r5py 1.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- r5py/__init__.py +27 -0
- r5py/__main__.py +3 -0
- r5py/r5/__init__.py +39 -0
- r5py/r5/access_leg.py +12 -0
- r5py/r5/base_travel_time_matrix.py +255 -0
- r5py/r5/detailed_itineraries.py +226 -0
- r5py/r5/direct_leg.py +38 -0
- r5py/r5/egress_leg.py +12 -0
- r5py/r5/elevation_cost_function.py +50 -0
- r5py/r5/elevation_model.py +89 -0
- r5py/r5/file_storage.py +82 -0
- r5py/r5/isochrones.py +345 -0
- r5py/r5/regional_task.py +600 -0
- r5py/r5/scenario.py +36 -0
- r5py/r5/street_layer.py +90 -0
- r5py/r5/street_segment.py +39 -0
- r5py/r5/transfer_leg.py +12 -0
- r5py/r5/transit_layer.py +87 -0
- r5py/r5/transit_leg.py +12 -0
- r5py/r5/transport_mode.py +148 -0
- r5py/r5/transport_network.py +299 -0
- r5py/r5/travel_time_matrix.py +186 -0
- r5py/r5/trip.py +97 -0
- r5py/r5/trip_leg.py +204 -0
- r5py/r5/trip_planner.py +576 -0
- r5py/util/__init__.py +31 -0
- r5py/util/camel_to_snake_case.py +25 -0
- r5py/util/classpath.py +95 -0
- r5py/util/config.py +176 -0
- r5py/util/contains_gtfs_data.py +46 -0
- r5py/util/data_validation.py +28 -0
- r5py/util/environment.py +32 -0
- r5py/util/exceptions.py +43 -0
- r5py/util/file_digest.py +40 -0
- r5py/util/good_enough_equidistant_crs.py +73 -0
- r5py/util/jvm.py +138 -0
- r5py/util/memory_footprint.py +178 -0
- r5py/util/parse_int_date.py +24 -0
- r5py/util/sample_data_set.py +76 -0
- r5py/util/snake_to_camel_case.py +16 -0
- r5py/util/spatially_clustered_geodataframe.py +66 -0
- r5py/util/validating_requests_session.py +58 -0
- r5py/util/warnings.py +7 -0
- r5py/util/working_copy.py +42 -0
- r5py-1.1.0.dist-info/METADATA +176 -0
- r5py-1.1.0.dist-info/RECORD +49 -0
- r5py-1.1.0.dist-info/WHEEL +5 -0
- r5py-1.1.0.dist-info/licenses/LICENSE +3 -0
- r5py-1.1.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,89 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
"""Load a digital elevation model and apply it to an r5py.TransportNetwork."""
|
|
5
|
+
|
|
6
|
+
import rasterio
|
|
7
|
+
|
|
8
|
+
from .elevation_cost_function import ElevationCostFunction
|
|
9
|
+
from .file_storage import FileStorage
|
|
10
|
+
from ..util import WorkingCopy
|
|
11
|
+
|
|
12
|
+
import com.conveyal.analysis
|
|
13
|
+
import com.conveyal.r5
|
|
14
|
+
|
|
15
|
+
__all__ = ["ElevationModel"]
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class ElevationModel:
|
|
19
|
+
"""Load a digital elevation model and apply it to an r5py.TransportNetwork."""
|
|
20
|
+
|
|
21
|
+
def __init__(
|
|
22
|
+
self,
|
|
23
|
+
elevation_model,
|
|
24
|
+
elevation_cost_function=ElevationCostFunction.TOBLER,
|
|
25
|
+
):
|
|
26
|
+
"""
|
|
27
|
+
Load an elevation model.
|
|
28
|
+
|
|
29
|
+
Arguments
|
|
30
|
+
---------
|
|
31
|
+
elevation_model : str | pathlib.Path
|
|
32
|
+
file path to a digital elevation model in TIF format,
|
|
33
|
+
single-band, the value of which is the elevation in metres
|
|
34
|
+
elevation_cost_function : r5py.ElevationCostFunction
|
|
35
|
+
which algorithm to use to compute the added effort and travel time
|
|
36
|
+
of slopes
|
|
37
|
+
"""
|
|
38
|
+
elevation_model = WorkingCopy(elevation_model)
|
|
39
|
+
elevation_model = self._convert_tiff_to_format_readable_by_r5(elevation_model)
|
|
40
|
+
|
|
41
|
+
# instantiate an com.conveyal.file.FileStorage singleton
|
|
42
|
+
com.conveyal.analysis.components.WorkerComponents.fileStorage = FileStorage()
|
|
43
|
+
|
|
44
|
+
self._elevation_model = com.conveyal.r5.analyst.scenario.RasterCost()
|
|
45
|
+
self._elevation_model.dataSourceId = f"{elevation_model.with_suffix('')}"
|
|
46
|
+
self._elevation_model.costFunction = elevation_cost_function
|
|
47
|
+
|
|
48
|
+
def apply_to(self, transport_network):
|
|
49
|
+
"""
|
|
50
|
+
Add the costs associated with elevation traversal to a transport network.
|
|
51
|
+
|
|
52
|
+
Arguments
|
|
53
|
+
---------
|
|
54
|
+
transport_network : r5py.TransportNetwork
|
|
55
|
+
The transport network to which to add slope costs
|
|
56
|
+
"""
|
|
57
|
+
self._elevation_model.resolve(transport_network)
|
|
58
|
+
self._elevation_model.apply(transport_network)
|
|
59
|
+
|
|
60
|
+
@staticmethod
|
|
61
|
+
def _convert_tiff_to_format_readable_by_r5(tiff):
|
|
62
|
+
# javax.imagio does not allow all compression/predictor
|
|
63
|
+
# combinations of TIFFs
|
|
64
|
+
# to work around it, convert the input to a format known to work.
|
|
65
|
+
|
|
66
|
+
input_tiff = tiff.with_stem(f".{tiff.stem}")
|
|
67
|
+
output_tiff = tiff.with_suffix(".tif")
|
|
68
|
+
tiff.rename(input_tiff)
|
|
69
|
+
|
|
70
|
+
with rasterio.open(input_tiff) as source:
|
|
71
|
+
metadata = source.profile
|
|
72
|
+
metadata.update(
|
|
73
|
+
{
|
|
74
|
+
"compress": "LZW",
|
|
75
|
+
"predictor": "2",
|
|
76
|
+
}
|
|
77
|
+
)
|
|
78
|
+
|
|
79
|
+
# rasterio warns if these are in invalid combinations,
|
|
80
|
+
# let it choose itself
|
|
81
|
+
del metadata["blockxsize"]
|
|
82
|
+
del metadata["blockysize"]
|
|
83
|
+
del metadata["tiled"]
|
|
84
|
+
|
|
85
|
+
with rasterio.open(output_tiff, "w", **metadata) as destination:
|
|
86
|
+
destination.write(source.read())
|
|
87
|
+
input_tiff.unlink()
|
|
88
|
+
|
|
89
|
+
return output_tiff
|
r5py/r5/file_storage.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
"""A thin layer around com.conveyal.r5.file.FileStorage."""
|
|
5
|
+
|
|
6
|
+
import jpype
|
|
7
|
+
|
|
8
|
+
from ..util import start_jvm
|
|
9
|
+
|
|
10
|
+
import com.conveyal.file
|
|
11
|
+
import java.io.File
|
|
12
|
+
|
|
13
|
+
__all__ = ["FileStorage"]
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
start_jvm()
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
@jpype.JImplements(com.conveyal.file.FileStorage)
|
|
20
|
+
class FileStorage:
|
|
21
|
+
"""A thin layer around com.conveyal.r5.file.FileStorage."""
|
|
22
|
+
|
|
23
|
+
@jpype.JOverride
|
|
24
|
+
def moveIntoStorage(self, *args):
|
|
25
|
+
"""Not implemented."""
|
|
26
|
+
pass
|
|
27
|
+
|
|
28
|
+
@jpype.JOverride
|
|
29
|
+
def getFile(self, file_storage_key):
|
|
30
|
+
"""
|
|
31
|
+
Return a java.io.File for the file identified by file_storage_key.
|
|
32
|
+
|
|
33
|
+
Arguments
|
|
34
|
+
---------
|
|
35
|
+
file_storage_key : com.conveyal.r5.file.FileStorageKey
|
|
36
|
+
An R5 object referencing a certain file
|
|
37
|
+
|
|
38
|
+
Returns
|
|
39
|
+
-------
|
|
40
|
+
java.io.File
|
|
41
|
+
The file identified by file_storage_key
|
|
42
|
+
"""
|
|
43
|
+
return java.io.File(file_storage_key.path)
|
|
44
|
+
|
|
45
|
+
@jpype.JOverride
|
|
46
|
+
def getURL(self, file_storage_key):
|
|
47
|
+
"""
|
|
48
|
+
Return an URL for the file identified by file_storage_key.
|
|
49
|
+
|
|
50
|
+
Arguments
|
|
51
|
+
---------
|
|
52
|
+
file_storage_key : com.conveyal.r5.file.FileStorageKey
|
|
53
|
+
An R5 object referencing a certain file
|
|
54
|
+
|
|
55
|
+
Returns
|
|
56
|
+
-------
|
|
57
|
+
str
|
|
58
|
+
An imaginary URL pointing to the file identified by file_storage_key
|
|
59
|
+
"""
|
|
60
|
+
return f"file://{file_storage_key.path}"
|
|
61
|
+
|
|
62
|
+
@jpype.JOverride
|
|
63
|
+
def delete(self, *args):
|
|
64
|
+
"""Not implemented."""
|
|
65
|
+
pass
|
|
66
|
+
|
|
67
|
+
@jpype.JOverride
|
|
68
|
+
def exists(self, file_storage_key):
|
|
69
|
+
"""
|
|
70
|
+
Check whether the file identified by file_storage_key exists.
|
|
71
|
+
|
|
72
|
+
Arguments
|
|
73
|
+
---------
|
|
74
|
+
file_storage_key : com.conveyal.r5.file.FileStorageKey
|
|
75
|
+
An R5 object referencing a certain file
|
|
76
|
+
|
|
77
|
+
Returns
|
|
78
|
+
-------
|
|
79
|
+
bool
|
|
80
|
+
Whether or not the file identified by file_storage_key exists
|
|
81
|
+
"""
|
|
82
|
+
return self.getFile(file_storage_key).exists()
|
r5py/r5/isochrones.py
ADDED
|
@@ -0,0 +1,345 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
"""Compute polygons of equal travel time from a destination."""
|
|
5
|
+
|
|
6
|
+
import datetime
|
|
7
|
+
import warnings
|
|
8
|
+
|
|
9
|
+
import geohexgrid
|
|
10
|
+
import geopandas
|
|
11
|
+
import pandas
|
|
12
|
+
import pyproj
|
|
13
|
+
import shapely
|
|
14
|
+
import simplification.cutil
|
|
15
|
+
|
|
16
|
+
from .base_travel_time_matrix import BaseTravelTimeMatrix
|
|
17
|
+
from .transport_mode import TransportMode
|
|
18
|
+
from .travel_time_matrix import TravelTimeMatrix
|
|
19
|
+
from ..util import GoodEnoughEquidistantCrs, SpatiallyClusteredGeoDataFrame
|
|
20
|
+
|
|
21
|
+
__all__ = ["Isochrones"]
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
EMPTY_POINT = shapely.Point()
|
|
25
|
+
R5_CRS = "EPSG:4326"
|
|
26
|
+
|
|
27
|
+
CONCAVE_HULL_BUFFER_SIZE = 20.0 # metres
|
|
28
|
+
CONCAVE_HULL_RATIO = 0.3
|
|
29
|
+
|
|
30
|
+
VERY_SMALL_BUFFER_SIZE = 0.001 # turn points into polygons
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
class Isochrones(BaseTravelTimeMatrix):
|
|
34
|
+
"""Compute polygons of equal travel time from a destination."""
|
|
35
|
+
|
|
36
|
+
_r5py_attributes = BaseTravelTimeMatrix._r5py_attributes + [
|
|
37
|
+
"_isochrones",
|
|
38
|
+
"isochrones",
|
|
39
|
+
"point_grid_resolution",
|
|
40
|
+
"point_grid_sample_ratio",
|
|
41
|
+
]
|
|
42
|
+
|
|
43
|
+
def __init__(
|
|
44
|
+
self,
|
|
45
|
+
transport_network,
|
|
46
|
+
origins,
|
|
47
|
+
isochrones=pandas.timedelta_range( # noqa: B008
|
|
48
|
+
start=datetime.timedelta(minutes=0), # noqa: B008
|
|
49
|
+
end=datetime.timedelta(hours=1), # noqa: B008
|
|
50
|
+
freq=datetime.timedelta(minutes=15), # noqa: B008
|
|
51
|
+
),
|
|
52
|
+
point_grid_resolution=100,
|
|
53
|
+
point_grid_sample_ratio=1.0,
|
|
54
|
+
**kwargs,
|
|
55
|
+
):
|
|
56
|
+
"""
|
|
57
|
+
Compute polygons of equal travel time from one or more destinations.
|
|
58
|
+
|
|
59
|
+
``r5py.Isochrones`` are child classes of ``geopandas.GeoDataFrame`` and
|
|
60
|
+
support all of their methods and properties, see
|
|
61
|
+
https://geopandas.org/en/stable/docs.html
|
|
62
|
+
|
|
63
|
+
Arguments
|
|
64
|
+
---------
|
|
65
|
+
transport_network : r5py.TransportNetwork | tuple(str, list(str), dict)
|
|
66
|
+
The transport network to route on. This can either be a readily
|
|
67
|
+
initialised r5py.TransportNetwork or a tuple of the parameters
|
|
68
|
+
passed to ``TransportNetwork.__init__()``: the path to an OpenStreetMap
|
|
69
|
+
extract in PBF format, a list of zero of more paths to GTFS transport
|
|
70
|
+
schedule files, and a dict with ``build_config`` options.
|
|
71
|
+
origins : geopandas.GeoDataFrame | shapely.Point
|
|
72
|
+
Place(s) to find a route _from_
|
|
73
|
+
Must be/have a point geometry. If multiple origin points are passed,
|
|
74
|
+
isochrones will be computed as minimum travel time from any of them.
|
|
75
|
+
isochrones : pandas.TimedeltaIndex | collections.abc.Iterable[int]
|
|
76
|
+
For which interval to compute isochrone polygons. An iterable of
|
|
77
|
+
integers is interpreted as minutes.
|
|
78
|
+
point_grid_resolution : int
|
|
79
|
+
Distance in meters between points in the regular grid of points laid
|
|
80
|
+
over the transport network’s extent that is used to compute
|
|
81
|
+
isochrones. Increase this value for performance, decrease it for
|
|
82
|
+
precision.
|
|
83
|
+
point_grid_sample_ratio : float
|
|
84
|
+
Share of points of the point grid that are used in computation,
|
|
85
|
+
ranging from 0.01 to 1.0.
|
|
86
|
+
Increase this value for performance, decrease it for precision.
|
|
87
|
+
**kwargs : mixed
|
|
88
|
+
Any arguments than can be passed to r5py.RegionalTask:
|
|
89
|
+
``departure``, ``departure_time_window``, ``percentiles``,
|
|
90
|
+
``transport_modes``, ``access_modes``, ``egress_modes``,
|
|
91
|
+
``max_time``, ``max_time_walking``, ``max_time_cycling``,
|
|
92
|
+
``max_time_driving``, ``speed_cycling``, ``speed_walking``,
|
|
93
|
+
``max_public_transport_rides``, ``max_bicycle_traffic_stress`` Note
|
|
94
|
+
that not all arguments might make sense in this context, and the
|
|
95
|
+
underlying R5 engine might ignore some of them. If percentiles are
|
|
96
|
+
specified, the lowest one will be used for isochrone computation.
|
|
97
|
+
"""
|
|
98
|
+
super().__init__(transport_network, **kwargs)
|
|
99
|
+
|
|
100
|
+
self.EQUIDISTANT_CRS = GoodEnoughEquidistantCrs(self.transport_network.extent)
|
|
101
|
+
|
|
102
|
+
if isinstance(origins, shapely.Geometry):
|
|
103
|
+
origins = geopandas.GeoDataFrame(
|
|
104
|
+
{
|
|
105
|
+
"id": [
|
|
106
|
+
"origin",
|
|
107
|
+
],
|
|
108
|
+
"geometry": [
|
|
109
|
+
origins,
|
|
110
|
+
],
|
|
111
|
+
},
|
|
112
|
+
crs=R5_CRS,
|
|
113
|
+
)
|
|
114
|
+
self.origins = origins
|
|
115
|
+
self.isochrones = isochrones
|
|
116
|
+
|
|
117
|
+
self.point_grid_resolution = point_grid_resolution
|
|
118
|
+
self.point_grid_sample_ratio = max(0.01, min(1.0, point_grid_sample_ratio))
|
|
119
|
+
|
|
120
|
+
travel_times = TravelTimeMatrix(
|
|
121
|
+
transport_network,
|
|
122
|
+
origins=self.origins,
|
|
123
|
+
destinations=self.destinations,
|
|
124
|
+
max_time=self.isochrones.max(),
|
|
125
|
+
**kwargs,
|
|
126
|
+
)
|
|
127
|
+
|
|
128
|
+
data = self._compute_isochrones_from_travel_times(travel_times)
|
|
129
|
+
|
|
130
|
+
with warnings.catch_warnings():
|
|
131
|
+
warnings.filterwarnings(
|
|
132
|
+
"ignore",
|
|
133
|
+
message=(
|
|
134
|
+
"You are adding a column named 'geometry' to a GeoDataFrame "
|
|
135
|
+
"constructed without an active geometry column"
|
|
136
|
+
),
|
|
137
|
+
category=FutureWarning,
|
|
138
|
+
)
|
|
139
|
+
for column in data.columns:
|
|
140
|
+
self[column] = data[column]
|
|
141
|
+
self.set_geometry("geometry")
|
|
142
|
+
|
|
143
|
+
del self.transport_network
|
|
144
|
+
|
|
145
|
+
def _compute_isochrones_from_travel_times(self, travel_times):
|
|
146
|
+
travel_times = travel_times.dropna().groupby("to_id").min().reset_index()
|
|
147
|
+
|
|
148
|
+
if self.request.percentiles == [50]:
|
|
149
|
+
travel_time_column = "travel_time"
|
|
150
|
+
else:
|
|
151
|
+
travel_time_column = f"travel_time_p{self.request.percentiles[0]:d}"
|
|
152
|
+
|
|
153
|
+
isochrones = {
|
|
154
|
+
"travel_time": [],
|
|
155
|
+
"geometry": [],
|
|
156
|
+
}
|
|
157
|
+
|
|
158
|
+
for isochrone in self.isochrones:
|
|
159
|
+
reached_nodes = (
|
|
160
|
+
self.destinations.set_index("id")
|
|
161
|
+
.join(
|
|
162
|
+
travel_times[
|
|
163
|
+
travel_times[travel_time_column]
|
|
164
|
+
<= (isochrone.total_seconds() / 60)
|
|
165
|
+
].set_index("to_id"),
|
|
166
|
+
how="inner",
|
|
167
|
+
)
|
|
168
|
+
.reset_index()
|
|
169
|
+
)
|
|
170
|
+
|
|
171
|
+
# isochrone polygons might be disjoint (e.g., around metro stops)
|
|
172
|
+
if not reached_nodes.empty:
|
|
173
|
+
reached_nodes = SpatiallyClusteredGeoDataFrame(
|
|
174
|
+
reached_nodes, eps=(2.0 * self.point_grid_resolution)
|
|
175
|
+
).to_crs(self.EQUIDISTANT_CRS)
|
|
176
|
+
isochrone_polygons = pandas.concat(
|
|
177
|
+
[
|
|
178
|
+
(
|
|
179
|
+
reached_nodes[reached_nodes["cluster"] != -1]
|
|
180
|
+
.dissolve(by="cluster")
|
|
181
|
+
.concave_hull(ratio=CONCAVE_HULL_RATIO)
|
|
182
|
+
.buffer(VERY_SMALL_BUFFER_SIZE)
|
|
183
|
+
),
|
|
184
|
+
(
|
|
185
|
+
reached_nodes[reached_nodes["cluster"] == -1].buffer(
|
|
186
|
+
VERY_SMALL_BUFFER_SIZE
|
|
187
|
+
)
|
|
188
|
+
),
|
|
189
|
+
]
|
|
190
|
+
).union_all()
|
|
191
|
+
|
|
192
|
+
isochrones["travel_time"].append(isochrone)
|
|
193
|
+
isochrones["geometry"].append(isochrone_polygons)
|
|
194
|
+
|
|
195
|
+
isochrones = geopandas.GeoDataFrame(
|
|
196
|
+
isochrones, geometry="geometry", crs=self.EQUIDISTANT_CRS
|
|
197
|
+
)
|
|
198
|
+
|
|
199
|
+
# clip smaller isochrones by larger isochrones
|
|
200
|
+
# (concave_hull’s ratio parameter depends on input shapes and does not
|
|
201
|
+
# produce the same results, e.g., around bridges or at the coast line)
|
|
202
|
+
for row in range(len(isochrones) - 2, 0, -1):
|
|
203
|
+
isochrones.loc[row, "geometry"] = shapely.intersection(
|
|
204
|
+
isochrones.loc[row, "geometry"], isochrones.loc[row + 1, "geometry"]
|
|
205
|
+
)
|
|
206
|
+
|
|
207
|
+
isochrones["geometry"] = (
|
|
208
|
+
isochrones["geometry"]
|
|
209
|
+
.buffer(CONCAVE_HULL_BUFFER_SIZE)
|
|
210
|
+
.boundary.apply(
|
|
211
|
+
lambda geometry: (
|
|
212
|
+
geometry
|
|
213
|
+
if isinstance(geometry, shapely.MultiLineString)
|
|
214
|
+
else shapely.MultiLineString([geometry])
|
|
215
|
+
)
|
|
216
|
+
)
|
|
217
|
+
.apply(
|
|
218
|
+
lambda multilinestring: (
|
|
219
|
+
shapely.MultiLineString(
|
|
220
|
+
[
|
|
221
|
+
simplification.cutil.simplify_coords_vwp(
|
|
222
|
+
linestring.coords,
|
|
223
|
+
self.point_grid_resolution * 5.0,
|
|
224
|
+
)
|
|
225
|
+
for linestring in multilinestring.geoms
|
|
226
|
+
]
|
|
227
|
+
)
|
|
228
|
+
)
|
|
229
|
+
)
|
|
230
|
+
.to_crs(R5_CRS)
|
|
231
|
+
)
|
|
232
|
+
|
|
233
|
+
return isochrones
|
|
234
|
+
|
|
235
|
+
@property
|
|
236
|
+
def destinations(self):
|
|
237
|
+
"""A regular grid of points covering the range of the chosen transport mode."""
|
|
238
|
+
try:
|
|
239
|
+
return self._destinations
|
|
240
|
+
except AttributeError:
|
|
241
|
+
destinations = self._regular_point_grid
|
|
242
|
+
destinations["geometry"] = self.transport_network.snap_to_network(
|
|
243
|
+
destinations["geometry"]
|
|
244
|
+
)
|
|
245
|
+
destinations = destinations[destinations["geometry"] != EMPTY_POINT]
|
|
246
|
+
destinations["geometry"] = destinations["geometry"].normalize()
|
|
247
|
+
destinations = destinations.drop_duplicates()
|
|
248
|
+
|
|
249
|
+
# with snapping, sometimes we end up with clumps of points
|
|
250
|
+
# below, we try to form clusters, from all clusters we retain
|
|
251
|
+
# one geometry, only
|
|
252
|
+
destinations = SpatiallyClusteredGeoDataFrame(
|
|
253
|
+
destinations, eps=(0.5 * self.point_grid_resolution)
|
|
254
|
+
)
|
|
255
|
+
destinations = pandas.concat(
|
|
256
|
+
[
|
|
257
|
+
(
|
|
258
|
+
destinations[destinations["cluster"] != -1]
|
|
259
|
+
.groupby("cluster")
|
|
260
|
+
.first()
|
|
261
|
+
.set_crs(R5_CRS)
|
|
262
|
+
),
|
|
263
|
+
destinations[destinations["cluster"] == -1],
|
|
264
|
+
]
|
|
265
|
+
)[["id", "geometry"]].copy()
|
|
266
|
+
|
|
267
|
+
if self.point_grid_sample_ratio < 1.0:
|
|
268
|
+
destinations = destinations.sample(frac=self.point_grid_sample_ratio)
|
|
269
|
+
|
|
270
|
+
self._destinations = destinations
|
|
271
|
+
|
|
272
|
+
return destinations
|
|
273
|
+
|
|
274
|
+
@destinations.setter
|
|
275
|
+
def destinations(self, destinations):
|
|
276
|
+
# https://bugs.python.org/issue14965
|
|
277
|
+
super(self.__class__, self.__class__).destinations.__set__(self, destinations)
|
|
278
|
+
|
|
279
|
+
@property
|
|
280
|
+
def isochrones(self):
|
|
281
|
+
"""
|
|
282
|
+
Compute isochrones for these travel times.
|
|
283
|
+
|
|
284
|
+
pandas.TimedeltaIndex | collections.abc.Iterable[int]
|
|
285
|
+
An iterable of integers is interpreted as minutes.
|
|
286
|
+
"""
|
|
287
|
+
try:
|
|
288
|
+
return self._isochrones
|
|
289
|
+
except AttributeError:
|
|
290
|
+
raise
|
|
291
|
+
|
|
292
|
+
@isochrones.setter
|
|
293
|
+
def isochrones(self, isochrones):
|
|
294
|
+
if not isinstance(isochrones, pandas.TimedeltaIndex):
|
|
295
|
+
isochrones = pandas.to_timedelta(isochrones, unit="minutes")
|
|
296
|
+
try:
|
|
297
|
+
# do not compute for 0 travel time
|
|
298
|
+
isochrones = isochrones.drop(datetime.timedelta(0))
|
|
299
|
+
except KeyError:
|
|
300
|
+
pass
|
|
301
|
+
self._isochrones = isochrones
|
|
302
|
+
|
|
303
|
+
@property
|
|
304
|
+
def _regular_point_grid(self):
|
|
305
|
+
extent = shapely.ops.transform(
|
|
306
|
+
pyproj.Transformer.from_crs(
|
|
307
|
+
R5_CRS,
|
|
308
|
+
self.EQUIDISTANT_CRS,
|
|
309
|
+
always_xy=True,
|
|
310
|
+
).transform,
|
|
311
|
+
self.transport_network.extent,
|
|
312
|
+
)
|
|
313
|
+
|
|
314
|
+
grid = geohexgrid.make_grid_from_bounds(
|
|
315
|
+
*extent.bounds,
|
|
316
|
+
self.point_grid_resolution,
|
|
317
|
+
crs=self.EQUIDISTANT_CRS,
|
|
318
|
+
)
|
|
319
|
+
grid["geometry"] = grid["geometry"].centroid
|
|
320
|
+
grid["id"] = grid.index
|
|
321
|
+
grid = grid[["id", "geometry"]].to_crs(R5_CRS)
|
|
322
|
+
|
|
323
|
+
# for walking and cycling, we can clip the extent to an area reachable
|
|
324
|
+
# by the (well-defined) travel speeds:
|
|
325
|
+
if set(self.request.transport_modes) <= set(
|
|
326
|
+
(TransportMode.WALK, TransportMode.BICYCLE)
|
|
327
|
+
):
|
|
328
|
+
if TransportMode.WALK in self.request.transport_modes:
|
|
329
|
+
speed = self.request.speed_walking
|
|
330
|
+
if TransportMode.BICYCLE in self.request.transport_modes:
|
|
331
|
+
speed = self.request.speed_cycling
|
|
332
|
+
|
|
333
|
+
speed = speed * (1000.0 / 3600.0) * 1.1 # km/h -> m/s, plus a bit of buffer
|
|
334
|
+
|
|
335
|
+
grid = grid.clip(
|
|
336
|
+
(
|
|
337
|
+
pandas.concat([self.origins] * 2) # workaround until
|
|
338
|
+
# https://github.com/pyproj4/pyproj/issues/1309 is fixed
|
|
339
|
+
.to_crs(self.EQUIDISTANT_CRS)
|
|
340
|
+
.buffer(speed * max(self.isochrones).total_seconds())
|
|
341
|
+
.to_crs(R5_CRS)
|
|
342
|
+
)
|
|
343
|
+
)
|
|
344
|
+
|
|
345
|
+
return grid.copy()
|