rapidtide 3.0.5__py3-none-any.whl → 3.0.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (45) hide show
  1. rapidtide/RapidtideDataset.py +17 -0
  2. rapidtide/_version.py +3 -3
  3. rapidtide/calccoherence.py +51 -73
  4. rapidtide/calcnullsimfunc.py +65 -111
  5. rapidtide/calcsimfunc.py +73 -91
  6. rapidtide/correlate.py +25 -6
  7. rapidtide/data/examples/src/testatlasaverage +22 -0
  8. rapidtide/data/examples/src/testfmri +16 -1
  9. rapidtide/data/examples/src/testhappy +57 -60
  10. rapidtide/data/examples/src/testsimdata +45 -28
  11. rapidtide/genericmultiproc.py +122 -0
  12. rapidtide/happy_supportfuncs.py +608 -107
  13. rapidtide/linfitfiltpass.py +8 -1
  14. rapidtide/makelaggedtcs.py +49 -78
  15. rapidtide/multiproc.py +5 -17
  16. rapidtide/refineregressor.py +59 -81
  17. rapidtide/resample.py +24 -14
  18. rapidtide/tests/.coveragerc +9 -0
  19. rapidtide/tests/test_congrid.py +68 -79
  20. rapidtide/tests/test_externaltools.py +69 -0
  21. rapidtide/tests/test_fastresampler.py +1 -0
  22. rapidtide/tests/test_fullrunrapidtide_v2.py +1 -0
  23. rapidtide/tests/test_nullcorr.py +2 -5
  24. rapidtide/tests/test_parserfuncs.py +46 -15
  25. rapidtide/tests/test_zRapidtideDataset.py +2 -2
  26. rapidtide/voxelData.py +17 -3
  27. rapidtide/workflows/ccorrica.py +1 -2
  28. rapidtide/workflows/cleanregressor.py +3 -2
  29. rapidtide/workflows/happy.py +62 -3
  30. rapidtide/workflows/happy_parser.py +36 -0
  31. rapidtide/workflows/rapidtide.py +18 -13
  32. rapidtide/workflows/rapidtide_parser.py +8 -1
  33. rapidtide/workflows/regressfrommaps.py +0 -2
  34. rapidtide/workflows/showarbcorr.py +19 -6
  35. rapidtide/workflows/showxcorrx.py +4 -8
  36. rapidtide/workflows/simdata.py +149 -65
  37. {rapidtide-3.0.5.dist-info → rapidtide-3.0.7.dist-info}/METADATA +1 -1
  38. {rapidtide-3.0.5.dist-info → rapidtide-3.0.7.dist-info}/RECORD +42 -43
  39. {rapidtide-3.0.5.dist-info → rapidtide-3.0.7.dist-info}/WHEEL +1 -1
  40. rapidtide/DerivativeDelay.py +0 -209
  41. rapidtide/calcandfitcorrpairs.py +0 -262
  42. rapidtide/transformerdlfilter.py +0 -126
  43. {rapidtide-3.0.5.dist-info → rapidtide-3.0.7.dist-info}/entry_points.txt +0 -0
  44. {rapidtide-3.0.5.dist-info → rapidtide-3.0.7.dist-info}/licenses/LICENSE +0 -0
  45. {rapidtide-3.0.5.dist-info → rapidtide-3.0.7.dist-info}/top_level.txt +0 -0
@@ -7,36 +7,35 @@ cloud/rapidtide-HCPYA,sha256=kqW8ENbOQhvVqZGz-HqiVbrbzHy4cfyy1rk8ejpJor0,963
7
7
  cloud/rapidtide-cloud-test,sha256=SATOwGo4QYLvt-6hE0e3wyK9JjuDU5XzfLrfMoybvcY,466
8
8
  cloud/simple-cp-test,sha256=5ef8wmLfcKdny59BV6_DnAPj7O_mi0rOHdFZVN2iiLA,421
9
9
  rapidtide/Colortables.py,sha256=OVtgnQ9xTJPgfdyK1ktESHRjBh09cxLVPZvgUvV5jOo,5814
10
- rapidtide/DerivativeDelay.py,sha256=B3ElHcaAvxH3qB0n6l4rIX5FXsRHp_PE_H3ky-5XdoQ,7107
11
10
  rapidtide/OrthoImageItem.py,sha256=w70QNZUelMI7wTWYaqOfkJEb38PdsxgSf0NLdyjlcNs,21669
12
- rapidtide/RapidtideDataset.py,sha256=sccBQf8T9zvOMSHHXG7pwEm-sUyzbyZ4i0rFuWMwj3A,52343
11
+ rapidtide/RapidtideDataset.py,sha256=mHK6dL1cFSSM5jYw6rkzb57lWVVz-TGX-xMeV8IqF-M,53013
13
12
  rapidtide/RegressorRefiner.py,sha256=dPG9Vy2nlqxv2Mx9vrYtgYTsNGcVIwWknawDrNdpZxQ,17232
14
13
  rapidtide/__init__.py,sha256=cECnPfGNIWXETiummGLjKcNXLROSDiFlLp-RpZSavwc,97
15
- rapidtide/_version.py,sha256=3OU9TRfkXZJGKZEHjxydZN1ypyAIfk88M2iVvYOHK_0,497
16
- rapidtide/calcandfitcorrpairs.py,sha256=dlKxjKSlgCF9AF_dRoPeIGc9dz1DIluYfKLQzTSQsd0,7397
17
- rapidtide/calccoherence.py,sha256=VayovUVA5X-eWmjJG0GNxI_Giw7vRjTDFvWcV6NVfq0,4512
18
- rapidtide/calcnullsimfunc.py,sha256=92q7Yw8VeSjA9UfcD-hHN9MgoaUcoKuR9VGBmt_n45M,7150
19
- rapidtide/calcsimfunc.py,sha256=1HQUaIGLhk1-CnWPMeOjbWoiVJrcSLTxgpwF2VhS3Sg,5310
20
- rapidtide/correlate.py,sha256=za2lqbYZZGpIHoMC8VOrLH8cP8B3pG2Mh8VFaZf-4aE,36800
14
+ rapidtide/_version.py,sha256=HDQ6uc9dBVVhrf7M2MUpG-xKl7d0UA0eisj2QL7_Kd4,497
15
+ rapidtide/calccoherence.py,sha256=-_vglu0MZB85Aodw6GpYhBApFBt5eslppfxF4rXM6Xg,3409
16
+ rapidtide/calcnullsimfunc.py,sha256=34osvoQ_tWk3VeFk7g3TYsmpPVRMIkEX31KYvx5Ox_A,5032
17
+ rapidtide/calcsimfunc.py,sha256=xCPYns-XOnLWjwujbP7a7EwGEzhEwOHMf04RpFlL3SI,4713
18
+ rapidtide/correlate.py,sha256=cKfJR35A0tnbx56aGfaXTgnYsHxWUR3o2bUVi7MSo7E,37147
21
19
  rapidtide/dlfilter.py,sha256=sJ1UoekNFlGVJOIeN6BKP_-pU-MOHD5Gc4GT7FTB2So,58161
22
20
  rapidtide/externaltools.py,sha256=-p2GZRRpI2_7eRY8N6lnG4DBQKoRd_WZZQzvgFCicUY,3965
23
21
  rapidtide/fMRIData_class.py,sha256=qVPp8xUw98cUJm4zsO5UUXrgBWz-UhJhwHLrzjBNxow,5102
24
22
  rapidtide/filter.py,sha256=GySR0UdlrfNzWs9HOdvsIGlfHKThT9KdamNk0Y0JHeU,71647
25
23
  rapidtide/fit.py,sha256=whveHKtqC-cPWxclCf86-5iBAtXOdXL2G1yg082q6R8,67955
26
- rapidtide/happy_supportfuncs.py,sha256=NlcZdD7wXQ65xYaB_t035PeSBC-FxbTy6x4B272q5x0,41968
24
+ rapidtide/genericmultiproc.py,sha256=ZQwN84HpC7ZA_w4qekBqA4suU_70ryqGjAsTAIa4oSw,3423
25
+ rapidtide/happy_supportfuncs.py,sha256=kGL2fJkL9HU4-V71eyMaRBwx3RONPmy02rKxBF7k6os,56261
27
26
  rapidtide/helper_classes.py,sha256=2m2zcFUgE12JhYL0HQJEafJ1pFa0Zsb46Lpi9iw3Qbg,51470
28
27
  rapidtide/io.py,sha256=A3qFJdFFf1XSVlqPvoOF733OoxrRcbRO-gSEoh_95bE,75037
29
- rapidtide/linfitfiltpass.py,sha256=fR8vQQrH8yfXyaMNNsELA7xCv_Ro7qpZSXX_PbIFtx0,16142
30
- rapidtide/makelaggedtcs.py,sha256=XC0-tTKfcV4qQeoOlF3PiAdbvMuDZetrifsmWc0wQTw,3998
28
+ rapidtide/linfitfiltpass.py,sha256=ps7IGbKcpO33kLW0gK2O0OBddDs3PoC-0zhs9gWAe9M,16303
29
+ rapidtide/makelaggedtcs.py,sha256=KZ63G6rjfeDO17Fpfla37rRPusd3JfavP60LESUKK0Y,2827
31
30
  rapidtide/maskutil.py,sha256=IBEgxmHvQ2fnBoTeFu7vw_w3uf91NxpW3IgTDirhWH0,10890
32
31
  rapidtide/miscmath.py,sha256=bEmqnBl6xL2ZRXbId7onXqiEayZJW-jWVCEIp0bfw3o,13918
33
- rapidtide/multiproc.py,sha256=9nkcTqlgFVFqS9V32YSO3C8fmEtTTd__tSLW1J6UENU,6068
32
+ rapidtide/multiproc.py,sha256=K5IO0mr-T4rZbL4j7Zp7vFTv-6icavh-dgITZmzP8Ds,5817
34
33
  rapidtide/patchmatch.py,sha256=VxXine2b_fI0oMJWuhXUzfHhZH_-BdqyvW2Ft2n-Vu0,20643
35
34
  rapidtide/peakeval.py,sha256=ZDcuAT4Bw9bTU1oJTvOn9t_rWEZOsXHC5PiNnDdFlX0,5198
36
35
  rapidtide/qualitycheck.py,sha256=exTRCQDf9OsNbmlemr-5YPjDGDg3uSTyc8amidXUZqU,11917
37
36
  rapidtide/refinedelay.py,sha256=abOji4e2k7DpQR7jxgGh6nJ2IE4ZxQp5S5DNKfLZwP8,16323
38
- rapidtide/refineregressor.py,sha256=4EgQF8en1EB0kGGtWW2go_Ek-MTG1icGicf82R6vAPo,22950
39
- rapidtide/resample.py,sha256=0IX6Ais7Fxuz9HfrSpNGkKF7w3xKWm_fTs6yA7X43hk,30592
37
+ rapidtide/refineregressor.py,sha256=w9RP2SDjC769FmUq_CQ5ZUtr5-7kfzhvlzlBvKs8cXg,21831
38
+ rapidtide/resample.py,sha256=UYK3QCgNltOdgXKMEbqsFVjQEVD-Ar1lodLvdUQH4_o,30751
40
39
  rapidtide/simfuncfit.py,sha256=QfBJxkn4lzNX4HIx2CbvWUV55C2WZmfwwm69RqNtlSE,11837
41
40
  rapidtide/stats.py,sha256=vA79EazdcpQHJJFC0tjKBc37Ij_KfSeKcSPOjuWCHuM,29230
42
41
  rapidtide/tidepoolTemplate.py,sha256=YK6vXIXfgAq5OHa67RjvL0MhMJIIgjmDpxQY16Cwnl4,46252
@@ -48,9 +47,8 @@ rapidtide/tidepoolTemplate_big.py,sha256=60RdSehVFi2V38G_8ByhGILfCGf4g6lSnKV42Hd
48
47
  rapidtide/tidepoolTemplate_big.ui,sha256=lJYAJHJA8iJYJTlnq5GllkW-VMRrpLhDL4kskwU14Xw,65552
49
48
  rapidtide/tidepoolTemplate_big_qt6.py,sha256=yXmFpoO5exhbXHtjKVE7AG-oi7tB6QOCFW5RRO0z6Ls,67499
50
49
  rapidtide/tidepoolTemplate_qt6.py,sha256=qBgufkyHsmEZ_HPgAu8LLbztlwlyfm6KcRfJ9qVFbXc,48198
51
- rapidtide/transformerdlfilter.py,sha256=pd9F7qd9mBNeK7QlrIXPkaDIlmThDBSAnDB340nRybI,4549
52
50
  rapidtide/util.py,sha256=2Q991FzjiSgn5qHErVgAV7bya3ylNDdhctE-3X7ImH4,36487
53
- rapidtide/voxelData.py,sha256=f-LXAPPSRvwJ9nFOZncayLMfS7XuIjFNW7TWoWWS96U,13328
51
+ rapidtide/voxelData.py,sha256=En0SJuG2gykXrmEcFs1n0BxpzTNH5wikiPUUr97RcAA,14015
54
52
  rapidtide/wiener.py,sha256=UcRBIJZY5RYgpKFwlvppXDsXRIX_MJgPB37S9nvC4lU,4128
55
53
  rapidtide/wiener2.py,sha256=IF913hQ4naCjLYGXCspNsA-YCCb0WvjjueDl6UoWvLo,3746
56
54
  rapidtide/data/examples/src/installtestdata,sha256=ummRjxxmArheODnzRHwb6DL9Sxhay6ulJpETEMVy-fs,205
@@ -59,7 +57,7 @@ rapidtide/data/examples/src/test_io,sha256=tDhxo2Gtzq5rED84hDg3JzmbGm8FGJQ05tA2y
59
57
  rapidtide/data/examples/src/test_mlregressallt.py,sha256=dDSoovevThiwvVb9YyME8WCBFLgObec5nWNYJRNhVmQ,2016
60
58
  rapidtide/data/examples/src/test_rapidtidecompare,sha256=I9bpbKxCd9vtHjFBn-PrawctFvfeBBH3_xMJ3Ohbv0k,217
61
59
  rapidtide/data/examples/src/testalign,sha256=GgLe7BORaUiDd16lRIlv7frn8xO1zBf75Md_Ii1n4Is,1565
62
- rapidtide/data/examples/src/testatlasaverage,sha256=ZmFNX1ENSMSD-H-h56-ZFw-VafNUUoUpBZKKzM1ZOes,974
60
+ rapidtide/data/examples/src/testatlasaverage,sha256=vAK_YvjG1Kp72AZOjJnTGDb1G6D_sgyrI89T0GBBpyQ,1562
63
61
  rapidtide/data/examples/src/testboth,sha256=ITAqA3XOC9duFRoBtZgGL9pLnh7Po43i8qjUImSq_eo,455
64
62
  rapidtide/data/examples/src/testcifti,sha256=Nw4UMzkh1oFdW4FuAznuOR9hAr2KJuPF86gZnqqJylU,265
65
63
  rapidtide/data/examples/src/testcomplex,sha256=PFY_d30eqYBx5K8cPP_WxsP2YPlYuawo8u1hDhYT-_U,2271
@@ -67,12 +65,12 @@ rapidtide/data/examples/src/testdecomp,sha256=xxxr510aOBjtpJy4aQNAFTyEFZD6QdHp6-
67
65
  rapidtide/data/examples/src/testdelayvar,sha256=tMn1k8IfvBL7MKhgGC6EGcSkChtXWKp1bENOGG4SagI,330
68
66
  rapidtide/data/examples/src/testfileorfloat,sha256=9r4mz7pBV_8iFZya9kmtfbnTRS3-94Cx9Q63Ni3mkZs,815
69
67
  rapidtide/data/examples/src/testfingerprint,sha256=RlAIC1lMDWMGzZKxY24DJRuaUEL0BenSFBey0gL5dqU,402
70
- rapidtide/data/examples/src/testfmri,sha256=s-zTyUQhG6LnRdI9xOg92QaA0pckuu1hU3WMkOfK51A,474
68
+ rapidtide/data/examples/src/testfmri,sha256=FatnYBPAPCIC6MVWwfhs7bJkQnkB-DlNXIkb28-8Asw,972
71
69
  rapidtide/data/examples/src/testfmridocker,sha256=jjL7bK29rrcog6uO9BtvcyAU3Sv8_5cbw2nqKoiZ95o,1193
72
70
  rapidtide/data/examples/src/testfrozen,sha256=K3qUWDRKPPiCXRgIFuPdwUUjUTzf4QBW8UUhR75NzDM,283
73
71
  rapidtide/data/examples/src/testfuncs,sha256=zjq9u7mXMf0UlbUgePyS1mj7QHclicmw6NY0g31SqeY,1551
74
72
  rapidtide/data/examples/src/testglmfilt,sha256=MuZlVBJIV7FrTWFLKGuWBcpR9WiZEjCGeD6cAnJLeNI,3357
75
- rapidtide/data/examples/src/testhappy,sha256=6qSO4MiQOC8TPsCI__zUZpBfy5ZoZOQgu3LcYj68eig,1944
73
+ rapidtide/data/examples/src/testhappy,sha256=FOBQWO8vdgkZKt_yzzB0Q4mvg7oScXaknPVCb2imGAw,1557
76
74
  rapidtide/data/examples/src/testinitdelay,sha256=ts_r5WZBLJDQ3UfPmJ9sfXlO0arO9dhGCQ_Y1wYvjMk,559
77
75
  rapidtide/data/examples/src/testlinfit,sha256=oPnkHJ6lcwsuJhnSMMK7Gx3DHSCf6JK7CIYuIMHbyNA,471
78
76
  rapidtide/data/examples/src/testlocalflow,sha256=hEwstisbWVuALr_29fBJ2nHETKkEF_9qK8wJ4kzuiJk,596
@@ -84,7 +82,7 @@ rapidtide/data/examples/src/testpad,sha256=O4bgGWNTMjaitT_yT7UXRKwOl5UFS9nnXjcQT
84
82
  rapidtide/data/examples/src/testrefineonly,sha256=PyYGqga3b25hgbscX1wrIqvyYDHJ8udD60c5tDPHFTs,595
85
83
  rapidtide/data/examples/src/testretro,sha256=y0aDcFr1XGiSe6Tg_gy4e5Fip9aOe2GUSEhNvl7mvo0,2855
86
84
  rapidtide/data/examples/src/testretrolagtcs,sha256=IazwDDMSESx1ixF8hyoKYTJYsHwCzI-uIkSah9gkRoo,570
87
- rapidtide/data/examples/src/testsimdata,sha256=zqbuBMGMGvwnqfXcmPJoKksC0D4LoykP3s_JktoMyqI,1042
85
+ rapidtide/data/examples/src/testsimdata,sha256=0tcCHaU5TO3FjI74qV1f98hp4OQSI4IhpujWBhg0R9Y,1509
88
86
  rapidtide/data/models/model_cnn_w064_l13_fn20_fl08/loss.png,sha256=LJ1aaEPx3m6MhioK3YN8QZYBhlI0lY0Wb2SAV2SQmYI,24123
89
87
  rapidtide/data/models/model_cnn_w064_l13_fn20_fl08/loss.txt,sha256=anU71cFjmYpQvMcMZIPADHWKIfvGxTL6ZZgk6RDWZkg,138
90
88
  rapidtide/data/models/model_cnn_w064_l13_fn20_fl08/model.keras,sha256=0fyy1Pf1YBb0OubpaUu_I3fAZC8UHG1FOs9kAGJlbIU,298164
@@ -208,7 +206,7 @@ rapidtide/scripts/testhrv.py,sha256=-DSVILgiGdMy5XYyRwrRav__Yui3Y_SsViFWmc8A1DY,
208
206
  rapidtide/scripts/threeD.py,sha256=WzYo8SZ2bjiIs-vtNxPBc8aaIzW1NuP-Ab7Ppu8MM3g,7558
209
207
  rapidtide/scripts/tidepool.py,sha256=luBTs1wBHMtjFjGVlE55VRmwoRSFv0h-g0f9pUJCE7c,887
210
208
  rapidtide/scripts/variabilityizer.py,sha256=hcXl1vGk9TrUg9SM0GwH4E4NhTekvK3zVS0KDgx5-qw,901
211
- rapidtide/tests/.coveragerc,sha256=Vxvd-Hm-mJ925eYGq6F58bKnlHejuUDyNrVVg0jJ-6s,448
209
+ rapidtide/tests/.coveragerc,sha256=r4vYVGn0lcVWKw_QrdMWLp9b1fT6Op19wF-yGYJDHAE,698
212
210
  rapidtide/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
213
211
  rapidtide/tests/cleanposttest,sha256=VK_WiEMUSyQ2aIm4xnje5zmArZytp-L70Q5M2bXpNeM,648
214
212
  rapidtide/tests/matplotlibrc,sha256=I3-tgWriYYV3-ldCMuuvS7ejDVQ_jYNHTBkg5FQsc7k,1778
@@ -222,12 +220,13 @@ rapidtide/tests/test_aliasedcorrelate.py,sha256=3387A6Ngo3mbqIiUWxJhtppe6E3AplAC
222
220
  rapidtide/tests/test_aligntcs.py,sha256=PKkj8JGrHx-8Kpx5LQF5mwhWUFsMR-w2bkhWOREeHsY,1715
223
221
  rapidtide/tests/test_calcicc.py,sha256=T3f-9k4ah9JesGFHFEobvQ4BK0oXwXkjCW1cyGjOgfU,1387
224
222
  rapidtide/tests/test_cleanregressor.py,sha256=tkVOhJEOwcP_LDqV61qR6gORhAipZjKjeYiEXBjOy1k,6265
225
- rapidtide/tests/test_congrid.py,sha256=pzU6xtQy43QofLYP9KtQIiOyjZBnrXUhKbh4ha_UQV0,5584
223
+ rapidtide/tests/test_congrid.py,sha256=sM0qLbT1vKU3YnMDEf99pESE8JCsqYxwggaR1T_2w0k,5610
226
224
  rapidtide/tests/test_correlate.py,sha256=SKqLbj0MDQ7wZ1N70j6x07_i-Jok9ySPdJMt8lJ7qq0,2547
227
225
  rapidtide/tests/test_corrpass.py,sha256=zoZ5odTxlZ3d_tEvSXOU0qyhbIzCdauoRy4MUkHehHc,7836
228
226
  rapidtide/tests/test_delayestimation.py,sha256=CGt-z1mRjKralIeXWqGOCP_8LHS9a0LfhSuRHgwAN-A,13506
229
227
  rapidtide/tests/test_doresample.py,sha256=9vwiMo8WutmOKW5LfeMRLG3FAzZNa_1sra-k-36Fn-w,2716
230
- rapidtide/tests/test_fastresampler.py,sha256=dQxcv3TTm62uYxwK2AJ3oNerww3W-CYf8WWYYt_MD4s,3861
228
+ rapidtide/tests/test_externaltools.py,sha256=oaD9KQ1Db9fhev9g9OfUecoZLKeGHnmQV4-OGrk3rko,2121
229
+ rapidtide/tests/test_fastresampler.py,sha256=x9jimD1aGYA48egjAUbjcCcxA7eXsAf2VPP3KbhBkvw,3884
231
230
  rapidtide/tests/test_filter.py,sha256=_xhk3rbYFtuKgrDdgrrrlITtmQhOUUi5EhFcnxVUioA,10891
232
231
  rapidtide/tests/test_findmaxlag.py,sha256=Ff81mZyx4mY78bVC_r-ZrvH6jinhVS64QjbivK7Mg50,11551
233
232
  rapidtide/tests/test_fullrunhappy_v1.py,sha256=oJ3uLI-WoKjKPlZi_5LdfB-iJc3Xk4JsOeiMliyXhB4,1708
@@ -236,7 +235,7 @@ rapidtide/tests/test_fullrunhappy_v3.py,sha256=Oy2UoFy4Tiye0fNuSsh9bF4PlclGHc6oG
236
235
  rapidtide/tests/test_fullrunhappy_v4.py,sha256=n3LylIDexTly06sk5TUnrQhfizkf98Mo4VEaw3uNkr4,1960
237
236
  rapidtide/tests/test_fullrunhappy_v5.py,sha256=BK240KjaJs9mHFgTmsDjCW3miBd4dDTn6qZxAYD3HTA,1896
238
237
  rapidtide/tests/test_fullrunrapidtide_v1.py,sha256=XhMjNG0EIyzGnGaI6Q_imSkjFDyScx1y-bwAWBlzC2w,3095
239
- rapidtide/tests/test_fullrunrapidtide_v2.py,sha256=KOuKoY5-Ryry7rlpIp-OzmCW2rYqGMIDa6JYqt57Tjk,3138
238
+ rapidtide/tests/test_fullrunrapidtide_v2.py,sha256=srjNJOetoxuhSwYKb7RfejHa0jzPgXP_vtcb0RYe0Dc,3164
240
239
  rapidtide/tests/test_fullrunrapidtide_v3.py,sha256=i9RZCJ7ZieYnH0eIC38FuyN_uV9stDwuPuUoSVKJzXo,2889
241
240
  rapidtide/tests/test_fullrunrapidtide_v4.py,sha256=DTEom1FPHn21WZZveiCCf4L_NabR9BMzLNoAA8RuDv0,2118
242
241
  rapidtide/tests/test_fullrunrapidtide_v5.py,sha256=NzTYGXaWsJzd7uIIgom_NPwl3EmGCRxlylaUEVN3gxU,1779
@@ -248,9 +247,9 @@ rapidtide/tests/test_linfitfiltpass.py,sha256=Q_XbDujj4tGc3X_I37IJJBDsvAs0m-S_oU
248
247
  rapidtide/tests/test_mi.py,sha256=Yia_TE1VxQfT0cZFdwsw6pb2l5E3PmY89zhKSfKus3g,2272
249
248
  rapidtide/tests/test_miscmath.py,sha256=Kng7InnANKQeWPlY0ZwdIQnYT79U6sNH1w63pCx1aeE,3096
250
249
  rapidtide/tests/test_motionregress.py,sha256=HS8Ph4-5owWp8oK6bwdy1FelJxDA0FE045JUnitth-4,5588
251
- rapidtide/tests/test_nullcorr.py,sha256=cs39wIW8anDQMg13EtTQf_5kr7yT9SSSSve9_7QWm34,6446
250
+ rapidtide/tests/test_nullcorr.py,sha256=Wkg5B_3ifOKs5PLPFYCNLf3W8Qh4etBguDbZ1XYhC44,6330
252
251
  rapidtide/tests/test_padvec.py,sha256=41Pnm5zJkWeOXbM0dngS7mRkGwJ4es4O5aiEQ8YJ3rs,6728
253
- rapidtide/tests/test_parserfuncs.py,sha256=moebtQVwiQ_g0XMmaiAY-wnO9rcSEby6V66PBrM42NY,2203
252
+ rapidtide/tests/test_parserfuncs.py,sha256=zKY8rwsKRydfNqy-oceCQeL-41ezpG2lyluNQ0RMz-M,3087
254
253
  rapidtide/tests/test_phaseanalysis.py,sha256=6d9nuSsVLjHW1br2BXvJxVQMjFcbuUuYGNjt3t7-odk,2150
255
254
  rapidtide/tests/test_rapidtideparser.py,sha256=Dmf_48Kgw9UW2L5pr8bVT1j5rBx__veAdiaAmYpIYCQ,5555
256
255
  rapidtide/tests/test_refinedelay.py,sha256=PNDbnmyRvogCZGiq08MtCsPWWJtLB9zzLXk0fvjmYm8,8473
@@ -260,7 +259,7 @@ rapidtide/tests/test_simulate.py,sha256=9zLY3PxmLgXdQcDHX5B0INyhhB_KOjwpBZkIEDVc
260
259
  rapidtide/tests/test_stcorrelate.py,sha256=ExYA58MDvJt3qGZAbEHSg-aMKtIKAX_zTacxiA0mttE,2493
261
260
  rapidtide/tests/test_timeshift.py,sha256=J4aLZI0ZvnB-vJZEAqwrcsarGRfKkKSY7IToyuhlqcg,3045
262
261
  rapidtide/tests/test_valtoindex.py,sha256=z-_m8d4Zo5pMeH2-vOhFM62hD4M7zcNx8rMrFA78fTI,1179
263
- rapidtide/tests/test_zRapidtideDataset.py,sha256=kR0ILh_F7lmcBLaPYxLvjOyzUrUnwZF3iLyezLbgCsI,2230
262
+ rapidtide/tests/test_zRapidtideDataset.py,sha256=ld9YQzgXyco8Nvx_ZTa9ow_xNLXIm_f2AMBQrQ5Ryf4,2255
264
263
  rapidtide/tests/usercustomize.py,sha256=iP8Vh35CixAbBD5He7gjQwmqYGItRGoNS_OD4sdDEe8,159
265
264
  rapidtide/tests/utils.py,sha256=qs3GlHZjfMXLgtdXfA-nIIoyWAKbpvTwxB_ZcyTvYnA,3254
266
265
  rapidtide/tests/testdata/100206_REST1_LR_cardfromfmri_25.0Hz.txt,sha256=w_ocCt0muJse-VZvqzPIBiveBo0Rp2sjoSP04Am0vgM,423304
@@ -293,8 +292,8 @@ rapidtide/workflows/applydlfilter.py,sha256=9dkVYitWSupZWWA1xNtLMf4-BgIwOjYLqDpO
293
292
  rapidtide/workflows/atlasaverage.py,sha256=6j5cNWk613R98LFmBAfVDJh6TuTo8Uxa-VW7nn0uNOA,17478
294
293
  rapidtide/workflows/atlastool.py,sha256=6aMMtr6knETNTyW-laThMeiO8mcdd71F8MSsdYHMeIM,16076
295
294
  rapidtide/workflows/calctexticc.py,sha256=9nGGAiqiD2MPg7UiIGR2V7rdtx-jcXQ_Q7uTXCziraQ,10486
296
- rapidtide/workflows/ccorrica.py,sha256=CX-WAkOXRx1y_RoIjavr9BeE5m2q1o7EntKoTAMRC-s,10504
297
- rapidtide/workflows/cleanregressor.py,sha256=O9YgBfgNYKgSBY5ZNs2M7W7q5tBC4yMJZ0a3gavrnbo,10261
295
+ rapidtide/workflows/ccorrica.py,sha256=ZGuBoM4u860Q7WxbNp-yxTxBaHLNozL7Kbx3o3rvaFk,10457
296
+ rapidtide/workflows/cleanregressor.py,sha256=HYm3T3fH6dzFcgFjlYpf5i0NGCtCK_D739quOLIzUyM,10293
298
297
  rapidtide/workflows/delayestimation.py,sha256=cC7d69JXn6vnumSfs9f7gNJuaKqQSzXEoxAi7Td-miM,17647
299
298
  rapidtide/workflows/delayvar.py,sha256=s4hOTtj3-jXGirLOlIFId-3QFzvQXJtMRifvcXLlDFQ,40697
300
299
  rapidtide/workflows/diffrois.py,sha256=imyKnnO8wnKbVoqsYEpYfJl0oBLllG9_pbV-0D1IdIw,5451
@@ -304,9 +303,9 @@ rapidtide/workflows/filtnifti.py,sha256=LXQw8yY7xbVCYAWNO5wsJOYHkxOH5I4x_oRaaXsP
304
303
  rapidtide/workflows/filttc.py,sha256=QHMJ41ZORxB8fG4IcvxKUgSfmOL4X9cFQFpM5px1Uxw,4514
305
304
  rapidtide/workflows/fixtr.py,sha256=KYr3veeHDUjozH3IO-0iPhLqNDGEc2NcUvzn6tuxeN8,2025
306
305
  rapidtide/workflows/gmscalc.py,sha256=Z-3HV2EU-HuIhpr7s5u4EAPAaW0gXtj2aVZt7386Gr8,6258
307
- rapidtide/workflows/happy.py,sha256=5C4_E3fQsI6a2s8JnTPkx9OgNSSniua9ceCaZp-Z4Uk,75137
306
+ rapidtide/workflows/happy.py,sha256=8iDUnN3j2VoRIdA9G51xvfnT41k76HPuisv25QMxHz0,77220
308
307
  rapidtide/workflows/happy2std.py,sha256=6gya9YjfPzPMu15jsMUbu7pLq430-n3b3meiTWhRkAo,8132
309
- rapidtide/workflows/happy_parser.py,sha256=JXXJRas-fooU_KeZfqJ1l9NbmHYsola8NFb3gSQl9ew,26292
308
+ rapidtide/workflows/happy_parser.py,sha256=OQTcUIvB61p0niNpG__9auUINb962PKmp0wz6qj_uN8,27354
310
309
  rapidtide/workflows/histnifti.py,sha256=BeABj0osc0mEnmyKonN0Hgeis8L8soO-w-cVaeMKLUI,11197
311
310
  rapidtide/workflows/histtc.py,sha256=ZiLLTshdpQBVHja1jEGFiaZ-YVxVhVtFeGv9w5R7HFc,4561
312
311
  rapidtide/workflows/linfitfilt.py,sha256=J6_qFZrfEf8Zf7-JA9EMaSXvyV_2ViNIqzju-ugjNGU,10007
@@ -323,23 +322,23 @@ rapidtide/workflows/plethquality.py,sha256=kTO74C5aSBmomzt59zs1VeiO_C5SPTxvyZZ0v
323
322
  rapidtide/workflows/polyfitim.py,sha256=bVKBrrFa0WjWZju4Lkrr8_9mFWALqCxkpCX28540GQA,10184
324
323
  rapidtide/workflows/proj2flow.py,sha256=SbkYTRZ_SViVfiM0QJjo20RrICtbsQpEd2i9o9XDgPU,7290
325
324
  rapidtide/workflows/rankimage.py,sha256=9opJb3OikO69wtN8zgF3XJxgoHy1-erzZiDKs8pDM6U,3482
326
- rapidtide/workflows/rapidtide.py,sha256=KdSgXM6PFA7ZScSlW3oqV7iD7XNViqul1dSP8V_SWNw,153985
325
+ rapidtide/workflows/rapidtide.py,sha256=aoRCiZNOqxpIW6dRjh__DGovy5qMZDbvdz8bw11jZvg,154228
327
326
  rapidtide/workflows/rapidtide2std.py,sha256=coxEnRAof6NNpeXjjECPazx5Wotf4l1SJCnaVEvmHQY,10483
328
- rapidtide/workflows/rapidtide_parser.py,sha256=iBJ1H2VFCqQznRxvMyhDnQEfa9higvZBfUjzqFX0x4M,78244
329
- rapidtide/workflows/regressfrommaps.py,sha256=2qkD6e3wJ7Wo4M3xsQBHGOlzoZkz6IJv8vT92kv5RZE,5355
327
+ rapidtide/workflows/rapidtide_parser.py,sha256=lua4DzNd9Vi7egAbba8z068zbWW5EKuwqxHQyaa-Kps,78457
328
+ rapidtide/workflows/regressfrommaps.py,sha256=GTpqnOkyA1A3Ki0oZ0ugSJrjrYa2gbtIGeKPpF49IxU,5319
330
329
  rapidtide/workflows/resamplenifti.py,sha256=GJE7f8bzMRY3QYiMYZOD8bDnga4ah97sp-ZL3yaaIFA,4717
331
330
  rapidtide/workflows/resampletc.py,sha256=B4YIKn3qpDaM9dIhYjGwPl-2LtaEhm9fnMBzfBgAUSs,3959
332
331
  rapidtide/workflows/retrolagtcs.py,sha256=ep1Ve1GS9NqqE6Pw9kxeWyw78sEg-M1IV-KuSnivd7Y,10847
333
332
  rapidtide/workflows/retroregress.py,sha256=sd7L_ri8av1euINcpKLgokrPGQo7QKQDguf0OWL8xD0,52631
334
333
  rapidtide/workflows/roisummarize.py,sha256=gnGcWOXRgRm6USgilj9K9Q3Mt5oUNCaincvJj1_ayPs,6710
335
334
  rapidtide/workflows/runqualitycheck.py,sha256=JIA2olhDk66HHSbLvsFrZieQq56YCIpbWpFzz0_ShHM,2434
336
- rapidtide/workflows/showarbcorr.py,sha256=mJpF2wSaMNw_jPZv4ru4x9x-rIOTDAABYZw7ZYesjF8,13606
335
+ rapidtide/workflows/showarbcorr.py,sha256=FYgc_L8E0IqUeB4XpFZIFXHMuzWYLxQykwyfYTVZ0G8,14115
337
336
  rapidtide/workflows/showhist.py,sha256=qP6JOdw4SyuzIcY6OUOkM4zmqLSWvEA8Z9LerqyzFmI,3644
338
337
  rapidtide/workflows/showstxcorr.py,sha256=FulltRbjGaBBIIRF9Wc_4oU2bpmMjfc3tZus5TygOlI,17788
339
338
  rapidtide/workflows/showtc.py,sha256=mddcdbpRzLXIiTqnutVqQapa9fudAeK3uALBVgM-dDE,18835
340
- rapidtide/workflows/showxcorrx.py,sha256=pPGIUqF7cVuPmq8aaZ-OSup6akeKQC85fJPqUEyG31w,31370
339
+ rapidtide/workflows/showxcorrx.py,sha256=6QF2w7T5xxIOgaHIJHKlMWkxb9MBPA56eZk-spW0S-c,31221
341
340
  rapidtide/workflows/showxy.py,sha256=p-1pkE5cKVd2zMQ-kSI3-Xk21jHSLiQPa-ql1DIO-vc,10532
342
- rapidtide/workflows/simdata.py,sha256=YahDPmVM-lOV1qgpbfkq6QwrS2Pa99IRlfMglNXDQ1I,13827
341
+ rapidtide/workflows/simdata.py,sha256=sLW1iu3Gn5zXuXsbAwMS5jdoppkxjhf-ZW17PgDjPFk,17318
343
342
  rapidtide/workflows/spatialfit.py,sha256=2p_f7nqYKauLTvwmhyfn7FiJ1BMzFsRxHfCQe2ULoXk,9136
344
343
  rapidtide/workflows/spatialmi.py,sha256=_Vvb2lukopzNh9QL9g6XBRvTlartZgq6Fzc2je-sbY8,13407
345
344
  rapidtide/workflows/spectrogram.py,sha256=7_CzFgX9ppE_2C4GiSP235BRUoh3YspCR_57_5Lx4HA,6452
@@ -349,9 +348,9 @@ rapidtide/workflows/tcfrom3col.py,sha256=kV3V-qZ7A7LkD96aHVXabvohA8udsflHXnzsQIw
349
348
  rapidtide/workflows/tidepool.py,sha256=Cac0zhS2ZT6myY_H2A0dAIox8ZoFyf42iB3flSb0qbw,86612
350
349
  rapidtide/workflows/utils.py,sha256=urIN-042oUCRDusVUSjBelVN3Te2JP3svY3ckq-yBMU,5379
351
350
  rapidtide/workflows/variabilityizer.py,sha256=h7Hhrxn84MclRfbAvKIZJoNzlcKO-8d9lZ6y6YFStk8,3167
352
- rapidtide-3.0.5.dist-info/licenses/LICENSE,sha256=psuoW8kuDP96RQsdhzwOqi6fyWv0ct8CR6Jr7He_P_k,10173
353
- rapidtide-3.0.5.dist-info/METADATA,sha256=T7MB_JdlZs48d-PfR-Xrtv5rOEE_BPrsnRBE-Y_Fhdw,15688
354
- rapidtide-3.0.5.dist-info/WHEEL,sha256=0CuiUZ_p9E4cD6NyLD6UG80LBXYyiSYZOKDm5lp32xk,91
355
- rapidtide-3.0.5.dist-info/entry_points.txt,sha256=9NVvZpIx9U6lTWlTFF2ev-wuPAHJxcXI_901_EcGRYA,3323
356
- rapidtide-3.0.5.dist-info/top_level.txt,sha256=MnNXGfbrIBc9RnAqzBHOWd3GQO-aIUDnRTz4_5VjH5g,16
357
- rapidtide-3.0.5.dist-info/RECORD,,
351
+ rapidtide-3.0.7.dist-info/licenses/LICENSE,sha256=psuoW8kuDP96RQsdhzwOqi6fyWv0ct8CR6Jr7He_P_k,10173
352
+ rapidtide-3.0.7.dist-info/METADATA,sha256=oa7HDGqrA2y0sAEhBZR0aeUPcm2u7lHdVmWYXb6D7nE,15688
353
+ rapidtide-3.0.7.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
354
+ rapidtide-3.0.7.dist-info/entry_points.txt,sha256=9NVvZpIx9U6lTWlTFF2ev-wuPAHJxcXI_901_EcGRYA,3323
355
+ rapidtide-3.0.7.dist-info/top_level.txt,sha256=MnNXGfbrIBc9RnAqzBHOWd3GQO-aIUDnRTz4_5VjH5g,16
356
+ rapidtide-3.0.7.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.3.1)
2
+ Generator: setuptools (80.9.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,209 +0,0 @@
1
- #!/usr/bin/env python
2
- # -*- coding: utf-8 -*-
3
- #
4
- # Copyright 2016-2025 Blaise Frederick
5
- #
6
- # Licensed under the Apache License, Version 2.0 (the "License");
7
- # you may not use this file except in compliance with the License.
8
- # You may obtain a copy of the License at
9
- #
10
- # http://www.apache.org/licenses/LICENSE-2.0
11
- #
12
- # Unless required by applicable law or agreed to in writing, software
13
- # distributed under the License is distributed on an "AS IS" BASIS,
14
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
- # See the License for the specific language governing permissions and
16
- # limitations under the License.
17
- #
18
- #
19
- """
20
- A class to impmement regressor refinement
21
- """
22
- import copy
23
-
24
- import numpy as np
25
-
26
- import rapidtide.fit as tide_fit
27
- import rapidtide.io as tide_io
28
- import rapidtide.miscmath as tide_math
29
- import rapidtide.refinedelay as tide_refinedelay
30
- import rapidtide.resample as tide_resample
31
- import rapidtide.stats as tide_stats
32
- import rapidtide.util as tide_util
33
- from rapidtide.tests.utils import mse
34
-
35
-
36
- class DerivativeDelay:
37
- def __init__(
38
- self,
39
- internalvalidfmrishape,
40
- internalvalidpaddedfmrishape,
41
- pid,
42
- outputname,
43
- initial_fmri_x,
44
- paddedinitial_fmri_x,
45
- os_fmri_x,
46
- genlagtc,
47
- sharedmem=False,
48
- gausssigma=-1,
49
- numderivs=1,
50
- lagminthresh=0.25,
51
- lagmaxthresh=3.0,
52
- sigmathresh=1000.0,
53
- cleanrefined=False,
54
- bipolar=False,
55
- fixdelay=False,
56
- includemask=None,
57
- excludemask=None,
58
- LGR=None,
59
- nprocs=1,
60
- detrendorder=1,
61
- alwaysmultiproc=False,
62
- showprogressbar=True,
63
- chunksize=50000,
64
- padtrs=10,
65
- refineprenorm="var",
66
- refineweighting=None,
67
- refinetype="pca",
68
- pcacomponents=0.8,
69
- dodispersioncalc=False,
70
- dispersioncalc_lower=-5.0,
71
- dispersioncalc_upper=5.0,
72
- dispersioncalc_step=0.5,
73
- windowfunc="hamming",
74
- passes=3,
75
- maxpasses=15,
76
- convergencethresh=None,
77
- interptype="univariate",
78
- usetmask=False,
79
- tmask_y=None,
80
- tmaskos_y=None,
81
- fastresamplerpadtime=45.0,
82
- debug=False,
83
- rt_floattype="float64",
84
- rt_floatset=np.float64,
85
- ):
86
- self.outputname = outputname
87
- self.numderivs = numderivs
88
- if gausssigma < 0.0:
89
- # set gausssigma automatically
90
- self.gausssigma = np.mean([xdim, ydim, slicedim]) / 2.0
91
- else:
92
- self.gausssigma = gausssigma
93
- self.debug = debug
94
- self.setgenlagtc(genlagtc)
95
-
96
- def setgenlagtc(self, genlagtc):
97
- self.genlagtc = genlagtc
98
-
99
- def getderivratios(
100
- self, fmri_data_valid, validvoxels, initial_fmri_x, lagtimes_valid, corrmask_valid
101
- ):
102
- print("Refinement calibration start")
103
- regressderivratios = tide_refinedelay.getderivratios(
104
- fmri_data_valid,
105
- validvoxels,
106
- initial_fmri_x,
107
- lagtimes_valid,
108
- corrmask_valid,
109
- self.genlagtc,
110
- "glm",
111
- self.outputname,
112
- oversamptr,
113
- sLFOfitmean,
114
- rvalue,
115
- r2value,
116
- fitNorm[:, : (self.numderivs + 1)],
117
- fitcoeff[:, : (self.numderivs + 1)],
118
- movingsignal,
119
- lagtc,
120
- filtereddata,
121
- LGR,
122
- TimingLGR,
123
- therunoptions,
124
- regressderivs=self.numderivs,
125
- debug=self.debug,
126
- )
127
-
128
- def calibrate(self):
129
- if self.numderivs == 1:
130
- medfiltregressderivratios, filteredregressderivratios, delayoffsetMAD = (
131
- tide_refinedelay.filterderivratios(
132
- regressderivratios,
133
- (xsize, ysize, numslices),
134
- validvoxels,
135
- (xdim, ydim, slicedim),
136
- gausssigma=args.delayoffsetgausssigma,
137
- patchthresh=args.delaypatchthresh,
138
- rt_floattype=rt_floattype,
139
- debug=args.debug,
140
- )
141
- )
142
-
143
- # find the mapping of derivative ratios to delays
144
- tide_refinedelay.trainratiotooffset(
145
- self.genlagtc,
146
- initial_fmri_x,
147
- self.outputname,
148
- args.outputlevel,
149
- mindelay=args.mindelay,
150
- maxdelay=args.maxdelay,
151
- numpoints=args.numpoints,
152
- debug=args.debug,
153
- )
154
- TimingLGR.info("Refinement calibration end")
155
-
156
- # now calculate the delay offsets
157
- TimingLGR.info("Calculating delay offsets")
158
- delayoffset = np.zeros_like(filteredregressderivratios)
159
- if args.focaldebug:
160
- print(f"calculating delayoffsets for {filteredregressderivratios.shape[0]} voxels")
161
- for i in range(filteredregressderivratios.shape[0]):
162
- delayoffset[i], closestoffset = tide_refinedelay.ratiotodelay(
163
- filteredregressderivratios[i]
164
- )
165
- refinedvoxelstoreport = filteredregressderivratios.shape[0]
166
- else:
167
- medfiltregressderivratios = np.zeros_like(regressderivratios)
168
- filteredregressderivratios = np.zeros_like(regressderivratios)
169
- delayoffsetMAD = np.zeros(args.refineregressderivs, dtype=float)
170
- for i in range(args.refineregressderivs):
171
- (
172
- medfiltregressderivratios[i, :],
173
- filteredregressderivratios[i, :],
174
- delayoffsetMAD[i],
175
- ) = tide_refinedelay.filterderivratios(
176
- regressderivratios[i, :],
177
- (xsize, ysize, numslices),
178
- validvoxels,
179
- (xdim, ydim, slicedim),
180
- gausssigma=args.delayoffsetgausssigma,
181
- patchthresh=args.delaypatchthresh,
182
- rt_floattype=rt_floattype,
183
- debug=args.debug,
184
- )
185
-
186
- def getdelays(self):
187
- # now calculate the delay offsets
188
- delayoffset = np.zeros_like(filteredregressderivratios[0, :])
189
- if self.debug:
190
- print(f"calculating delayoffsets for {filteredregressderivratios.shape[1]} voxels")
191
- for i in range(filteredregressderivratios.shape[1]):
192
- delayoffset[i] = tide_refinedelay.coffstodelay(
193
- filteredregressderivratios[:, i],
194
- mindelay=self.mindelay,
195
- maxdelay=self.maxdelay,
196
- )
197
- refinedvoxelstoreport = filteredregressderivratios.shape[1]
198
-
199
- def savestats(self):
200
- namesuffix = "_desc-delayoffset_hist"
201
- tide_stats.makeandsavehistogram(
202
- delayoffset,
203
- therunoptions["histlen"],
204
- 1,
205
- self.outputname + namesuffix,
206
- displaytitle="Histogram of delay offsets calculated from coefficient ratios",
207
- dictvarname="delayoffsethist",
208
- thedict=None,
209
- )