rapidtide 3.0.5__py3-none-any.whl → 3.0.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- rapidtide/RapidtideDataset.py +17 -0
- rapidtide/_version.py +3 -3
- rapidtide/calccoherence.py +51 -73
- rapidtide/calcnullsimfunc.py +65 -111
- rapidtide/calcsimfunc.py +73 -91
- rapidtide/correlate.py +25 -6
- rapidtide/data/examples/src/testatlasaverage +22 -0
- rapidtide/data/examples/src/testfmri +16 -1
- rapidtide/data/examples/src/testhappy +57 -60
- rapidtide/data/examples/src/testsimdata +45 -28
- rapidtide/genericmultiproc.py +122 -0
- rapidtide/happy_supportfuncs.py +608 -107
- rapidtide/linfitfiltpass.py +8 -1
- rapidtide/makelaggedtcs.py +49 -78
- rapidtide/multiproc.py +5 -17
- rapidtide/refineregressor.py +59 -81
- rapidtide/resample.py +24 -14
- rapidtide/tests/.coveragerc +9 -0
- rapidtide/tests/test_congrid.py +68 -79
- rapidtide/tests/test_externaltools.py +69 -0
- rapidtide/tests/test_fastresampler.py +1 -0
- rapidtide/tests/test_fullrunrapidtide_v2.py +1 -0
- rapidtide/tests/test_nullcorr.py +2 -5
- rapidtide/tests/test_parserfuncs.py +46 -15
- rapidtide/tests/test_zRapidtideDataset.py +2 -2
- rapidtide/voxelData.py +17 -3
- rapidtide/workflows/ccorrica.py +1 -2
- rapidtide/workflows/cleanregressor.py +3 -2
- rapidtide/workflows/happy.py +62 -3
- rapidtide/workflows/happy_parser.py +36 -0
- rapidtide/workflows/rapidtide.py +18 -13
- rapidtide/workflows/rapidtide_parser.py +8 -1
- rapidtide/workflows/regressfrommaps.py +0 -2
- rapidtide/workflows/showarbcorr.py +19 -6
- rapidtide/workflows/showxcorrx.py +4 -8
- rapidtide/workflows/simdata.py +149 -65
- {rapidtide-3.0.5.dist-info → rapidtide-3.0.7.dist-info}/METADATA +1 -1
- {rapidtide-3.0.5.dist-info → rapidtide-3.0.7.dist-info}/RECORD +42 -43
- {rapidtide-3.0.5.dist-info → rapidtide-3.0.7.dist-info}/WHEEL +1 -1
- rapidtide/DerivativeDelay.py +0 -209
- rapidtide/calcandfitcorrpairs.py +0 -262
- rapidtide/transformerdlfilter.py +0 -126
- {rapidtide-3.0.5.dist-info → rapidtide-3.0.7.dist-info}/entry_points.txt +0 -0
- {rapidtide-3.0.5.dist-info → rapidtide-3.0.7.dist-info}/licenses/LICENSE +0 -0
- {rapidtide-3.0.5.dist-info → rapidtide-3.0.7.dist-info}/top_level.txt +0 -0
rapidtide/happy_supportfuncs.py
CHANGED
|
@@ -22,13 +22,14 @@ import warnings
|
|
|
22
22
|
|
|
23
23
|
import numpy as np
|
|
24
24
|
from scipy.signal import savgol_filter, welch
|
|
25
|
-
from scipy.stats import kurtosis, skew
|
|
25
|
+
from scipy.stats import kurtosis, skew, pearsonr
|
|
26
26
|
from statsmodels.robust import mad
|
|
27
27
|
from tqdm import tqdm
|
|
28
28
|
|
|
29
29
|
import rapidtide.correlate as tide_corr
|
|
30
30
|
import rapidtide.filter as tide_filt
|
|
31
31
|
import rapidtide.fit as tide_fit
|
|
32
|
+
import rapidtide.genericmultiproc as tide_genericmultiproc
|
|
32
33
|
import rapidtide.io as tide_io
|
|
33
34
|
import rapidtide.miscmath as tide_math
|
|
34
35
|
import rapidtide.resample as tide_resample
|
|
@@ -364,7 +365,55 @@ def getcardcoeffs(
|
|
|
364
365
|
return peakfreq
|
|
365
366
|
|
|
366
367
|
|
|
367
|
-
def
|
|
368
|
+
def _procOneVoxelDetrend(
|
|
369
|
+
vox,
|
|
370
|
+
voxelargs,
|
|
371
|
+
**kwargs,
|
|
372
|
+
):
|
|
373
|
+
# unpack arguments
|
|
374
|
+
options = {
|
|
375
|
+
"detrendorder": 1,
|
|
376
|
+
"demean": False,
|
|
377
|
+
"debug": False,
|
|
378
|
+
}
|
|
379
|
+
options.update(kwargs)
|
|
380
|
+
detrendorder = options["detrendorder"]
|
|
381
|
+
demean = options["demean"]
|
|
382
|
+
debug = options["debug"]
|
|
383
|
+
[fmri_voxeldata] = voxelargs
|
|
384
|
+
if debug:
|
|
385
|
+
print(f"{vox=}, {detrendorder=}, {demean=}, {fmri_voxeldata.shape=}")
|
|
386
|
+
|
|
387
|
+
detrended_voxeldata = tide_fit.detrend(fmri_voxeldata, order=detrendorder, demean=demean)
|
|
388
|
+
|
|
389
|
+
return (
|
|
390
|
+
vox,
|
|
391
|
+
detrended_voxeldata,
|
|
392
|
+
)
|
|
393
|
+
|
|
394
|
+
|
|
395
|
+
def _packDetrendvoxeldata(voxnum, voxelargs):
|
|
396
|
+
return [(voxelargs[0])[voxnum, :]]
|
|
397
|
+
|
|
398
|
+
|
|
399
|
+
def _unpackDetrendvoxeldata(retvals, voxelproducts):
|
|
400
|
+
(voxelproducts[0])[retvals[0], :] = retvals[1]
|
|
401
|
+
|
|
402
|
+
|
|
403
|
+
def normalizevoxels(
|
|
404
|
+
fmri_data,
|
|
405
|
+
detrendorder,
|
|
406
|
+
validvoxels,
|
|
407
|
+
time,
|
|
408
|
+
timings,
|
|
409
|
+
LGR=None,
|
|
410
|
+
mpcode=True,
|
|
411
|
+
nprocs=1,
|
|
412
|
+
alwaysmultiproc=False,
|
|
413
|
+
showprogressbar=True,
|
|
414
|
+
chunksize=1000,
|
|
415
|
+
debug=False,
|
|
416
|
+
):
|
|
368
417
|
print("Normalizing voxels...")
|
|
369
418
|
normdata = fmri_data * 0.0
|
|
370
419
|
demeandata = fmri_data * 0.0
|
|
@@ -373,17 +422,54 @@ def normalizevoxels(fmri_data, detrendorder, validvoxels, time, timings, showpro
|
|
|
373
422
|
numspatiallocs = fmri_data.shape[0]
|
|
374
423
|
if detrendorder > 0:
|
|
375
424
|
print("Detrending to order", detrendorder, "...")
|
|
376
|
-
|
|
377
|
-
|
|
378
|
-
|
|
379
|
-
|
|
380
|
-
|
|
381
|
-
|
|
382
|
-
|
|
383
|
-
|
|
384
|
-
|
|
385
|
-
|
|
425
|
+
if mpcode:
|
|
426
|
+
if debug:
|
|
427
|
+
print(f"detrend multiproc path: {detrendorder=}")
|
|
428
|
+
inputshape = fmri_data.shape
|
|
429
|
+
voxelargs = [
|
|
430
|
+
fmri_data,
|
|
431
|
+
]
|
|
432
|
+
voxelfunc = _procOneVoxelDetrend
|
|
433
|
+
packfunc = _packDetrendvoxeldata
|
|
434
|
+
unpackfunc = _unpackDetrendvoxeldata
|
|
435
|
+
voxelmask = fmri_data[:, 0] * 0.0
|
|
436
|
+
voxelmask[validvoxels] = 1
|
|
437
|
+
voxeltargets = [fmri_data]
|
|
438
|
+
|
|
439
|
+
numspatiallocs = tide_genericmultiproc.run_multiproc(
|
|
440
|
+
voxelfunc,
|
|
441
|
+
packfunc,
|
|
442
|
+
unpackfunc,
|
|
443
|
+
voxelargs,
|
|
444
|
+
voxeltargets,
|
|
445
|
+
inputshape,
|
|
446
|
+
voxelmask,
|
|
447
|
+
LGR,
|
|
448
|
+
nprocs,
|
|
449
|
+
alwaysmultiproc,
|
|
450
|
+
showprogressbar,
|
|
451
|
+
chunksize,
|
|
452
|
+
debug=debug,
|
|
453
|
+
detrendorder=detrendorder,
|
|
454
|
+
demean=False,
|
|
386
455
|
)
|
|
456
|
+
else:
|
|
457
|
+
if debug:
|
|
458
|
+
print(f"detrend nonmultiproc path: {detrendorder=}")
|
|
459
|
+
for idx, thevox in enumerate(
|
|
460
|
+
tqdm(
|
|
461
|
+
validvoxels,
|
|
462
|
+
desc="Voxel",
|
|
463
|
+
unit="voxels",
|
|
464
|
+
disable=(not showprogressbar),
|
|
465
|
+
)
|
|
466
|
+
):
|
|
467
|
+
fmri_data[thevox, :] = tide_fit.detrend(
|
|
468
|
+
fmri_data[thevox, :], order=detrendorder, demean=False
|
|
469
|
+
)
|
|
470
|
+
timings.append(["Detrending finished", time.time(), numspatiallocs, "voxels"])
|
|
471
|
+
print(" done")
|
|
472
|
+
|
|
387
473
|
timings.append(["Detrending finished", time.time(), numspatiallocs, "voxels"])
|
|
388
474
|
print(" done")
|
|
389
475
|
|
|
@@ -960,6 +1046,7 @@ def cardiaccycleaverage(
|
|
|
960
1046
|
congridbins,
|
|
961
1047
|
gridkernel,
|
|
962
1048
|
centric,
|
|
1049
|
+
cache=True,
|
|
963
1050
|
cyclic=True,
|
|
964
1051
|
):
|
|
965
1052
|
rawapp_bypoint = np.zeros(len(destinationphases), dtype=np.float64)
|
|
@@ -971,13 +1058,14 @@ def cardiaccycleaverage(
|
|
|
971
1058
|
1.0,
|
|
972
1059
|
congridbins,
|
|
973
1060
|
kernel=gridkernel,
|
|
1061
|
+
cache=cache,
|
|
974
1062
|
cyclic=cyclic,
|
|
975
1063
|
)
|
|
976
1064
|
for i in range(len(theindices)):
|
|
977
1065
|
weight_bypoint[theindices[i]] += theweights[i]
|
|
978
1066
|
rawapp_bypoint[theindices[i]] += theweights[i] * waveform[t]
|
|
979
1067
|
rawapp_bypoint = np.where(
|
|
980
|
-
weight_bypoint > np.max(weight_bypoint) / 50.0,
|
|
1068
|
+
weight_bypoint > (np.max(weight_bypoint) / 50.0),
|
|
981
1069
|
np.nan_to_num(rawapp_bypoint / weight_bypoint),
|
|
982
1070
|
0.0,
|
|
983
1071
|
)
|
|
@@ -998,6 +1086,285 @@ def circularderivs(timecourse):
|
|
|
998
1086
|
)
|
|
999
1087
|
|
|
1000
1088
|
|
|
1089
|
+
def _procOnePhaseProject(slice, sliceargs, **kwargs):
|
|
1090
|
+
options = {
|
|
1091
|
+
"cache": True,
|
|
1092
|
+
"debug": False,
|
|
1093
|
+
}
|
|
1094
|
+
options.update(kwargs)
|
|
1095
|
+
cache = options["cache"]
|
|
1096
|
+
debug = options["debug"]
|
|
1097
|
+
(
|
|
1098
|
+
validlocslist,
|
|
1099
|
+
proctrs,
|
|
1100
|
+
demeandata_byslice,
|
|
1101
|
+
fmri_data_byslice,
|
|
1102
|
+
outphases,
|
|
1103
|
+
cardphasevals,
|
|
1104
|
+
congridbins,
|
|
1105
|
+
gridkernel,
|
|
1106
|
+
weights_byslice,
|
|
1107
|
+
cine_byslice,
|
|
1108
|
+
destpoints,
|
|
1109
|
+
rawapp_byslice,
|
|
1110
|
+
) = sliceargs
|
|
1111
|
+
# now smooth the projected data along the time dimension
|
|
1112
|
+
validlocs = validlocslist[slice]
|
|
1113
|
+
if len(validlocs) > 0:
|
|
1114
|
+
for t in proctrs:
|
|
1115
|
+
filteredmr = -demeandata_byslice[validlocs, slice, t]
|
|
1116
|
+
cinemr = fmri_data_byslice[validlocs, slice, t]
|
|
1117
|
+
thevals, theweights, theindices = tide_resample.congrid(
|
|
1118
|
+
outphases,
|
|
1119
|
+
cardphasevals[slice, t],
|
|
1120
|
+
1.0,
|
|
1121
|
+
congridbins,
|
|
1122
|
+
kernel=gridkernel,
|
|
1123
|
+
cache=cache,
|
|
1124
|
+
cyclic=True,
|
|
1125
|
+
)
|
|
1126
|
+
for i in range(len(theindices)):
|
|
1127
|
+
weights_byslice[validlocs, slice, theindices[i]] += theweights[i]
|
|
1128
|
+
rawapp_byslice[validlocs, slice, theindices[i]] += filteredmr
|
|
1129
|
+
cine_byslice[validlocs, slice, theindices[i]] += theweights[i] * cinemr
|
|
1130
|
+
for d in range(destpoints):
|
|
1131
|
+
if weights_byslice[validlocs[0], slice, d] == 0.0:
|
|
1132
|
+
weights_byslice[validlocs, slice, d] = 1.0
|
|
1133
|
+
rawapp_byslice[validlocs, slice, :] = np.nan_to_num(
|
|
1134
|
+
rawapp_byslice[validlocs, slice, :] / weights_byslice[validlocs, slice, :]
|
|
1135
|
+
)
|
|
1136
|
+
cine_byslice[validlocs, slice, :] = np.nan_to_num(
|
|
1137
|
+
cine_byslice[validlocs, slice, :] / weights_byslice[validlocs, slice, :]
|
|
1138
|
+
)
|
|
1139
|
+
else:
|
|
1140
|
+
rawapp_byslice[:, slice, :] = 0.0
|
|
1141
|
+
cine_byslice[:, slice, :] = 0.0
|
|
1142
|
+
|
|
1143
|
+
return (
|
|
1144
|
+
slice,
|
|
1145
|
+
rawapp_byslice[:, slice, :],
|
|
1146
|
+
cine_byslice[:, slice, :],
|
|
1147
|
+
weights_byslice[:, slice, :],
|
|
1148
|
+
validlocs,
|
|
1149
|
+
)
|
|
1150
|
+
|
|
1151
|
+
|
|
1152
|
+
def _packslicedataPhaseProject(slicenum, sliceargs):
|
|
1153
|
+
return [
|
|
1154
|
+
sliceargs[0],
|
|
1155
|
+
sliceargs[1],
|
|
1156
|
+
sliceargs[2],
|
|
1157
|
+
sliceargs[3],
|
|
1158
|
+
sliceargs[4],
|
|
1159
|
+
sliceargs[5],
|
|
1160
|
+
sliceargs[6],
|
|
1161
|
+
sliceargs[7],
|
|
1162
|
+
sliceargs[8],
|
|
1163
|
+
sliceargs[9],
|
|
1164
|
+
sliceargs[10],
|
|
1165
|
+
sliceargs[11],
|
|
1166
|
+
]
|
|
1167
|
+
|
|
1168
|
+
|
|
1169
|
+
def _unpackslicedataPhaseProject(retvals, voxelproducts):
|
|
1170
|
+
(voxelproducts[0])[retvals[4], retvals[0], :] = (retvals[1])[retvals[4], :]
|
|
1171
|
+
(voxelproducts[1])[retvals[4], retvals[0], :] = (retvals[2])[retvals[4], :]
|
|
1172
|
+
(voxelproducts[2])[retvals[4], retvals[0], :] = (retvals[3])[retvals[4], :]
|
|
1173
|
+
|
|
1174
|
+
|
|
1175
|
+
def preloadcongrid(outphases, congridbins, gridkernel="kaiser", cyclic=True, debug=False):
|
|
1176
|
+
outphasestep = outphases[1] - outphases[0]
|
|
1177
|
+
outphasecenter = outphases[int(len(outphases) / 2)]
|
|
1178
|
+
fillargs = outphasestep * (
|
|
1179
|
+
np.linspace(-0.5, 0.5, 10001, endpoint=True, dtype=float) + outphasecenter
|
|
1180
|
+
)
|
|
1181
|
+
for thearg in fillargs:
|
|
1182
|
+
dummy, dummy, dummy = tide_resample.congrid(
|
|
1183
|
+
outphases,
|
|
1184
|
+
thearg,
|
|
1185
|
+
1.0,
|
|
1186
|
+
congridbins,
|
|
1187
|
+
kernel=gridkernel,
|
|
1188
|
+
cyclic=cyclic,
|
|
1189
|
+
cache=True,
|
|
1190
|
+
debug=debug,
|
|
1191
|
+
)
|
|
1192
|
+
|
|
1193
|
+
|
|
1194
|
+
def phaseprojectpass(
|
|
1195
|
+
numslices,
|
|
1196
|
+
demeandata_byslice,
|
|
1197
|
+
fmri_data_byslice,
|
|
1198
|
+
validlocslist,
|
|
1199
|
+
proctrs,
|
|
1200
|
+
weights_byslice,
|
|
1201
|
+
cine_byslice,
|
|
1202
|
+
rawapp_byslice,
|
|
1203
|
+
outphases,
|
|
1204
|
+
cardphasevals,
|
|
1205
|
+
congridbins,
|
|
1206
|
+
gridkernel,
|
|
1207
|
+
destpoints,
|
|
1208
|
+
mpcode=False,
|
|
1209
|
+
nprocs=1,
|
|
1210
|
+
alwaysmultiproc=False,
|
|
1211
|
+
showprogressbar=True,
|
|
1212
|
+
cache=True,
|
|
1213
|
+
debug=False,
|
|
1214
|
+
):
|
|
1215
|
+
if mpcode:
|
|
1216
|
+
inputshape = rawapp_byslice.shape
|
|
1217
|
+
sliceargs = [
|
|
1218
|
+
validlocslist,
|
|
1219
|
+
proctrs,
|
|
1220
|
+
demeandata_byslice,
|
|
1221
|
+
fmri_data_byslice,
|
|
1222
|
+
outphases,
|
|
1223
|
+
cardphasevals,
|
|
1224
|
+
congridbins,
|
|
1225
|
+
gridkernel,
|
|
1226
|
+
weights_byslice,
|
|
1227
|
+
cine_byslice,
|
|
1228
|
+
destpoints,
|
|
1229
|
+
rawapp_byslice,
|
|
1230
|
+
]
|
|
1231
|
+
slicefunc = _procOnePhaseProject
|
|
1232
|
+
packfunc = _packslicedataPhaseProject
|
|
1233
|
+
unpackfunc = _unpackslicedataPhaseProject
|
|
1234
|
+
slicetargets = [rawapp_byslice, cine_byslice, weights_byslice]
|
|
1235
|
+
slicemask = rawapp_byslice[0, :, 0] * 0.0 + 1
|
|
1236
|
+
|
|
1237
|
+
slicetotal = tide_genericmultiproc.run_multiproc(
|
|
1238
|
+
slicefunc,
|
|
1239
|
+
packfunc,
|
|
1240
|
+
unpackfunc,
|
|
1241
|
+
sliceargs,
|
|
1242
|
+
slicetargets,
|
|
1243
|
+
inputshape,
|
|
1244
|
+
slicemask,
|
|
1245
|
+
None,
|
|
1246
|
+
nprocs,
|
|
1247
|
+
alwaysmultiproc,
|
|
1248
|
+
showprogressbar,
|
|
1249
|
+
8,
|
|
1250
|
+
indexaxis=1,
|
|
1251
|
+
procunit="slices",
|
|
1252
|
+
cache=cache,
|
|
1253
|
+
debug=debug,
|
|
1254
|
+
)
|
|
1255
|
+
else:
|
|
1256
|
+
for theslice in tqdm(
|
|
1257
|
+
range(numslices),
|
|
1258
|
+
desc="Slice",
|
|
1259
|
+
unit="slices",
|
|
1260
|
+
disable=(not showprogressbar),
|
|
1261
|
+
):
|
|
1262
|
+
validlocs = validlocslist[theslice]
|
|
1263
|
+
if len(validlocs) > 0:
|
|
1264
|
+
for t in proctrs:
|
|
1265
|
+
filteredmr = -demeandata_byslice[validlocs, theslice, t]
|
|
1266
|
+
cinemr = fmri_data_byslice[validlocs, theslice, t]
|
|
1267
|
+
thevals, theweights, theindices = tide_resample.congrid(
|
|
1268
|
+
outphases,
|
|
1269
|
+
cardphasevals[theslice, t],
|
|
1270
|
+
1.0,
|
|
1271
|
+
congridbins,
|
|
1272
|
+
kernel=gridkernel,
|
|
1273
|
+
cyclic=True,
|
|
1274
|
+
cache=cache,
|
|
1275
|
+
debug=debug,
|
|
1276
|
+
)
|
|
1277
|
+
for i in range(len(theindices)):
|
|
1278
|
+
weights_byslice[validlocs, theslice, theindices[i]] += theweights[i]
|
|
1279
|
+
rawapp_byslice[validlocs, theslice, theindices[i]] += filteredmr
|
|
1280
|
+
cine_byslice[validlocs, theslice, theindices[i]] += theweights[i] * cinemr
|
|
1281
|
+
for d in range(destpoints):
|
|
1282
|
+
if weights_byslice[validlocs[0], theslice, d] == 0.0:
|
|
1283
|
+
weights_byslice[validlocs, theslice, d] = 1.0
|
|
1284
|
+
rawapp_byslice[validlocs, theslice, :] = np.nan_to_num(
|
|
1285
|
+
rawapp_byslice[validlocs, theslice, :]
|
|
1286
|
+
/ weights_byslice[validlocs, theslice, :]
|
|
1287
|
+
)
|
|
1288
|
+
cine_byslice[validlocs, theslice, :] = np.nan_to_num(
|
|
1289
|
+
cine_byslice[validlocs, theslice, :] / weights_byslice[validlocs, theslice, :]
|
|
1290
|
+
)
|
|
1291
|
+
else:
|
|
1292
|
+
rawapp_byslice[:, theslice, :] = 0.0
|
|
1293
|
+
cine_byslice[:, theslice, :] = 0.0
|
|
1294
|
+
|
|
1295
|
+
|
|
1296
|
+
def _procOneSliceSmoothing(slice, sliceargs, **kwargs):
|
|
1297
|
+
options = {
|
|
1298
|
+
"debug": False,
|
|
1299
|
+
}
|
|
1300
|
+
options.update(kwargs)
|
|
1301
|
+
debug = options["debug"]
|
|
1302
|
+
(validlocslist, rawapp_byslice, appsmoothingfilter, phaseFs, derivatives_byslice) = sliceargs
|
|
1303
|
+
# now smooth the projected data along the time dimension
|
|
1304
|
+
validlocs = validlocslist[slice]
|
|
1305
|
+
if len(validlocs) > 0:
|
|
1306
|
+
for loc in validlocs:
|
|
1307
|
+
rawapp_byslice[loc, slice, :] = appsmoothingfilter.apply(
|
|
1308
|
+
phaseFs, rawapp_byslice[loc, slice, :]
|
|
1309
|
+
)
|
|
1310
|
+
derivatives_byslice[loc, slice, :] = circularderivs(rawapp_byslice[loc, slice, :])
|
|
1311
|
+
return slice, rawapp_byslice[:, slice, :], derivatives_byslice[:, slice, :]
|
|
1312
|
+
|
|
1313
|
+
|
|
1314
|
+
def _packslicedataSliceSmoothing(slicenum, sliceargs):
|
|
1315
|
+
return [
|
|
1316
|
+
sliceargs[0],
|
|
1317
|
+
sliceargs[1],
|
|
1318
|
+
sliceargs[2],
|
|
1319
|
+
sliceargs[3],
|
|
1320
|
+
sliceargs[4],
|
|
1321
|
+
]
|
|
1322
|
+
|
|
1323
|
+
|
|
1324
|
+
def _unpackslicedataSliceSmoothing(retvals, voxelproducts):
|
|
1325
|
+
(voxelproducts[0])[:, retvals[0], :] = retvals[1]
|
|
1326
|
+
(voxelproducts[1])[:, retvals[0], :] = retvals[2]
|
|
1327
|
+
|
|
1328
|
+
|
|
1329
|
+
def tcsmoothingpass(
|
|
1330
|
+
numslices,
|
|
1331
|
+
validlocslist,
|
|
1332
|
+
rawapp_byslice,
|
|
1333
|
+
appsmoothingfilter,
|
|
1334
|
+
phaseFs,
|
|
1335
|
+
derivatives_byslice,
|
|
1336
|
+
nprocs=1,
|
|
1337
|
+
alwaysmultiproc=False,
|
|
1338
|
+
showprogressbar=True,
|
|
1339
|
+
debug=False,
|
|
1340
|
+
):
|
|
1341
|
+
inputshape = rawapp_byslice.shape
|
|
1342
|
+
sliceargs = [validlocslist, rawapp_byslice, appsmoothingfilter, phaseFs, derivatives_byslice]
|
|
1343
|
+
slicefunc = _procOneSliceSmoothing
|
|
1344
|
+
packfunc = _packslicedataSliceSmoothing
|
|
1345
|
+
unpackfunc = _unpackslicedataSliceSmoothing
|
|
1346
|
+
slicetargets = [rawapp_byslice, derivatives_byslice]
|
|
1347
|
+
slicemask = rawapp_byslice[0, :, 0] * 0.0 + 1
|
|
1348
|
+
|
|
1349
|
+
slicetotal = tide_genericmultiproc.run_multiproc(
|
|
1350
|
+
slicefunc,
|
|
1351
|
+
packfunc,
|
|
1352
|
+
unpackfunc,
|
|
1353
|
+
sliceargs,
|
|
1354
|
+
slicetargets,
|
|
1355
|
+
inputshape,
|
|
1356
|
+
slicemask,
|
|
1357
|
+
None,
|
|
1358
|
+
nprocs,
|
|
1359
|
+
alwaysmultiproc,
|
|
1360
|
+
showprogressbar,
|
|
1361
|
+
16,
|
|
1362
|
+
indexaxis=1,
|
|
1363
|
+
procunit="slices",
|
|
1364
|
+
debug=debug,
|
|
1365
|
+
)
|
|
1366
|
+
|
|
1367
|
+
|
|
1001
1368
|
def phaseproject(
|
|
1002
1369
|
input_data,
|
|
1003
1370
|
demeandata_byslice,
|
|
@@ -1030,112 +1397,156 @@ def phaseproject(
|
|
|
1030
1397
|
xsize, ysize, numslices, timepoints = input_data.getdims()
|
|
1031
1398
|
fmri_data_byslice = input_data.byslice()
|
|
1032
1399
|
|
|
1400
|
+
# first find the validlocs for each slice
|
|
1401
|
+
validlocslist = []
|
|
1402
|
+
if args.verbose:
|
|
1403
|
+
print("Finding validlocs")
|
|
1404
|
+
for theslice in range(numslices):
|
|
1405
|
+
validlocslist.append(np.where(projmask_byslice[:, theslice] > 0)[0])
|
|
1406
|
+
|
|
1407
|
+
# phase project each slice
|
|
1408
|
+
print("Phase projecting")
|
|
1409
|
+
phaseprojectpass(
|
|
1410
|
+
numslices,
|
|
1411
|
+
demeandata_byslice,
|
|
1412
|
+
fmri_data_byslice,
|
|
1413
|
+
validlocslist,
|
|
1414
|
+
proctrs,
|
|
1415
|
+
weights_byslice,
|
|
1416
|
+
cine_byslice,
|
|
1417
|
+
rawapp_byslice,
|
|
1418
|
+
outphases,
|
|
1419
|
+
cardphasevals,
|
|
1420
|
+
args.congridbins,
|
|
1421
|
+
args.gridkernel,
|
|
1422
|
+
args.destpoints,
|
|
1423
|
+
cache=args.congridcache,
|
|
1424
|
+
mpcode=args.mpphaseproject,
|
|
1425
|
+
nprocs=args.nprocs,
|
|
1426
|
+
showprogressbar=args.showprogressbar,
|
|
1427
|
+
)
|
|
1428
|
+
|
|
1429
|
+
# smooth the phase projection, if requested
|
|
1430
|
+
if args.smoothapp:
|
|
1431
|
+
print("Smoothing timecourses")
|
|
1432
|
+
tcsmoothingpass(
|
|
1433
|
+
numslices,
|
|
1434
|
+
validlocslist,
|
|
1435
|
+
rawapp_byslice,
|
|
1436
|
+
appsmoothingfilter,
|
|
1437
|
+
phaseFs,
|
|
1438
|
+
derivatives_byslice,
|
|
1439
|
+
nprocs=args.nprocs,
|
|
1440
|
+
showprogressbar=args.showprogressbar,
|
|
1441
|
+
)
|
|
1442
|
+
|
|
1443
|
+
# now do the flips
|
|
1444
|
+
print("Doing flips")
|
|
1033
1445
|
for theslice in tqdm(
|
|
1034
1446
|
range(numslices),
|
|
1035
1447
|
desc="Slice",
|
|
1036
1448
|
unit="slices",
|
|
1037
1449
|
disable=(not args.showprogressbar),
|
|
1038
1450
|
):
|
|
1039
|
-
|
|
1040
|
-
|
|
1041
|
-
validlocs = np.where(projmask_byslice[:, theslice] > 0)[0]
|
|
1042
|
-
# indexlist = range(0, len(cardphasevals[theslice, :]))
|
|
1451
|
+
# now do the flips
|
|
1452
|
+
validlocs = validlocslist[theslice]
|
|
1043
1453
|
if len(validlocs) > 0:
|
|
1044
|
-
|
|
1045
|
-
|
|
1046
|
-
cinemr = fmri_data_byslice[validlocs, theslice, t]
|
|
1047
|
-
thevals, theweights, theindices = tide_resample.congrid(
|
|
1048
|
-
outphases,
|
|
1049
|
-
cardphasevals[theslice, t],
|
|
1050
|
-
1.0,
|
|
1051
|
-
args.congridbins,
|
|
1052
|
-
kernel=args.gridkernel,
|
|
1053
|
-
cyclic=True,
|
|
1054
|
-
)
|
|
1055
|
-
for i in range(len(theindices)):
|
|
1056
|
-
weights_byslice[validlocs, theslice, theindices[i]] += theweights[i]
|
|
1057
|
-
# rawapp_byslice[validlocs, theslice, theindices[i]] += (
|
|
1058
|
-
# theweights[i] * filteredmr
|
|
1059
|
-
# )
|
|
1060
|
-
rawapp_byslice[validlocs, theslice, theindices[i]] += filteredmr
|
|
1061
|
-
cine_byslice[validlocs, theslice, theindices[i]] += theweights[i] * cinemr
|
|
1062
|
-
for d in range(args.destpoints):
|
|
1063
|
-
if weights_byslice[validlocs[0], theslice, d] == 0.0:
|
|
1064
|
-
weights_byslice[validlocs, theslice, d] = 1.0
|
|
1065
|
-
rawapp_byslice[validlocs, theslice, :] = np.nan_to_num(
|
|
1066
|
-
rawapp_byslice[validlocs, theslice, :] / weights_byslice[validlocs, theslice, :]
|
|
1454
|
+
appflips_byslice = np.where(
|
|
1455
|
+
-derivatives_byslice[:, :, 2] > derivatives_byslice[:, :, 0], -1.0, 1.0
|
|
1067
1456
|
)
|
|
1068
|
-
|
|
1069
|
-
|
|
1457
|
+
timecoursemean = np.mean(rawapp_byslice[validlocs, theslice, :], axis=1).reshape(
|
|
1458
|
+
(-1, 1)
|
|
1459
|
+
)
|
|
1460
|
+
if args.fliparteries:
|
|
1461
|
+
corrected_rawapp_byslice[validlocs, theslice, :] = (
|
|
1462
|
+
rawapp_byslice[validlocs, theslice, :] - timecoursemean
|
|
1463
|
+
) * appflips_byslice[validlocs, theslice, None] + timecoursemean
|
|
1464
|
+
if args.doaliasedcorrelation and (thispass > 0):
|
|
1465
|
+
for theloc in validlocs:
|
|
1466
|
+
thecorrfunc_byslice[theloc, theslice, :] = theAliasedCorrelator.apply(
|
|
1467
|
+
-appflips_byslice[theloc, theslice]
|
|
1468
|
+
* demeandata_byslice[theloc, theslice, :],
|
|
1469
|
+
int(sliceoffsets[theslice]),
|
|
1470
|
+
)[corrstartloc : correndloc + 1]
|
|
1471
|
+
maxloc = np.argmax(thecorrfunc_byslice[theloc, theslice, :])
|
|
1472
|
+
wavedelay_byslice[theloc, theslice] = (
|
|
1473
|
+
thealiasedcorrx[corrstartloc : correndloc + 1]
|
|
1474
|
+
)[maxloc]
|
|
1475
|
+
waveamp_byslice[theloc, theslice] = np.fabs(
|
|
1476
|
+
thecorrfunc_byslice[theloc, theslice, maxloc]
|
|
1477
|
+
)
|
|
1478
|
+
wavedelayCOM_byslice[theloc, theslice] = theCOM(
|
|
1479
|
+
thealiasedcorrx[corrstartloc : correndloc + 1],
|
|
1480
|
+
np.fabs(thecorrfunc_byslice[theloc, theslice, :]),
|
|
1481
|
+
)
|
|
1482
|
+
else:
|
|
1483
|
+
corrected_rawapp_byslice[validlocs, theslice, :] = rawapp_byslice[
|
|
1484
|
+
validlocs, theslice, :
|
|
1485
|
+
]
|
|
1486
|
+
if args.doaliasedcorrelation and (thispass > 0):
|
|
1487
|
+
for theloc in validlocs:
|
|
1488
|
+
thecorrfunc_byslice[theloc, theslice, :] = theAliasedCorrelator.apply(
|
|
1489
|
+
-demeandata_byslice[theloc, theslice, :],
|
|
1490
|
+
int(sliceoffsets[theslice]),
|
|
1491
|
+
)[corrstartloc : correndloc + 1]
|
|
1492
|
+
maxloc = np.argmax(np.abs(thecorrfunc_byslice[theloc, theslice, :]))
|
|
1493
|
+
wavedelay_byslice[theloc, theslice] = (
|
|
1494
|
+
thealiasedcorrx[corrstartloc : correndloc + 1]
|
|
1495
|
+
)[maxloc]
|
|
1496
|
+
waveamp_byslice[theloc, theslice] = np.fabs(
|
|
1497
|
+
thecorrfunc_byslice[theloc, theslice, maxloc]
|
|
1498
|
+
)
|
|
1499
|
+
timecoursemin = np.min(
|
|
1500
|
+
corrected_rawapp_byslice[validlocs, theslice, :], axis=1
|
|
1501
|
+
).reshape((-1, 1))
|
|
1502
|
+
app_byslice[validlocs, theslice, :] = (
|
|
1503
|
+
corrected_rawapp_byslice[validlocs, theslice, :] - timecoursemin
|
|
1504
|
+
)
|
|
1505
|
+
normapp_byslice[validlocs, theslice, :] = np.nan_to_num(
|
|
1506
|
+
app_byslice[validlocs, theslice, :] / means_byslice[validlocs, theslice, None]
|
|
1070
1507
|
)
|
|
1071
|
-
else:
|
|
1072
|
-
rawapp_byslice[:, theslice, :] = 0.0
|
|
1073
|
-
cine_byslice[:, theslice, :] = 0.0
|
|
1074
|
-
|
|
1075
|
-
# smooth the projected data along the time dimension
|
|
1076
|
-
if args.smoothapp:
|
|
1077
|
-
for loc in validlocs:
|
|
1078
|
-
rawapp_byslice[loc, theslice, :] = appsmoothingfilter.apply(
|
|
1079
|
-
phaseFs, rawapp_byslice[loc, theslice, :]
|
|
1080
|
-
)
|
|
1081
|
-
derivatives_byslice[loc, theslice, :] = circularderivs(
|
|
1082
|
-
rawapp_byslice[loc, theslice, :]
|
|
1083
|
-
)
|
|
1084
|
-
appflips_byslice = np.where(
|
|
1085
|
-
-derivatives_byslice[:, :, 2] > derivatives_byslice[:, :, 0], -1.0, 1.0
|
|
1086
|
-
)
|
|
1087
|
-
timecoursemean = np.mean(rawapp_byslice[validlocs, theslice, :], axis=1).reshape((-1, 1))
|
|
1088
|
-
if args.fliparteries:
|
|
1089
|
-
corrected_rawapp_byslice[validlocs, theslice, :] = (
|
|
1090
|
-
rawapp_byslice[validlocs, theslice, :] - timecoursemean
|
|
1091
|
-
) * appflips_byslice[validlocs, theslice, None] + timecoursemean
|
|
1092
|
-
if args.doaliasedcorrelation and (thispass > 0):
|
|
1093
|
-
for theloc in validlocs:
|
|
1094
|
-
thecorrfunc_byslice[theloc, theslice, :] = theAliasedCorrelator.apply(
|
|
1095
|
-
-appflips_byslice[theloc, theslice]
|
|
1096
|
-
* demeandata_byslice[theloc, theslice, :],
|
|
1097
|
-
int(sliceoffsets[theslice]),
|
|
1098
|
-
)[corrstartloc : correndloc + 1]
|
|
1099
|
-
maxloc = np.argmax(thecorrfunc_byslice[theloc, theslice, :])
|
|
1100
|
-
wavedelay_byslice[theloc, theslice] = (
|
|
1101
|
-
thealiasedcorrx[corrstartloc : correndloc + 1]
|
|
1102
|
-
)[maxloc]
|
|
1103
|
-
waveamp_byslice[theloc, theslice] = np.fabs(
|
|
1104
|
-
thecorrfunc_byslice[theloc, theslice, maxloc]
|
|
1105
|
-
)
|
|
1106
|
-
wavedelayCOM_byslice[theloc, theslice] = theCOM(
|
|
1107
|
-
thealiasedcorrx[corrstartloc : correndloc + 1],
|
|
1108
|
-
np.fabs(thecorrfunc_byslice[theloc, theslice, :]),
|
|
1109
|
-
)
|
|
1110
|
-
else:
|
|
1111
|
-
corrected_rawapp_byslice[validlocs, theslice, :] = rawapp_byslice[
|
|
1112
|
-
validlocs, theslice, :
|
|
1113
|
-
]
|
|
1114
|
-
if args.doaliasedcorrelation and (thispass > 0):
|
|
1115
|
-
for theloc in validlocs:
|
|
1116
|
-
thecorrfunc_byslice[theloc, theslice, :] = theAliasedCorrelator.apply(
|
|
1117
|
-
-demeandata_byslice[theloc, theslice, :],
|
|
1118
|
-
int(sliceoffsets[theslice]),
|
|
1119
|
-
)[corrstartloc : correndloc + 1]
|
|
1120
|
-
maxloc = np.argmax(np.abs(thecorrfunc_byslice[theloc, theslice, :]))
|
|
1121
|
-
wavedelay_byslice[theloc, theslice] = (
|
|
1122
|
-
thealiasedcorrx[corrstartloc : correndloc + 1]
|
|
1123
|
-
)[maxloc]
|
|
1124
|
-
waveamp_byslice[theloc, theslice] = np.fabs(
|
|
1125
|
-
thecorrfunc_byslice[theloc, theslice, maxloc]
|
|
1126
|
-
)
|
|
1127
|
-
timecoursemin = np.min(corrected_rawapp_byslice[validlocs, theslice, :], axis=1).reshape(
|
|
1128
|
-
(-1, 1)
|
|
1129
|
-
)
|
|
1130
|
-
app_byslice[validlocs, theslice, :] = (
|
|
1131
|
-
corrected_rawapp_byslice[validlocs, theslice, :] - timecoursemin
|
|
1132
|
-
)
|
|
1133
|
-
normapp_byslice[validlocs, theslice, :] = np.nan_to_num(
|
|
1134
|
-
app_byslice[validlocs, theslice, :] / means_byslice[validlocs, theslice, None]
|
|
1135
|
-
)
|
|
1136
1508
|
return appflips_byslice
|
|
1137
1509
|
|
|
1138
1510
|
|
|
1511
|
+
def findvessels(
|
|
1512
|
+
app,
|
|
1513
|
+
normapp,
|
|
1514
|
+
validlocs,
|
|
1515
|
+
numspatiallocs,
|
|
1516
|
+
outputroot,
|
|
1517
|
+
unnormvesselmap,
|
|
1518
|
+
destpoints,
|
|
1519
|
+
softvesselfrac,
|
|
1520
|
+
histlen,
|
|
1521
|
+
outputlevel,
|
|
1522
|
+
debug=False,
|
|
1523
|
+
):
|
|
1524
|
+
if unnormvesselmap:
|
|
1525
|
+
app2d = app.reshape((numspatiallocs, destpoints))
|
|
1526
|
+
else:
|
|
1527
|
+
app2d = normapp.reshape((numspatiallocs, destpoints))
|
|
1528
|
+
histinput = app2d[validlocs, :].reshape((len(validlocs), destpoints))
|
|
1529
|
+
if outputlevel > 0:
|
|
1530
|
+
namesuffix = "_desc-apppeaks_hist"
|
|
1531
|
+
tide_stats.makeandsavehistogram(
|
|
1532
|
+
histinput,
|
|
1533
|
+
histlen,
|
|
1534
|
+
0,
|
|
1535
|
+
outputroot + namesuffix,
|
|
1536
|
+
debug=debug,
|
|
1537
|
+
)
|
|
1538
|
+
|
|
1539
|
+
# find vessel thresholds
|
|
1540
|
+
tide_util.logmem("before making vessel masks")
|
|
1541
|
+
hardvesselthresh = tide_stats.getfracvals(np.max(histinput, axis=1), [0.98])[0] / 2.0
|
|
1542
|
+
softvesselthresh = softvesselfrac * hardvesselthresh
|
|
1543
|
+
print(
|
|
1544
|
+
"hard, soft vessel thresholds set to",
|
|
1545
|
+
"{:.3f}".format(hardvesselthresh),
|
|
1546
|
+
"{:.3f}".format(softvesselthresh),
|
|
1547
|
+
)
|
|
1548
|
+
|
|
1549
|
+
|
|
1139
1550
|
def upsampleimage(input_data, numsteps, sliceoffsets, slicesamplerate, outputroot):
|
|
1140
1551
|
fmri_data = input_data.byvol()
|
|
1141
1552
|
timepoints = input_data.timepoints
|
|
@@ -1180,3 +1591,93 @@ def upsampleimage(input_data, numsteps, sliceoffsets, slicesamplerate, outputroo
|
|
|
1180
1591
|
)
|
|
1181
1592
|
tide_io.savetonifti(upsampleimage, theheader, outputroot + "_upsampled")
|
|
1182
1593
|
print("upsampling complete")
|
|
1594
|
+
|
|
1595
|
+
|
|
1596
|
+
def wrightmap(
|
|
1597
|
+
input_data,
|
|
1598
|
+
demeandata_byslice,
|
|
1599
|
+
rawapp_byslice,
|
|
1600
|
+
projmask_byslice,
|
|
1601
|
+
outphases,
|
|
1602
|
+
cardphasevals,
|
|
1603
|
+
proctrs,
|
|
1604
|
+
congridbins,
|
|
1605
|
+
gridkernel,
|
|
1606
|
+
destpoints,
|
|
1607
|
+
iterations=100,
|
|
1608
|
+
nprocs=-1,
|
|
1609
|
+
verbose=False,
|
|
1610
|
+
debug=False,
|
|
1611
|
+
):
|
|
1612
|
+
xsize = input_data.xsize
|
|
1613
|
+
ysize = input_data.ysize
|
|
1614
|
+
numslices = input_data.numslices
|
|
1615
|
+
# make a vessel map using Wright's method
|
|
1616
|
+
wrightcorrs_byslice = np.zeros((xsize * ysize, numslices, iterations))
|
|
1617
|
+
# first find the validlocs for each slice
|
|
1618
|
+
validlocslist = []
|
|
1619
|
+
if verbose:
|
|
1620
|
+
print("Finding validlocs")
|
|
1621
|
+
for theslice in range(numslices):
|
|
1622
|
+
validlocslist.append(np.where(projmask_byslice[:, theslice] > 0)[0])
|
|
1623
|
+
for theiteration in range(iterations):
|
|
1624
|
+
print(f"wright iteration: {theiteration + 1} of {iterations}")
|
|
1625
|
+
# split timecourse into two sets
|
|
1626
|
+
scrambledprocs = np.random.permutation(proctrs)
|
|
1627
|
+
proctrs1 = scrambledprocs[: int(len(scrambledprocs) // 2)]
|
|
1628
|
+
proctrs2 = scrambledprocs[int(len(scrambledprocs) // 2) :]
|
|
1629
|
+
if debug:
|
|
1630
|
+
print(f"{proctrs1=}, {proctrs2=}")
|
|
1631
|
+
|
|
1632
|
+
# phase project each slice
|
|
1633
|
+
rawapp_byslice1 = rawapp_byslice * 0.0
|
|
1634
|
+
cine_byslice1 = rawapp_byslice * 0.0
|
|
1635
|
+
weights_byslice1 = rawapp_byslice * 0.0
|
|
1636
|
+
phaseprojectpass(
|
|
1637
|
+
numslices,
|
|
1638
|
+
demeandata_byslice,
|
|
1639
|
+
input_data.byslice(),
|
|
1640
|
+
validlocslist,
|
|
1641
|
+
proctrs1,
|
|
1642
|
+
weights_byslice1,
|
|
1643
|
+
cine_byslice1,
|
|
1644
|
+
rawapp_byslice1,
|
|
1645
|
+
outphases,
|
|
1646
|
+
cardphasevals,
|
|
1647
|
+
congridbins,
|
|
1648
|
+
gridkernel,
|
|
1649
|
+
destpoints,
|
|
1650
|
+
nprocs=nprocs,
|
|
1651
|
+
showprogressbar=False,
|
|
1652
|
+
)
|
|
1653
|
+
rawapp_byslice2 = rawapp_byslice * 0.0
|
|
1654
|
+
cine_byslice2 = rawapp_byslice * 0.0
|
|
1655
|
+
weights_byslice2 = rawapp_byslice * 0.0
|
|
1656
|
+
phaseprojectpass(
|
|
1657
|
+
numslices,
|
|
1658
|
+
demeandata_byslice,
|
|
1659
|
+
input_data.byslice(),
|
|
1660
|
+
validlocslist,
|
|
1661
|
+
proctrs2,
|
|
1662
|
+
weights_byslice2,
|
|
1663
|
+
cine_byslice2,
|
|
1664
|
+
rawapp_byslice2,
|
|
1665
|
+
outphases,
|
|
1666
|
+
cardphasevals,
|
|
1667
|
+
congridbins,
|
|
1668
|
+
gridkernel,
|
|
1669
|
+
destpoints,
|
|
1670
|
+
nprocs=nprocs,
|
|
1671
|
+
showprogressbar=False,
|
|
1672
|
+
)
|
|
1673
|
+
for theslice in range(numslices):
|
|
1674
|
+
for thepoint in validlocslist[theslice]:
|
|
1675
|
+
theRvalue, thepvalue = pearsonr(
|
|
1676
|
+
rawapp_byslice1[thepoint, theslice, :],
|
|
1677
|
+
rawapp_byslice2[thepoint, theslice, :],
|
|
1678
|
+
)
|
|
1679
|
+
if debug:
|
|
1680
|
+
print("theRvalue = ", theRvalue)
|
|
1681
|
+
wrightcorrs_byslice[thepoint, theslice, theiteration] = theRvalue
|
|
1682
|
+
wrightcorrs = np.mean(wrightcorrs_byslice, axis=2).reshape(xsize, ysize, numslices)
|
|
1683
|
+
return wrightcorrs
|