|
382
|
+
theheader,
|
|
383
|
+
bidsbasedict,
|
|
384
|
+
filetype=theinputdata.filetype,
|
|
385
|
+
rt_floattype=rt_floattype,
|
|
386
|
+
cifti_hdr=theinputdata.cifti_hdr,
|
|
387
|
+
)
|
|
388
|
+
|
|
389
|
+
patchmap = tide_patch.separateclusters(
|
|
390
|
+
step2,
|
|
391
|
+
sizethresh=optiondict["patchminsize"],
|
|
392
|
+
debug=True,
|
|
393
|
+
)
|
|
394
|
+
# patchmap = tide_patch.getclusters(
|
|
395
|
+
# outmaparray.reshape(nativespaceshape),
|
|
396
|
+
# theinputdata.nim_affine,
|
|
397
|
+
# thesizes,
|
|
398
|
+
# fwhm=optiondict["patchfwhm"],
|
|
399
|
+
# ratioopt=True,
|
|
400
|
+
# sizethresh=optiondict["patchminsize"],
|
|
401
|
+
# debug=True,
|
|
402
|
+
# )
|
|
403
|
+
masklist = [
|
|
404
|
+
(
|
|
405
|
+
patchmap[validvoxels],
|
|
406
|
+
f"patch_pass{thepass}",
|
|
407
|
+
"map",
|
|
408
|
+
None,
|
|
409
|
+
f"Patch map for despeckling pass {thepass}",
|
|
410
|
+
),
|
|
411
|
+
]
|
|
412
|
+
tide_io.savemaplist(
|
|
413
|
+
outputname,
|
|
414
|
+
masklist,
|
|
415
|
+
validvoxels,
|
|
416
|
+
nativespaceshape,
|
|
417
|
+
theheader,
|
|
418
|
+
bidsbasedict,
|
|
419
|
+
filetype=theinputdata.filetype,
|
|
420
|
+
rt_floattype=rt_floattype,
|
|
421
|
+
cifti_hdr=theinputdata.cifti_hdr,
|
|
422
|
+
)
|
|
423
|
+
|
|
424
|
+
# now shift the patches to align with the majority of the image
|
|
425
|
+
tide_patch.interppatch(lagtimes, patchmap[validvoxels])
|
|
426
|
+
|
|
427
|
+
return internaldespeckleincludemask
|
rapidtide/workflows/happy.py
CHANGED