radnn 0.0.7.2__py3-none-any.whl → 0.0.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (60) hide show
  1. radnn/__init__.py +7 -5
  2. radnn/core.py +44 -28
  3. radnn/data/__init__.py +8 -0
  4. radnn/data/data_feed.py +147 -0
  5. radnn/data/dataset_base.py +3 -5
  6. radnn/data/dataset_folder.py +55 -0
  7. radnn/data/image_dataset.py +0 -2
  8. radnn/data/image_dataset_files.py +175 -0
  9. radnn/data/preprocess/normalizer.py +7 -1
  10. radnn/data/preprocess/standardizer.py +9 -2
  11. radnn/data/sample_set.py +30 -17
  12. radnn/data/sequence_dataset.py +0 -2
  13. radnn/data/subset_type.py +45 -0
  14. radnn/data/tf_classification_data_feed.py +113 -0
  15. radnn/errors.py +29 -0
  16. radnn/evaluation/evaluate_classification.py +7 -3
  17. radnn/experiment/ml_experiment.py +29 -0
  18. radnn/experiment/ml_experiment_config.py +61 -32
  19. radnn/experiment/ml_experiment_env.py +6 -2
  20. radnn/experiment/ml_experiment_store.py +0 -1
  21. radnn/images/__init__.py +2 -0
  22. radnn/images/colors.py +28 -0
  23. radnn/images/image_processor.py +513 -0
  24. radnn/learn/learning_algorithm.py +4 -3
  25. radnn/ml_system.py +59 -18
  26. radnn/plots/plot_auto_multi_image.py +27 -17
  27. radnn/plots/plot_confusion_matrix.py +7 -4
  28. radnn/plots/plot_learning_curve.py +7 -3
  29. radnn/plots/plot_multi_scatter.py +7 -3
  30. radnn/plots/plot_roc.py +8 -4
  31. radnn/plots/plot_voronoi_2d.py +8 -5
  32. radnn/stats/__init__.py +1 -0
  33. radnn/stats/descriptive_stats.py +45 -0
  34. radnn/system/files/__init__.py +1 -0
  35. radnn/system/files/csvfile.py +8 -5
  36. radnn/system/files/filelist.py +40 -0
  37. radnn/system/files/fileobject.py +9 -4
  38. radnn/system/files/imgfile.py +8 -4
  39. radnn/system/files/jsonfile.py +8 -4
  40. radnn/system/files/picklefile.py +8 -4
  41. radnn/system/files/textfile.py +37 -7
  42. radnn/system/filestore.py +36 -18
  43. radnn/system/filesystem.py +8 -3
  44. radnn/system/hosts/colab_host.py +29 -0
  45. radnn/system/hosts/linux_host.py +29 -0
  46. radnn/system/hosts/windows_host.py +39 -1
  47. radnn/system/tee_logger.py +7 -3
  48. radnn/system/threads/__init__.py +5 -0
  49. radnn/system/threads/semaphore_lock.py +58 -0
  50. radnn/system/threads/thread_context.py +175 -0
  51. radnn/system/threads/thread_safe_queue.py +163 -0
  52. radnn/system/threads/thread_safe_string_collection.py +66 -0
  53. radnn/system/threads/thread_worker.py +68 -0
  54. radnn/utils.py +96 -2
  55. {radnn-0.0.7.2.dist-info → radnn-0.0.8.dist-info}/METADATA +1 -1
  56. radnn-0.0.8.dist-info/RECORD +70 -0
  57. radnn-0.0.7.2.dist-info/RECORD +0 -53
  58. {radnn-0.0.7.2.dist-info → radnn-0.0.8.dist-info}/LICENSE.txt +0 -0
  59. {radnn-0.0.7.2.dist-info → radnn-0.0.8.dist-info}/WHEEL +0 -0
  60. {radnn-0.0.7.2.dist-info → radnn-0.0.8.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,68 @@
1
+ # ======================================================================================
2
+ #
3
+ # Rapid Deep Neural Networks
4
+ #
5
+ # Licensed under the MIT License
6
+ # ______________________________________________________________________________________
7
+ # ......................................................................................
8
+
9
+ # Copyright (c) 2018-2025 Pantelis I. Kaplanoglou
10
+
11
+ # Permission is hereby granted, free of charge, to any person obtaining a copy
12
+ # of this software and associated documentation files (the "Software"), to deal
13
+ # in the Software without restriction, including without limitation the rights
14
+ # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
15
+ # copies of the Software, and to permit persons to whom the Software is
16
+ # furnished to do so, subject to the following conditions:
17
+
18
+ # The above copyright notice and this permission notice shall be included in all
19
+ # copies or substantial portions of the Software.
20
+
21
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
22
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
23
+ # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
24
+ # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
25
+ # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
26
+ # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
27
+ # SOFTWARE.
28
+
29
+ # .......................................................................................
30
+ from time import sleep
31
+ from .thread_context import ThreadContext
32
+ from .thread_safe_queue import ThreadSafeQueue
33
+ from .thread_safe_string_collection import StringCollectionThreadSafe
34
+
35
+
36
+
37
+ class ThreadWorker(ThreadContext):
38
+ # ------------------------------------------------------------------------------------------------------------------
39
+ def __init__(self, name=None, p_nLoopSleepIntervalMS=100, p_oQueue=None, p_oLog=None, is_daemon_thread=True):
40
+ super(ThreadWorker, self).__init__(name, is_daemon_thread=is_daemon_thread)
41
+ #........................... | Instance Attributes | ...........................
42
+ self.SleepIntervalMsecs = p_nLoopSleepIntervalMS
43
+ self.SleepIntervalMsecs
44
+ self.Queue = p_oQueue
45
+ self.Log = None
46
+ #................................................................................
47
+
48
+ # auto create the queue and its log
49
+ if p_oQueue is None:
50
+ self.Queue = ThreadSafeQueue()
51
+ if p_oLog is None:
52
+ self.Log = StringCollectionThreadSafe()
53
+ # ------------------------------------------------------------------------------------------------------------------
54
+ def ThreadMain(self, p_oArgs):
55
+ nSleepInterval = float(self.SleepIntervalMsecs/1000)
56
+
57
+ while self.must_continue:
58
+ if not self.Queue.is_empty():
59
+ oMessage = self.Queue.pop()
60
+ if oMessage is not None:
61
+ self.ThreadInvokeMethod(oMessage)
62
+ sleep(nSleepInterval)
63
+ # ------------------------------------------------------------------------------------------------------------------
64
+ def ThreadInvokeMethod(self, p_oMessage): #virtual
65
+ pass
66
+ # ------------------------------------------------------------------------------------------------------------------
67
+
68
+
radnn/utils.py CHANGED
@@ -1,7 +1,101 @@
1
+ # ======================================================================================
2
+ #
3
+ # Rapid Deep Neural Networks
4
+ #
5
+ # Licensed under the MIT License
6
+ # ______________________________________________________________________________________
7
+ # ......................................................................................
8
+
9
+ # Copyright (c) 2024-2025 Pantelis I. Kaplanoglou
10
+
11
+ # Permission is hereby granted, free of charge, to any person obtaining a copy
12
+ # of this software and associated documentation files (the "Software"), to deal
13
+ # in the Software without restriction, including without limitation the rights
14
+ # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
15
+ # copies of the Software, and to permit persons to whom the Software is
16
+ # furnished to do so, subject to the following conditions:
17
+
18
+ # The above copyright notice and this permission notice shall be included in all
19
+ # copies or substantial portions of the Software.
20
+
21
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
22
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
23
+ # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
24
+ # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
25
+ # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
26
+ # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
27
+ # SOFTWARE.
28
+
29
+ # .......................................................................................
1
30
  import numpy as np
31
+ import time
32
+ import hashlib
33
+ import zlib
34
+ import contextlib
35
+
36
+ phi=(1.0+np.sqrt(5.0))/2.0
2
37
 
3
38
 
4
- def print_tensor(tensor, title=None, format="%+.3f", axes_descr=["Sample"]):
39
+ # --------------------------------------------------------------------------------------
40
+ '''
41
+ Checks if the p_sSettingsName is inside the settings dictionary p_dConfig
42
+ and returns its value, otherwise the p_oDefault value
43
+ '''
44
+ def default_value(dictionary, key, default_value=None):
45
+ if key in dictionary:
46
+ return dictionary[key]
47
+ else:
48
+ return default_value
49
+ # ----------------------------------------------------------------------------------------------------------------------
50
+ def camel_case(text: str):
51
+ return "".join([sWord.capitalize() for sWord in text.split()])
52
+ # ----------------------------------------------------------------------------------------------------------------------
53
+ def snake_case(text):
54
+ return "_".join(text.lower().split())
55
+ # ----------------------------------------------------------------------------------------------------------------------
56
+ def interactive_matplotlib():
57
+ import matplotlib
58
+ matplotlib.use('TkAgg')
59
+ # ----------------------------------------------------------------------------------------------------------------------
60
+ def print_method_execution_time(func, *args, **kwargs):
61
+ start = time.perf_counter() # High-resolution timer
62
+ result = func(*args, **kwargs)
63
+ end = time.perf_counter()
64
+ print(f"{func.__name__} took {end - start:.6f} seconds")
65
+ return result
66
+ # ----------------------------------------------------------------------------------------------------------------------
67
+ def data_hash(data: np.ndarray):
68
+ nBytes = data.tobytes()
69
+ return hashlib.sha256(nBytes).hexdigest()
70
+ # ----------------------------------------------------------------------------------------------------------------------
71
+ def data_crc32(data: np.ndarray):
72
+ nBytes = data.tobytes()
73
+ return zlib.crc32(nBytes)
74
+ # --------------------------------------------------------------------------------------
75
+ def set_float_format(decimal_digits):
76
+ np.set_printoptions(decimal_digits, suppress=True)
77
+ np.set_printoptions(edgeitems=10)
78
+ np.core.arrayprint._line_width = 180
79
+ # ----------------------------------------------------------------------------------------------------------------------
80
+ @contextlib.contextmanager
81
+ def print_options(*args, **kwargs):
82
+ original = np.get_printoptions()
83
+ np.set_printoptions(*args, **kwargs)
84
+ try:
85
+ yield
86
+ finally:
87
+ np.set_printoptions(**original)
88
+ # ----------------------------------------------------------------------------------------------------------------------
89
+ @contextlib.contextmanager
90
+ def print_options_float(precision=6):
91
+ original = np.get_printoptions()
92
+ np.set_printoptions(precision=precision, suppress=True)
93
+ try:
94
+ yield
95
+ finally:
96
+ np.set_printoptions(**original)
97
+ # ----------------------------------------------------------------------------------------------------------------------
98
+ def print_tensor(tensor: np.ndarray, title=None, format="%+.3f", axes_descr=["Sample"]):
5
99
  # ................................................
6
100
  def printElement(p_nElement, p_bIsScalar):
7
101
  if p_bIsScalar:
@@ -86,4 +180,4 @@ def print_tensor(tensor, title=None, format="%+.3f", axes_descr=["Sample"]):
86
180
  print(strBoxRight(nRow, nGridRows))
87
181
  print("." * 60)
88
182
  nSampleIndex += 1
89
- # -----------------------------------------------------------------------------
183
+ # ----------------------------------------------------------------------------------------------------------------------
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: radnn
3
- Version: 0.0.7.2
3
+ Version: 0.0.8
4
4
  Summary: Rapid Deep Neural Networks
5
5
  Author-email: "Pantelis I. Kaplanoglou" <pikaplanoglou@ihu.gr>
6
6
  License: MIT License
@@ -0,0 +1,70 @@
1
+ radnn/__init__.py,sha256=G0PsHmid1DPmViG5S9h4MZpTlVZuv6QOUifmK8PHhb8,396
2
+ radnn/core.py,sha256=-v25_yJyioyH_juGPJLWvKojwkdy4AF2TuWMPcnqjDA,4565
3
+ radnn/errors.py,sha256=gFiJYngMO24BApzd1auSBNASeS238MAmG3tubCr0POU,1716
4
+ radnn/ml_system.py,sha256=ycd9y26br7TvIWE39X6DBJ5jEU8A_6fmwr9F4htK8mI,5927
5
+ radnn/utils.py,sha256=7WY0c0ZalfE4XJJuolK-KgW4FFEBL4HfiLuaEAJGVt4,7675
6
+ radnn/data/__init__.py,sha256=IExy6eV9QSr3b2LaI3cND7P4W-kPHivHMleJsKETh00,405
7
+ radnn/data/data_feed.py,sha256=Hb8eROxZ7OFJ9a4-CM6Dibbx7v46QbkoiSIAjwCfs1Y,7290
8
+ radnn/data/dataset_base.py,sha256=VRGlXZhcBb7i5p39GbqUjau12UxPb2kwBVQTZTVG-WI,15184
9
+ radnn/data/dataset_folder.py,sha256=-6dL61ptVpHyMf1hc7B87w6oaLrZYOY6CGJVBkmhqp8,2475
10
+ radnn/data/image_dataset.py,sha256=2TOKXKml0qzj1CvMfJdMMjE3QhquCD-lZIsttFDuBoM,4516
11
+ radnn/data/image_dataset_files.py,sha256=9CLIu44MYq6LIU58o-qxqPucnXxRq4rQnAwTAYFuJ3c,7508
12
+ radnn/data/sample_set.py,sha256=WMhXxl2yW749l9TbcjGsh9sCXHRKTyeJkhY5Y_PpO5A,7281
13
+ radnn/data/sequence_dataset.py,sha256=CRKeHjOF34TRmTLIWVp2oLv2eVETrhVH4KDI61hHgZM,6205
14
+ radnn/data/subset_type.py,sha256=AEjFmi4OHDR_ZjXT3bK-7NTc3rUbIaUoEoXFN5XAQYM,1997
15
+ radnn/data/tf_classification_data_feed.py,sha256=EgF7lIzYTWfi9azO3vnqfoi4xW0Zvu6227DsM9cVB7U,6645
16
+ radnn/data/preprocess/__init__.py,sha256=6JTaWzzeXAbIXkH8O9JDawtObutCyXQjHEZdlofSics,74
17
+ radnn/data/preprocess/normalizer.py,sha256=QgXuFOLrJPdgmas2mRu7KWeT_1dzx3wyz5dA8EGCcqs,5832
18
+ radnn/data/preprocess/standardizer.py,sha256=RTGIoniYSY0jvc_ILGU1iwDOR8SDL6s_aM_TQi8swoI,5413
19
+ radnn/evaluation/__init__.py,sha256=7dXDyJfOpSAr7G8jfDofsW4YEHNElCTTyMXuLCtpoOI,59
20
+ radnn/evaluation/evaluate_classification.py,sha256=ma8TdBFrUua00dMJVlT5J9-ITEOuT3ySSEc4hgOgoIU,5738
21
+ radnn/experiment/__init__.py,sha256=8gxrFS4bG7rg2kgrDEhemJgDbO-5KhBYc4owJZ-S--k,247
22
+ radnn/experiment/ml_experiment.py,sha256=Cq-Cvn5kd97uJGKIr4DOoNTwULt5XKUdBu5sunD0dKg,19426
23
+ radnn/experiment/ml_experiment_config.py,sha256=ui7oFCgFeOpcBJ3aiAFI-W4J3miUaGU3b_skK_OSs64,11202
24
+ radnn/experiment/ml_experiment_env.py,sha256=zoB5NxvFn5CyTq_FRsxB01HrnfnHLcYJUOTgPjL4_ac,11447
25
+ radnn/experiment/ml_experiment_store.py,sha256=Ph-4DQ9zEjhxZlQ13t-qnmCyxsKwsO2Df_Kj0vbMS_Q,396
26
+ radnn/images/__init__.py,sha256=Mk7zKHQRDmCX-A4b1xw-3yxIwEApY-wlZTKiQr3eCqE,100
27
+ radnn/images/colors.py,sha256=l6caSV2a_TURl1qHYKdehQDk0MCVMz-614OuVx-wnsg,1248
28
+ radnn/images/image_processor.py,sha256=YEGq06Dwv1k7W2SiVU0rvo7_RA7HJnXxluLVSqRHt2w,19983
29
+ radnn/learn/__init__.py,sha256=gF-5pD1OxrxhOeO7G7wbpr37LRjGkT71PY78Li3bBJU,252
30
+ radnn/learn/keras_learning_rate_scheduler.py,sha256=l0c53dtq1W5oclXDLxXzUlmBG_hzO-19EFRw3518PJs,1156
31
+ radnn/learn/keras_optimization_algorithm.py,sha256=ff3S_3CJ2t0N4_TZiGDpiAhExquRsqAGZDc42werGJo,1686
32
+ radnn/learn/learning_algorithm.py,sha256=Z8OSiNLLCD5AesMQ0ioODFMHBfW13Dh5OSVPnFwA3rQ,1411
33
+ radnn/learn/state/__init__.py,sha256=zExYBp7mkQlzDZX3jnzYa5piwOEFxUwe6ZvKI6IiE6o,117
34
+ radnn/learn/state/keras_best_state_saver.py,sha256=ep9QP7bZqmN8XmSzUpRXuBh6ccrbhFdFL4p5c3pg3MA,883
35
+ radnn/plots/__init__.py,sha256=dVd7QDrkD_fBUag4Kz3yTnPvBxaBgpDt16bbbNlqLKw,286
36
+ radnn/plots/plot_auto_multi_image.py,sha256=MH7Qo7Fv3qFj2nM58NSrkLMgbvfB-ZRukE4uthswjvM,5038
37
+ radnn/plots/plot_confusion_matrix.py,sha256=0pJben22SEgpIEUDI5t2NNdiiHOtfBcDRR1FQh09YMw,2865
38
+ radnn/plots/plot_learning_curve.py,sha256=sD6o8tKxV8PkKMdhHKR69uIgHU_vzKdhxFPV-5eU4W0,3722
39
+ radnn/plots/plot_multi_scatter.py,sha256=OfO-b38L7qYg93-oohLpJGYyj-3jkXdFn6lXu0F-QVc,5039
40
+ radnn/plots/plot_roc.py,sha256=LisQZ4XFCoHHT9kOJtgKMu-6F1zdT4SKJ_lmROZEz94,3735
41
+ radnn/plots/plot_voronoi_2d.py,sha256=mxGAVfnDVCBn3-soYlD-LS32meeLpmfibIUZB-Tier0,4649
42
+ radnn/stats/__init__.py,sha256=o0uaqIPrlvCFiZEDRowZaVrSYg3m2etkHpBttNySDeU,47
43
+ radnn/stats/descriptive_stats.py,sha256=9PJo4OtcLt4pJGx6BSEKm6GgbyerstJ3z87iglMVoic,2391
44
+ radnn/system/__init__.py,sha256=uJLg56njcLtaRO0Kyudat055DGxqWsLMvrn9P8_Rt6A,119
45
+ radnn/system/filestore.py,sha256=q-zS4gO-Ad21ZFvU_8keNR1wfp7j5WL4zLF8asiI2Jg,10209
46
+ radnn/system/filesystem.py,sha256=0xLo0beXllMMWbb14lay7otbRAQikP7jnMnqiNyI16o,5809
47
+ radnn/system/tee_logger.py,sha256=le453-SWpnvODW9y8OXErsnXLQXDahG7pml9-vKsLG4,2871
48
+ radnn/system/files/__init__.py,sha256=BodOzEeTstmcnepXsmF2j3ozceaLFjuS4xA7FHN-dsI,201
49
+ radnn/system/files/csvfile.py,sha256=xoV0tGKDKlIq20P7-9NQ2Pq0rX3XrM-fTgumWN-uHmI,2486
50
+ radnn/system/files/filelist.py,sha256=HsyBUtDSKmo_aGfezIvmLqtCCbH-y7Ybv03Tb1ZZKO4,2042
51
+ radnn/system/files/fileobject.py,sha256=nHz0JumwsO_T9BNLbCzkhca6i5ScweYuIenhpaLAovo,4095
52
+ radnn/system/files/imgfile.py,sha256=B752yCxnHcJDwC7qognZ6zLKnqXcEUUuMrUEglXkXT8,2484
53
+ radnn/system/files/jsonfile.py,sha256=bjS1gnM1QMAP7zmCTGWq3-Z86iwdIq20mk58-guKBMQ,3533
54
+ radnn/system/files/picklefile.py,sha256=n362cyoxwZtANJwuu8xHWDLttqNY4QqwDR1Jh-2VwUk,5768
55
+ radnn/system/files/textfile.py,sha256=9wdubEW9tVEwA1-s1n3UtabW7-QTjSdUBIe_rdSyWVA,4001
56
+ radnn/system/hosts/__init__.py,sha256=k2gkMJhe96Nf-V2ex6jZqmCRX9vA_K6gFB8J8Ii9ahc,261
57
+ radnn/system/hosts/colab_host.py,sha256=i0s43KjdJ-gjLGyQAItubz2gZvOj-DbFnH1EGYguoVk,4000
58
+ radnn/system/hosts/linux_host.py,sha256=AuOTpQ3OB1SXvsS1F-ksLVL44HXeRz5UEM2jbQ_1nbg,1623
59
+ radnn/system/hosts/windows_host.py,sha256=smSnK2hNeBSLJFRw9Wh8Uni0RVVuFCxMzwFv_WzkCuY,4253
60
+ radnn/system/threads/__init__.py,sha256=PJrNngI79hne-fAhdn1mGIHNWbtuOMoHoNR4RXB5P2Y,252
61
+ radnn/system/threads/semaphore_lock.py,sha256=UGf5f2WBo6sknuhPL-1Vqsg-25HroqfKPrGsoIeNPEo,3073
62
+ radnn/system/threads/thread_context.py,sha256=wbRmeIoJSZaLH6Z_Gra-X2uqYLmMFL7ZLpHJzOzlIgE,7761
63
+ radnn/system/threads/thread_safe_queue.py,sha256=rtOoflj7lXeYAbISTU36ftYNcv0bgT8c4_Fs4qFfslU,6216
64
+ radnn/system/threads/thread_safe_string_collection.py,sha256=vdRMvwJ8CcLmsJ1uildoNjJ5OYruWyGRlCr7amtMUeU,2391
65
+ radnn/system/threads/thread_worker.py,sha256=5KANBBHwnyaMvjyelBT1eyZCzRtH7MNZiHUhN1Xl1BY,3466
66
+ radnn-0.0.8.dist-info/LICENSE.txt,sha256=vYtt_GDvm_yW65X9YMBOOu8Vqc9SAvqH94TbfBc2ckU,1106
67
+ radnn-0.0.8.dist-info/METADATA,sha256=65_TJ_G3vNVqL2DVVPk6KgmIgtyL3fYGlaKX4zVLVDk,2861
68
+ radnn-0.0.8.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
69
+ radnn-0.0.8.dist-info/top_level.txt,sha256=FKlLIm6gRAeZlRzs-HCBJAB1q9ELJ7MgaL-qqFuPo6M,6
70
+ radnn-0.0.8.dist-info/RECORD,,
@@ -1,53 +0,0 @@
1
- radnn/__init__.py,sha256=5uPiqiHDaYdsGupS0bxtGQ1SxcaxiupuprGmPP912zE,322
2
- radnn/core.py,sha256=c60Lv2osyy3S6IxYIfbMSC9QMwnyT8qPED2xy_UnM24,3399
3
- radnn/errors.py,sha256=upA3Afpvrkxexf956PwITHB-fR_V2n2k4Jn8HaZcpm8,150
4
- radnn/ml_system.py,sha256=MXSrRz3UB9CqXt7otZohXEGpfMrOA4IV4gymbH7X5GU,3894
5
- radnn/utils.py,sha256=Q2nGUgyTGrhs0vxEmHfEZffWb7JBewmiygcHRaWw1W8,3100
6
- radnn/data/__init__.py,sha256=09OkpdAe59yJH74DuQrxLtCiiNXgX6E3F2MKjzz8Cns,117
7
- radnn/data/dataset_base.py,sha256=3b8UaJFBiN0cY8C9uZKFzRt0g_4Q_EZgVEKWgsAA4t8,15181
8
- radnn/data/image_dataset.py,sha256=REGEomCmt0IFcjxYWtziELJFBoVnfR_TDFtct3IGR8U,4520
9
- radnn/data/sample_set.py,sha256=rvRtS7EqLFVF4Hf6qmIuxE-fatFiqWbETnh5RWqVj5E,6685
10
- radnn/data/sequence_dataset.py,sha256=DZAFgatzpf86nI62TJV5limYP3dP_z30UgWV2dYTDgc,6209
11
- radnn/data/preprocess/__init__.py,sha256=6JTaWzzeXAbIXkH8O9JDawtObutCyXQjHEZdlofSics,74
12
- radnn/data/preprocess/normalizer.py,sha256=7ZD1Z2_nW8KAG7cJ1RCYn-TMzVcW7dqWLTAjSPzMXo8,5444
13
- radnn/data/preprocess/standardizer.py,sha256=tzH3aJ8seTw-UwxnAb0Z6eAkW5iPu1c12_Kenuv7X2Q,5019
14
- radnn/evaluation/__init__.py,sha256=7dXDyJfOpSAr7G8jfDofsW4YEHNElCTTyMXuLCtpoOI,59
15
- radnn/evaluation/evaluate_classification.py,sha256=Iiv0aZcIEzVMg8BNNxyNzl7g23SdMiENQxeEKep8Cpg,5497
16
- radnn/experiment/__init__.py,sha256=8gxrFS4bG7rg2kgrDEhemJgDbO-5KhBYc4owJZ-S--k,247
17
- radnn/experiment/ml_experiment.py,sha256=FPxOlzNLyDEqFBAyCc7zMrc26pQwr5grwbMCBsL89L8,17861
18
- radnn/experiment/ml_experiment_config.py,sha256=YFLaSpz8UPs_JZC_hPkZAUOfelLmmr1cAlgRfbL3TEs,9785
19
- radnn/experiment/ml_experiment_env.py,sha256=vF5sDLzIyLwme82VI4aKgmRxly-31THZyEc0dFof9dg,11206
20
- radnn/experiment/ml_experiment_store.py,sha256=qeujLZJ-qGoBlyib3BukT4PBiioaPm4L1X24aXQ7_yg,398
21
- radnn/learn/__init__.py,sha256=gF-5pD1OxrxhOeO7G7wbpr37LRjGkT71PY78Li3bBJU,252
22
- radnn/learn/keras_learning_rate_scheduler.py,sha256=l0c53dtq1W5oclXDLxXzUlmBG_hzO-19EFRw3518PJs,1156
23
- radnn/learn/keras_optimization_algorithm.py,sha256=ff3S_3CJ2t0N4_TZiGDpiAhExquRsqAGZDc42werGJo,1686
24
- radnn/learn/learning_algorithm.py,sha256=dRr3QWvY2kXIaEADKTFhEjLw8w99rv4HcgKk-sQ8-d4,1420
25
- radnn/learn/state/__init__.py,sha256=zExYBp7mkQlzDZX3jnzYa5piwOEFxUwe6ZvKI6IiE6o,117
26
- radnn/learn/state/keras_best_state_saver.py,sha256=ep9QP7bZqmN8XmSzUpRXuBh6ccrbhFdFL4p5c3pg3MA,883
27
- radnn/plots/__init__.py,sha256=dVd7QDrkD_fBUag4Kz3yTnPvBxaBgpDt16bbbNlqLKw,286
28
- radnn/plots/plot_auto_multi_image.py,sha256=0-Bmk3aqeO6AzxC2GEycsx6Wp0sByVZdX4NUp-_OnYA,4507
29
- radnn/plots/plot_confusion_matrix.py,sha256=KWW5k7-gaLPXO4oQBnzwAwgI-rvPOmqw8uiZbFlmU5o,2625
30
- radnn/plots/plot_learning_curve.py,sha256=tgx3vAm4rg5qScqxLQ2T82BqrRWjiYaIKgLQp5Y19cQ,3480
31
- radnn/plots/plot_multi_scatter.py,sha256=-VgSwi7knYTNrdW86RGon0MZ_r0JDoiWP9F_gWIvTuo,4797
32
- radnn/plots/plot_roc.py,sha256=iyOnhux2qFEs7W-szEOCg2VCkcnBEaOJxZkWWYuSnCQ,3493
33
- radnn/plots/plot_voronoi_2d.py,sha256=Kq3ZaLhLaFHQAurhFKNy7NNuIm3RArCk_WxPT8Ftxek,4409
34
- radnn/system/__init__.py,sha256=uJLg56njcLtaRO0Kyudat055DGxqWsLMvrn9P8_Rt6A,119
35
- radnn/system/filestore.py,sha256=gNESaiJNwdrFbkzcbkSv-O4V8vrBagOSR90WcFueNsA,8977
36
- radnn/system/filesystem.py,sha256=Q9eydbKF2syFax6D82kgcEaj6_h-rVgxLAs_6mm2JIc,5566
37
- radnn/system/tee_logger.py,sha256=WcyIJiW851PP6Jk7SyCHj63BEt7HnWa5-GJtw1CjGHE,2629
38
- radnn/system/files/__init__.py,sha256=u2oGHNKM362JwqrDgwmWTAiisL067h6H9uu-d0iTBks,169
39
- radnn/system/files/csvfile.py,sha256=9uKqmCdqLAKomANejcSruHle1r3gVdByQb1I2otLcMs,2246
40
- radnn/system/files/fileobject.py,sha256=qT9qzpH6YFSIzaKfILxhpaQ1P2o2tqRh9J5J2L_Kp8Y,3851
41
- radnn/system/files/imgfile.py,sha256=HxvvittOUG1mmIp-Bg8vHnLPtRYD-N4nE86G0Rcys6M,2242
42
- radnn/system/files/jsonfile.py,sha256=1IgfK0j58RjvkV7pw7Z5oR49W071OmsMceX7F4w0MZw,3291
43
- radnn/system/files/picklefile.py,sha256=0BFiYzr6BbGWMXyQCMjYHa_GlW8nEZ95CQtn7lpH254,5526
44
- radnn/system/files/textfile.py,sha256=r7FZ1pdFGYxKrQ_kgkEK35GIqRU8k_MjdB0OrDd5m0o,2891
45
- radnn/system/hosts/__init__.py,sha256=k2gkMJhe96Nf-V2ex6jZqmCRX9vA_K6gFB8J8Ii9ahc,261
46
- radnn/system/hosts/colab_host.py,sha256=tAuLn9gTkX9cCSEmm7sG1JmCtNIgFlASwBt2olHUSe4,2434
47
- radnn/system/hosts/linux_host.py,sha256=TZ-5JEZV0WNEB5trTbRWM0REhpuK5oYxoLodKKqhm9s,57
48
- radnn/system/hosts/windows_host.py,sha256=u4IvgfFoKWdrFy0hYG__AoxfEJYHF4-ISNXTCJ5uN8I,2257
49
- radnn-0.0.7.2.dist-info/LICENSE.txt,sha256=vYtt_GDvm_yW65X9YMBOOu8Vqc9SAvqH94TbfBc2ckU,1106
50
- radnn-0.0.7.2.dist-info/METADATA,sha256=vKGKKwUbqHlvphHOT0M2mllslbeZjScHXv5l1oIuYvY,2863
51
- radnn-0.0.7.2.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
52
- radnn-0.0.7.2.dist-info/top_level.txt,sha256=FKlLIm6gRAeZlRzs-HCBJAB1q9ELJ7MgaL-qqFuPo6M,6
53
- radnn-0.0.7.2.dist-info/RECORD,,
File without changes