rapidtide 3.0.7.1__py3-none-any.whl → 3.0.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- rapidtide/RapidtideDataset.py +1 -1
- rapidtide/_version.py +3 -3
- rapidtide/calcnullsimfunc.py +1 -3
- rapidtide/data/examples/src/test_findmaxlag.py +1 -1
- rapidtide/data/examples/src/testfmri +19 -7
- rapidtide/data/examples/src/testnewrefine +0 -23
- rapidtide/fMRIData_class.py +29 -52
- rapidtide/fit.py +4 -4
- rapidtide/happy_supportfuncs.py +1 -1
- rapidtide/helper_classes.py +0 -1099
- rapidtide/linfitfiltpass.py +82 -4
- rapidtide/makelaggedtcs.py +10 -0
- rapidtide/refinedelay.py +11 -20
- rapidtide/refineregressor.py +1 -1
- rapidtide/resample.py +8 -8
- rapidtide/simFuncClasses.py +1132 -0
- rapidtide/simfuncfit.py +30 -30
- rapidtide/stats.py +5 -2
- rapidtide/tests/.coveragerc +6 -0
- rapidtide/tests/cleanposttest +1 -1
- rapidtide/tests/runlocaltest +2 -2
- rapidtide/tests/test_cleanregressor.py +3 -3
- rapidtide/tests/test_congrid.py +1 -1
- rapidtide/tests/test_corrpass.py +3 -3
- rapidtide/tests/test_delayestimation.py +9 -8
- rapidtide/tests/test_findmaxlag.py +2 -2
- rapidtide/tests/test_fullrunrapidtide_v3.py +2 -1
- rapidtide/tests/test_fullrunrapidtide_v8.py +66 -0
- rapidtide/tests/test_getparsers.py +14 -6
- rapidtide/tests/test_io.py +2 -6
- rapidtide/tests/test_nullcorr.py +3 -3
- rapidtide/tests/test_refinedelay.py +20 -5
- rapidtide/tidepoolTemplate_alt.py +1 -1
- rapidtide/util.py +7 -0
- rapidtide/voxelData.py +3 -6
- rapidtide/workflows/calcSimFuncMap.py +271 -0
- rapidtide/workflows/cleanregressor.py +2 -2
- rapidtide/workflows/delayvar.py +45 -59
- rapidtide/workflows/fitSimFuncMap.py +427 -0
- rapidtide/workflows/happy.py +1 -1
- rapidtide/workflows/rapidtide.py +499 -877
- rapidtide/workflows/rapidtide_parser.py +26 -38
- rapidtide/workflows/refineDelayMap.py +138 -0
- rapidtide/{RegressorRefiner.py → workflows/refineRegressor.py} +200 -28
- rapidtide/workflows/regressfrommaps.py +38 -30
- rapidtide/workflows/retrolagtcs.py +5 -6
- rapidtide/workflows/retroregress.py +73 -191
- rapidtide/workflows/showarbcorr.py +2 -2
- rapidtide/workflows/showxcorrx.py +5 -5
- rapidtide/workflows/tidepool.py +5 -5
- {rapidtide-3.0.7.1.dist-info → rapidtide-3.0.9.dist-info}/METADATA +2 -2
- {rapidtide-3.0.7.1.dist-info → rapidtide-3.0.9.dist-info}/RECORD +56 -52
- rapidtide/workflows/delayestimation.py +0 -483
- {rapidtide-3.0.7.1.dist-info → rapidtide-3.0.9.dist-info}/WHEEL +0 -0
- {rapidtide-3.0.7.1.dist-info → rapidtide-3.0.9.dist-info}/entry_points.txt +0 -0
- {rapidtide-3.0.7.1.dist-info → rapidtide-3.0.9.dist-info}/licenses/LICENSE +0 -0
- {rapidtide-3.0.7.1.dist-info → rapidtide-3.0.9.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,271 @@
|
|
|
1
|
+
#!/usr/bin/env python
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
#
|
|
4
|
+
# Copyright 2016-2025 Blaise Frederick
|
|
5
|
+
#
|
|
6
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
7
|
+
# you may not use this file except in compliance with the License.
|
|
8
|
+
# You may obtain a copy of the License at
|
|
9
|
+
#
|
|
10
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
11
|
+
#
|
|
12
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
13
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
14
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
15
|
+
# See the License for the specific language governing permissions and
|
|
16
|
+
# limitations under the License.
|
|
17
|
+
#
|
|
18
|
+
#
|
|
19
|
+
import numpy as np
|
|
20
|
+
|
|
21
|
+
import rapidtide.calcsimfunc as tide_calcsimfunc
|
|
22
|
+
import rapidtide.io as tide_io
|
|
23
|
+
import rapidtide.linfitfiltpass as tide_linfitfiltpass
|
|
24
|
+
import rapidtide.makelaggedtcs as tide_makelagged
|
|
25
|
+
import rapidtide.stats as tide_stats
|
|
26
|
+
import rapidtide.util as tide_util
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def makeRIPTiDeRegressors(
|
|
30
|
+
initial_fmri_x,
|
|
31
|
+
lagmin,
|
|
32
|
+
lagmax,
|
|
33
|
+
lagtcgenerator,
|
|
34
|
+
LGR,
|
|
35
|
+
nprocs=1,
|
|
36
|
+
alwaysmultiproc=False,
|
|
37
|
+
showprogressbar=True,
|
|
38
|
+
chunksize=1000,
|
|
39
|
+
targetstep=2.5,
|
|
40
|
+
edgepad=0,
|
|
41
|
+
rt_floatset=np.float64,
|
|
42
|
+
rt_floattype="float64",
|
|
43
|
+
debug=False,
|
|
44
|
+
):
|
|
45
|
+
# make the RIPTiDe evs
|
|
46
|
+
numdelays = int(np.round((lagmax - lagmin) / targetstep, 0))
|
|
47
|
+
numregressors = numdelays + 2 * edgepad
|
|
48
|
+
delaystep = (lagmax - lagmin) / numdelays
|
|
49
|
+
delaystouse = np.linspace(
|
|
50
|
+
lagmin - edgepad * delaystep,
|
|
51
|
+
lagmax + edgepad * delaystep,
|
|
52
|
+
numdelays + 2 * edgepad,
|
|
53
|
+
endpoint=True,
|
|
54
|
+
)
|
|
55
|
+
if debug:
|
|
56
|
+
print(f"{lagmin=}")
|
|
57
|
+
print(f"{lagmax=}")
|
|
58
|
+
print(f"{numdelays=}")
|
|
59
|
+
print(f"{edgepad=}")
|
|
60
|
+
print(f"{numregressors=}")
|
|
61
|
+
print(f"{delaystep=}")
|
|
62
|
+
print(f"{delaystouse=}, {len(delaystouse)}")
|
|
63
|
+
print(f"{len(initial_fmri_x)}")
|
|
64
|
+
|
|
65
|
+
regressorset = np.zeros((len(delaystouse), len(initial_fmri_x)), dtype=rt_floatset)
|
|
66
|
+
|
|
67
|
+
dummy = tide_makelagged.makelaggedtcs(
|
|
68
|
+
lagtcgenerator,
|
|
69
|
+
initial_fmri_x,
|
|
70
|
+
np.ones_like(delaystouse, dtype=np.float64),
|
|
71
|
+
delaystouse,
|
|
72
|
+
regressorset,
|
|
73
|
+
LGR=LGR,
|
|
74
|
+
nprocs=nprocs,
|
|
75
|
+
alwaysmultiproc=alwaysmultiproc,
|
|
76
|
+
showprogressbar=showprogressbar,
|
|
77
|
+
chunksize=chunksize,
|
|
78
|
+
rt_floatset=rt_floatset,
|
|
79
|
+
rt_floattype=rt_floattype,
|
|
80
|
+
debug=debug,
|
|
81
|
+
)
|
|
82
|
+
|
|
83
|
+
if debug:
|
|
84
|
+
print(regressorset)
|
|
85
|
+
|
|
86
|
+
return regressorset, delaystouse
|
|
87
|
+
|
|
88
|
+
|
|
89
|
+
def calcSimFunc(
|
|
90
|
+
numvalidspatiallocs,
|
|
91
|
+
fmri_data_valid,
|
|
92
|
+
validsimcalcstart,
|
|
93
|
+
validsimcalcend,
|
|
94
|
+
osvalidsimcalcstart,
|
|
95
|
+
osvalidsimcalcend,
|
|
96
|
+
initial_fmri_x,
|
|
97
|
+
os_fmri_x,
|
|
98
|
+
theCorrelator,
|
|
99
|
+
theMutualInformationator,
|
|
100
|
+
cleaned_referencetc,
|
|
101
|
+
corrout,
|
|
102
|
+
regressorset,
|
|
103
|
+
delayvals,
|
|
104
|
+
sLFOfitmean,
|
|
105
|
+
r2value,
|
|
106
|
+
fitcoeff,
|
|
107
|
+
fitNorm,
|
|
108
|
+
meanval,
|
|
109
|
+
corrscale,
|
|
110
|
+
outputname,
|
|
111
|
+
outcorrarray,
|
|
112
|
+
validvoxels,
|
|
113
|
+
nativecorrshape,
|
|
114
|
+
theinputdata,
|
|
115
|
+
theheader,
|
|
116
|
+
lagmininpts,
|
|
117
|
+
lagmaxinpts,
|
|
118
|
+
thepass,
|
|
119
|
+
optiondict,
|
|
120
|
+
LGR,
|
|
121
|
+
TimingLGR,
|
|
122
|
+
similaritymetric="correlation",
|
|
123
|
+
simcalcoffset=0,
|
|
124
|
+
echocancel=False,
|
|
125
|
+
checkpoint=False,
|
|
126
|
+
nprocs=1,
|
|
127
|
+
alwaysmultiproc=False,
|
|
128
|
+
oversampfactor=2,
|
|
129
|
+
interptype="univariate",
|
|
130
|
+
showprogressbar=True,
|
|
131
|
+
chunksize=1000,
|
|
132
|
+
rt_floatset=np.float64,
|
|
133
|
+
rt_floattype="float64",
|
|
134
|
+
mklthreads=1,
|
|
135
|
+
threaddebug=False,
|
|
136
|
+
debug=False,
|
|
137
|
+
):
|
|
138
|
+
# Step 1 - Correlation step
|
|
139
|
+
if similaritymetric == "mutualinfo":
|
|
140
|
+
similaritytype = "Mutual information"
|
|
141
|
+
elif similaritymetric == "correlation":
|
|
142
|
+
similaritytype = "Correlation"
|
|
143
|
+
elif similaritymetric == "riptide":
|
|
144
|
+
similaritytype = "RIPTiDe"
|
|
145
|
+
else:
|
|
146
|
+
similaritytype = "MI enhanced correlation"
|
|
147
|
+
LGR.info(f"\n\n{similaritytype} calculation, pass {thepass}")
|
|
148
|
+
TimingLGR.info(f"{similaritytype} calculation start, pass {thepass}")
|
|
149
|
+
|
|
150
|
+
tide_util.disablemkl(nprocs, debug=threaddebug)
|
|
151
|
+
if similaritymetric == "mutualinfo":
|
|
152
|
+
theMutualInformationator.setlimits(lagmininpts, lagmaxinpts)
|
|
153
|
+
(
|
|
154
|
+
voxelsprocessed_cp,
|
|
155
|
+
theglobalmaxlist,
|
|
156
|
+
trimmedcorrscale,
|
|
157
|
+
) = tide_calcsimfunc.correlationpass(
|
|
158
|
+
fmri_data_valid[:, validsimcalcstart : validsimcalcend + 1],
|
|
159
|
+
cleaned_referencetc,
|
|
160
|
+
theMutualInformationator,
|
|
161
|
+
initial_fmri_x[validsimcalcstart : validsimcalcend + 1],
|
|
162
|
+
os_fmri_x[osvalidsimcalcstart : osvalidsimcalcend + 1],
|
|
163
|
+
lagmininpts,
|
|
164
|
+
lagmaxinpts,
|
|
165
|
+
corrout,
|
|
166
|
+
meanval,
|
|
167
|
+
nprocs=nprocs,
|
|
168
|
+
alwaysmultiproc=alwaysmultiproc,
|
|
169
|
+
oversampfactor=oversampfactor,
|
|
170
|
+
interptype=interptype,
|
|
171
|
+
showprogressbar=showprogressbar,
|
|
172
|
+
chunksize=chunksize,
|
|
173
|
+
rt_floatset=rt_floatset,
|
|
174
|
+
rt_floattype=rt_floattype,
|
|
175
|
+
debug=debug,
|
|
176
|
+
)
|
|
177
|
+
elif (similaritymetric == "correlation") or (similaritymetric == "hybrid"):
|
|
178
|
+
(
|
|
179
|
+
voxelsprocessed_cp,
|
|
180
|
+
theglobalmaxlist,
|
|
181
|
+
trimmedcorrscale,
|
|
182
|
+
) = tide_calcsimfunc.correlationpass(
|
|
183
|
+
fmri_data_valid[:, validsimcalcstart : validsimcalcend + 1],
|
|
184
|
+
cleaned_referencetc,
|
|
185
|
+
theCorrelator,
|
|
186
|
+
initial_fmri_x[validsimcalcstart : validsimcalcend + 1],
|
|
187
|
+
os_fmri_x[osvalidsimcalcstart : osvalidsimcalcend + 1],
|
|
188
|
+
lagmininpts,
|
|
189
|
+
lagmaxinpts,
|
|
190
|
+
corrout,
|
|
191
|
+
meanval,
|
|
192
|
+
nprocs=nprocs,
|
|
193
|
+
alwaysmultiproc=alwaysmultiproc,
|
|
194
|
+
oversampfactor=oversampfactor,
|
|
195
|
+
interptype=interptype,
|
|
196
|
+
showprogressbar=showprogressbar,
|
|
197
|
+
chunksize=chunksize,
|
|
198
|
+
rt_floatset=rt_floatset,
|
|
199
|
+
rt_floattype=rt_floattype,
|
|
200
|
+
debug=debug,
|
|
201
|
+
)
|
|
202
|
+
elif similaritymetric == "riptide":
|
|
203
|
+
# do the linear fit to the comb of delayed regressors
|
|
204
|
+
for thedelay in range(len(delayvals)):
|
|
205
|
+
print(f"Fitting delay {delayvals[thedelay]:.2f}")
|
|
206
|
+
voxelsprocessed_cp = tide_linfitfiltpass.linfitfiltpass(
|
|
207
|
+
numvalidspatiallocs,
|
|
208
|
+
fmri_data_valid[:, validsimcalcstart : validsimcalcend + 1],
|
|
209
|
+
0.0,
|
|
210
|
+
regressorset[thedelay, validsimcalcstart : validsimcalcend + 1],
|
|
211
|
+
sLFOfitmean,
|
|
212
|
+
corrout[:, thedelay],
|
|
213
|
+
r2value,
|
|
214
|
+
fitcoeff,
|
|
215
|
+
fitNorm,
|
|
216
|
+
None,
|
|
217
|
+
None,
|
|
218
|
+
coefficientsonly=True,
|
|
219
|
+
voxelspecific=False,
|
|
220
|
+
nprocs=nprocs,
|
|
221
|
+
alwaysmultiproc=alwaysmultiproc,
|
|
222
|
+
showprogressbar=showprogressbar,
|
|
223
|
+
verbose=(LGR is not None),
|
|
224
|
+
chunksize=chunksize,
|
|
225
|
+
rt_floatset=rt_floatset,
|
|
226
|
+
rt_floattype=rt_floattype,
|
|
227
|
+
debug=debug,
|
|
228
|
+
)
|
|
229
|
+
else:
|
|
230
|
+
print("illegal similarity metric")
|
|
231
|
+
|
|
232
|
+
tide_util.enablemkl(mklthreads, debug=threaddebug)
|
|
233
|
+
|
|
234
|
+
if similaritymetric != "riptide":
|
|
235
|
+
for i in range(len(theglobalmaxlist)):
|
|
236
|
+
theglobalmaxlist[i] = corrscale[theglobalmaxlist[i]] - simcalcoffset
|
|
237
|
+
namesuffix = "_desc-globallag_hist"
|
|
238
|
+
tide_stats.makeandsavehistogram(
|
|
239
|
+
np.asarray(theglobalmaxlist),
|
|
240
|
+
len(corrscale),
|
|
241
|
+
0,
|
|
242
|
+
outputname + namesuffix,
|
|
243
|
+
displaytitle="Histogram of lag times from global lag calculation",
|
|
244
|
+
therange=(corrscale[0], corrscale[-1]),
|
|
245
|
+
refine=False,
|
|
246
|
+
dictvarname="globallaghist_pass" + str(thepass),
|
|
247
|
+
append=(echocancel or (thepass > 1)),
|
|
248
|
+
thedict=optiondict,
|
|
249
|
+
)
|
|
250
|
+
|
|
251
|
+
if checkpoint:
|
|
252
|
+
outcorrarray[:, :] = 0.0
|
|
253
|
+
outcorrarray[validvoxels, :] = corrout[:, :]
|
|
254
|
+
if theinputdata.filetype == "text":
|
|
255
|
+
tide_io.writenpvecs(
|
|
256
|
+
outcorrarray.reshape(nativecorrshape),
|
|
257
|
+
f"{outputname}_corrout_prefit_pass" + str(thepass) + ".txt",
|
|
258
|
+
)
|
|
259
|
+
else:
|
|
260
|
+
savename = f"{outputname}_desc-corroutprefit_pass-" + str(thepass)
|
|
261
|
+
tide_io.savetonifti(outcorrarray.reshape(nativecorrshape), theheader, savename)
|
|
262
|
+
|
|
263
|
+
TimingLGR.info(
|
|
264
|
+
f"{similaritytype} calculation end, pass {thepass}",
|
|
265
|
+
{
|
|
266
|
+
"message2": voxelsprocessed_cp,
|
|
267
|
+
"message3": "voxels",
|
|
268
|
+
},
|
|
269
|
+
)
|
|
270
|
+
|
|
271
|
+
return similaritytype
|
|
@@ -20,9 +20,9 @@ import numpy as np
|
|
|
20
20
|
|
|
21
21
|
import rapidtide.correlate as tide_corr
|
|
22
22
|
import rapidtide.filter as tide_filt
|
|
23
|
-
import rapidtide.helper_classes as tide_classes
|
|
24
23
|
import rapidtide.io as tide_io
|
|
25
24
|
import rapidtide.miscmath as tide_math
|
|
25
|
+
import rapidtide.simFuncClasses as tide_simFuncClasses
|
|
26
26
|
import rapidtide.simfuncfit as tide_simfuncfit
|
|
27
27
|
|
|
28
28
|
|
|
@@ -81,7 +81,7 @@ def cleanregressor(
|
|
|
81
81
|
dolagmod = True
|
|
82
82
|
doreferencenotch = True
|
|
83
83
|
if respdelete:
|
|
84
|
-
resptracker =
|
|
84
|
+
resptracker = tide_simFuncClasses.FrequencyTracker(nperseg=64)
|
|
85
85
|
thetimes, thefreqs = resptracker.track(resampref_y, oversampfreq)
|
|
86
86
|
tide_io.writevec(thefreqs, f"{outputname}_peakfreaks_pass{thepass}.txt")
|
|
87
87
|
resampref_y = resptracker.clean(resampref_y, oversampfreq, thetimes, thefreqs)
|
rapidtide/workflows/delayvar.py
CHANGED
|
@@ -614,38 +614,32 @@ def delayvar(args):
|
|
|
614
614
|
windowedfilteredregressderivratios = np.zeros(internalwinspaceshape, dtype=float)
|
|
615
615
|
windoweddelayoffset = np.zeros(internalwinspaceshape, dtype=float)
|
|
616
616
|
windowedclosestoffset = np.zeros(internalwinspaceshape, dtype=float)
|
|
617
|
+
|
|
618
|
+
winsLFOfitmean, winsLFOfitmean_shm = tide_util.allocarray(
|
|
619
|
+
internalwinspaceshape, rt_outfloattype, shared=usesharedmem
|
|
620
|
+
)
|
|
621
|
+
winrvalue, winrvalue_shm = tide_util.allocarray(internalwinspaceshape, rt_outfloattype, shared=usesharedmem)
|
|
622
|
+
winr2value, winr2value_shm = tide_util.allocarray(internalwinspaceshape, rt_outfloattype, shared=usesharedmem)
|
|
623
|
+
winfitNorm, winfitNorm_shm = tide_util.allocarray(
|
|
624
|
+
internalwinspaceshapederivs, rt_outfloattype, shared=usesharedmem
|
|
625
|
+
)
|
|
626
|
+
winfitcoeff, winitcoeff_shm = tide_util.allocarray(
|
|
627
|
+
internalwinspaceshapederivs, rt_outfloattype, shared=usesharedmem
|
|
628
|
+
)
|
|
629
|
+
winmovingsignal, winmovingsignal_shm = tide_util.allocarray(
|
|
630
|
+
internalwinfmrishape, rt_outfloattype, shared=usesharedmem
|
|
631
|
+
)
|
|
632
|
+
winlagtc, winlagtc_shm = tide_util.allocarray(internalwinfmrishape, rt_floattype, shared=usesharedmem)
|
|
633
|
+
winfiltereddata, winfiltereddata_shm = tide_util.allocarray(
|
|
634
|
+
internalwinfmrishape, rt_outfloattype, shared=usesharedmem
|
|
635
|
+
)
|
|
617
636
|
if usesharedmem:
|
|
618
637
|
if args.debug:
|
|
619
638
|
print("allocating shared memory")
|
|
620
|
-
winsLFOfitmean, winsLFOfitmean_shm = tide_util.allocshared(
|
|
621
|
-
internalwinspaceshape, rt_outfloatset
|
|
622
|
-
)
|
|
623
|
-
winrvalue, winrvalue_shm = tide_util.allocshared(internalwinspaceshape, rt_outfloatset)
|
|
624
|
-
winr2value, winr2value_shm = tide_util.allocshared(internalwinspaceshape, rt_outfloatset)
|
|
625
|
-
winfitNorm, winfitNorm_shm = tide_util.allocshared(
|
|
626
|
-
internalwinspaceshapederivs, rt_outfloatset
|
|
627
|
-
)
|
|
628
|
-
winfitcoeff, winitcoeff_shm = tide_util.allocshared(
|
|
629
|
-
internalwinspaceshapederivs, rt_outfloatset
|
|
630
|
-
)
|
|
631
|
-
winmovingsignal, winmovingsignal_shm = tide_util.allocshared(
|
|
632
|
-
internalwinfmrishape, rt_outfloatset
|
|
633
|
-
)
|
|
634
|
-
winlagtc, winlagtc_shm = tide_util.allocshared(internalwinfmrishape, rt_floatset)
|
|
635
|
-
winfiltereddata, winfiltereddata_shm = tide_util.allocshared(
|
|
636
|
-
internalwinfmrishape, rt_outfloatset
|
|
637
|
-
)
|
|
638
639
|
else:
|
|
639
640
|
if args.debug:
|
|
640
641
|
print("allocating memory")
|
|
641
|
-
|
|
642
|
-
winrvalue = np.zeros(internalwinspaceshape, dtype=rt_outfloattype)
|
|
643
|
-
winr2value = np.zeros(internalwinspaceshape, dtype=rt_outfloattype)
|
|
644
|
-
winfitNorm = np.zeros(internalwinspaceshapederivs, dtype=rt_outfloattype)
|
|
645
|
-
winfitcoeff = np.zeros(internalwinspaceshapederivs, dtype=rt_outfloattype)
|
|
646
|
-
winmovingsignal = np.zeros(internalwinfmrishape, dtype=rt_outfloattype)
|
|
647
|
-
winlagtc = np.zeros(internalwinfmrishape, dtype=rt_floattype)
|
|
648
|
-
winfiltereddata = np.zeros(internalwinfmrishape, dtype=rt_outfloattype)
|
|
642
|
+
|
|
649
643
|
if args.debug:
|
|
650
644
|
print(f"wintrs={wintrs}, winskip={winskip}, numtrs={numtrs}, numwins={numwins}")
|
|
651
645
|
thewindowprocoptions = therunoptions
|
|
@@ -831,7 +825,7 @@ def delayvar(args):
|
|
|
831
825
|
sys.exit()
|
|
832
826
|
print(
|
|
833
827
|
f"Using {len(thefit.components_)} component(s), accounting for "
|
|
834
|
-
+ f"{100.0 * np.cumsum(thefit.explained_variance_ratio_)[len(thefit.components_) - 1]}% of the variance"
|
|
828
|
+
+ f"{100.0 * np.cumsum(thefit.explained_variance_ratio_)[len(thefit.components_) - 1]:.2f}% of the variance"
|
|
835
829
|
)
|
|
836
830
|
reduceddata = thefit.inverse_transform(thefit.transform(scaledvoxels))
|
|
837
831
|
# unscale the PCA cleaned data
|
|
@@ -872,44 +866,36 @@ def delayvar(args):
|
|
|
872
866
|
|
|
873
867
|
doregress = False
|
|
874
868
|
if doregress:
|
|
869
|
+
systemicsLFOfitmean, systemicsLFOfitmean_shm = tide_util.allocarray(
|
|
870
|
+
internalwinspaceshape, rt_outfloattype, shared=usesharedmem
|
|
871
|
+
)
|
|
872
|
+
systemicrvalue, systemicrvalue_shm = tide_util.allocarray(
|
|
873
|
+
internalwinspaceshape, rt_outfloattype, shared=usesharedmem
|
|
874
|
+
)
|
|
875
|
+
systemicr2value, systemicr2value_shm = tide_util.allocarray(
|
|
876
|
+
internalwinspaceshape, rt_outfloattype, shared=usesharedmem
|
|
877
|
+
)
|
|
878
|
+
systemicfitNorm, systemicfitNorm_shm = tide_util.allocarray(
|
|
879
|
+
internalwinspaceshapederivs, rt_outfloattype, shared=usesharedmem
|
|
880
|
+
)
|
|
881
|
+
systemicfitcoeff, systemicitcoeff_shm = tide_util.allocarray(
|
|
882
|
+
internalwinspaceshapederivs, rt_outfloattype, shared=usesharedmem
|
|
883
|
+
)
|
|
884
|
+
systemicmovingsignal, systemicmovingsignal_shm = tide_util.allocarray(
|
|
885
|
+
internalwinspaceshape, rt_outfloattype, shared=usesharedmem
|
|
886
|
+
)
|
|
887
|
+
systemiclagtc, systemiclagtc_shm = tide_util.allocarray(
|
|
888
|
+
internalwinspaceshape, rt_floattype, shared=usesharedmem
|
|
889
|
+
)
|
|
890
|
+
systemicfiltereddata, systemicfiltereddata_shm = tide_util.allocarray(
|
|
891
|
+
internalwinspaceshape, rt_outfloattype, shared=usesharedmem
|
|
892
|
+
)
|
|
875
893
|
if usesharedmem:
|
|
876
894
|
if args.debug:
|
|
877
895
|
print("allocating shared memory")
|
|
878
|
-
systemicsLFOfitmean, systemicsLFOfitmean_shm = tide_util.allocshared(
|
|
879
|
-
internalwinspaceshape, rt_outfloatset
|
|
880
|
-
)
|
|
881
|
-
systemicrvalue, systemicrvalue_shm = tide_util.allocshared(
|
|
882
|
-
internalwinspaceshape, rt_outfloatset
|
|
883
|
-
)
|
|
884
|
-
systemicr2value, systemicr2value_shm = tide_util.allocshared(
|
|
885
|
-
internalwinspaceshape, rt_outfloatset
|
|
886
|
-
)
|
|
887
|
-
systemicfitNorm, systemicfitNorm_shm = tide_util.allocshared(
|
|
888
|
-
internalwinspaceshapederivs, rt_outfloatset
|
|
889
|
-
)
|
|
890
|
-
systemicfitcoeff, systemicitcoeff_shm = tide_util.allocshared(
|
|
891
|
-
internalwinspaceshapederivs, rt_outfloatset
|
|
892
|
-
)
|
|
893
|
-
systemicmovingsignal, systemicmovingsignal_shm = tide_util.allocshared(
|
|
894
|
-
internalwinspaceshape, rt_outfloatset
|
|
895
|
-
)
|
|
896
|
-
systemiclagtc, systemiclagtc_shm = tide_util.allocshared(
|
|
897
|
-
internalwinspaceshape, rt_floatset
|
|
898
|
-
)
|
|
899
|
-
systemicfiltereddata, systemicfiltereddata_shm = tide_util.allocshared(
|
|
900
|
-
internalwinspaceshape, rt_outfloatset
|
|
901
|
-
)
|
|
902
896
|
else:
|
|
903
897
|
if args.debug:
|
|
904
898
|
print("allocating memory")
|
|
905
|
-
systemicsLFOfitmean = np.zeros(internalwinspaceshape, dtype=rt_outfloattype)
|
|
906
|
-
systemicrvalue = np.zeros(internalwinspaceshape, dtype=rt_outfloattype)
|
|
907
|
-
systemicr2value = np.zeros(internalwinspaceshape, dtype=rt_outfloattype)
|
|
908
|
-
systemicfitNorm = np.zeros(internalwinspaceshapederivs, dtype=rt_outfloattype)
|
|
909
|
-
systemicfitcoeff = np.zeros(internalwinspaceshapederivs, dtype=rt_outfloattype)
|
|
910
|
-
systemicmovingsignal = np.zeros(internalwinspaceshape, dtype=rt_outfloattype)
|
|
911
|
-
systemiclagtc = np.zeros(internalwinspaceshape, dtype=rt_floattype)
|
|
912
|
-
systemicfiltereddata = np.zeros(internalwinspaceshape, dtype=rt_outfloattype)
|
|
913
899
|
|
|
914
900
|
windowlocs = np.linspace(0.0, winspace * numwins, num=numwins, endpoint=False) + skiptime
|
|
915
901
|
voxelsprocessed_regressionfilt, regressorset, evset = tide_regressfrommaps.regressfrommaps(
|