quraite 0.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (49) hide show
  1. quraite/__init__.py +3 -0
  2. quraite/adapters/__init__.py +134 -0
  3. quraite/adapters/agno_adapter.py +159 -0
  4. quraite/adapters/base.py +123 -0
  5. quraite/adapters/bedrock_agents_adapter.py +343 -0
  6. quraite/adapters/flowise_adapter.py +275 -0
  7. quraite/adapters/google_adk_adapter.py +209 -0
  8. quraite/adapters/http_adapter.py +239 -0
  9. quraite/adapters/langflow_adapter.py +192 -0
  10. quraite/adapters/langgraph_adapter.py +304 -0
  11. quraite/adapters/langgraph_server_adapter.py +252 -0
  12. quraite/adapters/n8n_adapter.py +220 -0
  13. quraite/adapters/openai_agents_adapter.py +269 -0
  14. quraite/adapters/pydantic_ai_adapter.py +312 -0
  15. quraite/adapters/smolagents_adapter.py +152 -0
  16. quraite/logger.py +62 -0
  17. quraite/schema/__init__.py +0 -0
  18. quraite/schema/message.py +54 -0
  19. quraite/schema/response.py +16 -0
  20. quraite/serve/__init__.py +1 -0
  21. quraite/serve/cloudflared.py +210 -0
  22. quraite/serve/local_agent.py +360 -0
  23. quraite/traces/traces_adk_openinference.json +379 -0
  24. quraite/traces/traces_agno_multi_agent.json +669 -0
  25. quraite/traces/traces_agno_openinference.json +321 -0
  26. quraite/traces/traces_crewai_openinference.json +155 -0
  27. quraite/traces/traces_langgraph_openinference.json +349 -0
  28. quraite/traces/traces_langgraph_openinference_multi_agent.json +2705 -0
  29. quraite/traces/traces_langgraph_traceloop.json +510 -0
  30. quraite/traces/traces_openai_agents_multi_agent_1.json +402 -0
  31. quraite/traces/traces_openai_agents_openinference.json +341 -0
  32. quraite/traces/traces_pydantic_openinference.json +286 -0
  33. quraite/traces/traces_pydantic_openinference_multi_agent_1.json +399 -0
  34. quraite/traces/traces_pydantic_openinference_multi_agent_2.json +398 -0
  35. quraite/traces/traces_smol_agents_openinference.json +397 -0
  36. quraite/traces/traces_smol_agents_tool_calling_openinference.json +704 -0
  37. quraite/tracing/__init__.py +24 -0
  38. quraite/tracing/constants.py +16 -0
  39. quraite/tracing/span_exporter.py +115 -0
  40. quraite/tracing/span_processor.py +49 -0
  41. quraite/tracing/tool_extractors.py +290 -0
  42. quraite/tracing/trace.py +494 -0
  43. quraite/tracing/types.py +179 -0
  44. quraite/tracing/utils.py +170 -0
  45. quraite/utils/__init__.py +0 -0
  46. quraite/utils/json_utils.py +269 -0
  47. quraite-0.0.1.dist-info/METADATA +44 -0
  48. quraite-0.0.1.dist-info/RECORD +49 -0
  49. quraite-0.0.1.dist-info/WHEEL +4 -0
@@ -0,0 +1,220 @@
1
+ import asyncio
2
+ import json
3
+ import uuid
4
+ from typing import Any, Dict, List, Optional, Union
5
+
6
+ import aiohttp
7
+
8
+ from quraite.adapters.base import BaseAdapter
9
+ from quraite.logger import get_logger
10
+ from quraite.schema.message import (
11
+ AgentMessage,
12
+ AssistantMessage,
13
+ MessageContentText,
14
+ ToolCall,
15
+ ToolMessage,
16
+ )
17
+ from quraite.schema.response import AgentInvocationResponse
18
+
19
+ logger = get_logger(__name__)
20
+
21
+
22
+ class N8nAdapter(BaseAdapter):
23
+ def __init__(
24
+ self, api_url: str, headers: Optional[Dict[str, str]] = None, timeout: int = 60
25
+ ):
26
+ self.api_url = api_url
27
+ self.headers = headers or {}
28
+ self.timeout = timeout
29
+
30
+ if "Content-Type" not in self.headers:
31
+ self.headers["Content-Type"] = "application/json"
32
+ logger.info(
33
+ "N8nAdapter initialized (api_url=%s, timeout=%s)", self.api_url, timeout
34
+ )
35
+
36
+ def _convert_api_output_to_messages(
37
+ self,
38
+ response: Dict[str, Any],
39
+ ) -> List[AgentMessage]:
40
+ logger.debug(
41
+ "Converting n8n response (steps=%d)",
42
+ len(response[0].get("intermediateSteps", [])),
43
+ )
44
+ messages: List[AgentMessage] = []
45
+ output = response[0]["output"]
46
+ intermediateSteps = response[0]["intermediateSteps"]
47
+
48
+ if not intermediateSteps:
49
+ return [
50
+ AssistantMessage(
51
+ content=[MessageContentText(type="text", text=output)],
52
+ )
53
+ ]
54
+
55
+ def flush_messages(tool_calls_dict: Dict[str, Any]):
56
+ nonlocal messages
57
+ tool_calls_list: List[ToolCall] = []
58
+ tool_results: List[ToolMessage] = []
59
+
60
+ for tool_call_id, tool_call_dict in tool_calls_dict.items():
61
+ tool_name = tool_call_dict.get("name", "")
62
+ tool_args = tool_call_dict.get("arguments", {})
63
+ if not isinstance(tool_args, dict):
64
+ tool_args = {}
65
+
66
+ tool_calls_list.append(
67
+ ToolCall(
68
+ id=tool_call_id,
69
+ name=tool_name,
70
+ arguments=tool_args,
71
+ )
72
+ )
73
+
74
+ tool_result = tool_call_dict.get("result", "")
75
+ tool_results.append(
76
+ ToolMessage(
77
+ tool_name=tool_name,
78
+ tool_call_id=tool_call_id,
79
+ content=[
80
+ MessageContentText(type="text", text=str(tool_result))
81
+ ],
82
+ )
83
+ )
84
+
85
+ if tool_calls_list:
86
+ messages.append(AssistantMessage(tool_calls=tool_calls_list))
87
+
88
+ messages.extend(tool_results)
89
+
90
+ current_step_tool_calls_dict: Dict[str, Any] = {}
91
+ for step in intermediateSteps:
92
+ message_log = step.get("action", {}).get("messageLog", {})
93
+ if message_log:
94
+ tool_calls = message_log[0].get("kwargs", {}).get("tool_calls", [])
95
+
96
+ if tool_calls:
97
+ # this condition means that we are at the start of a new step,
98
+ # so we need to flush the previous step's tool calls and tool results
99
+ if current_step_tool_calls_dict:
100
+ flush_messages(current_step_tool_calls_dict)
101
+ current_step_tool_calls_dict = {}
102
+
103
+ for tool_call in tool_calls:
104
+ current_step_tool_calls_dict[tool_call.get("id")] = {
105
+ "name": tool_call.get("name"),
106
+ "arguments": tool_call.get("args"),
107
+ }
108
+
109
+ tool_id = step.get("action", {}).get("toolCallId")
110
+ if tool_id not in current_step_tool_calls_dict:
111
+ continue
112
+
113
+ current_step_tool_calls_dict[tool_id]["result"] = step.get("observation")
114
+
115
+ # flush the last step's tool calls and tool results
116
+ flush_messages(current_step_tool_calls_dict)
117
+ messages.append(
118
+ AssistantMessage(
119
+ content=[MessageContentText(type="text", text=output)],
120
+ )
121
+ )
122
+
123
+ logger.info(
124
+ "n8n conversion produced %d messages (final_output_length=%d)",
125
+ len(messages),
126
+ len(str(output)),
127
+ )
128
+ return messages
129
+
130
+ def _prepare_input(self, input: List[AgentMessage]) -> str:
131
+ logger.debug("Preparing n8n input from %d messages", len(input))
132
+ if not input or input[-1].role != "user":
133
+ logger.error("n8n input missing user message")
134
+ raise ValueError("No user message found in the input")
135
+
136
+ last_user_message = input[-1]
137
+ if not last_user_message.content:
138
+ logger.error("n8n user message missing content")
139
+ raise ValueError("User message has no content")
140
+
141
+ text_content = None
142
+ for content_item in last_user_message.content:
143
+ if content_item.type == "text" and content_item.text:
144
+ text_content = content_item.text
145
+ break
146
+
147
+ if not text_content:
148
+ logger.error("n8n user message missing text content")
149
+ raise ValueError("No text content found in user message")
150
+
151
+ logger.debug("Prepared n8n input (text_length=%d)", len(text_content))
152
+ return text_content
153
+
154
+ async def _aapi_call(
155
+ self,
156
+ query: str,
157
+ sessionId: str,
158
+ ) -> Dict[str, Any]:
159
+ payload = {
160
+ "query": query,
161
+ "sessionId": sessionId,
162
+ }
163
+ logger.debug(
164
+ "Calling n8n API (sessionId=%s, query_length=%d)", sessionId, len(query)
165
+ )
166
+ async with aiohttp.ClientSession() as session:
167
+ try:
168
+ async with session.post(
169
+ self.api_url,
170
+ headers=self.headers,
171
+ json=payload,
172
+ timeout=aiohttp.ClientTimeout(total=self.timeout),
173
+ ) as response:
174
+ response.raise_for_status()
175
+ logger.info("n8n API call succeeded (status=%s)", response.status)
176
+ return await response.json()
177
+
178
+ except (aiohttp.ClientError, asyncio.TimeoutError) as e:
179
+ logger.exception("n8n API request failed")
180
+ raise aiohttp.ClientError(f"Async API request failed: {str(e)}") from e
181
+
182
+ except json.JSONDecodeError as e:
183
+ logger.exception("n8n API response decoding failed")
184
+ raise ValueError(f"Failed to decode JSON response: {e}") from e
185
+
186
+ async def ainvoke(
187
+ self,
188
+ input: List[AgentMessage],
189
+ session_id: Union[str, None],
190
+ ) -> AgentInvocationResponse:
191
+ logger.info(
192
+ "n8n ainvoke called (session_id=%s, input_messages=%d)",
193
+ session_id,
194
+ len(input),
195
+ )
196
+ agent_input = self._prepare_input(input)
197
+
198
+ try:
199
+ agent_output = await self._aapi_call(
200
+ query=agent_input,
201
+ sessionId=session_id if session_id else uuid.uuid4(),
202
+ )
203
+ logger.debug(
204
+ "n8n API returned payload keys: %s", list(agent_output[0].keys())
205
+ )
206
+ except Exception as e:
207
+ logger.exception("Error calling n8n endpoint")
208
+ raise RuntimeError(f"Error calling n8n endpoint: {e}") from e
209
+
210
+ try:
211
+ agent_trajectory = self._convert_api_output_to_messages(agent_output)
212
+ logger.info(
213
+ "n8n conversion produced %d trajectory messages", len(agent_trajectory)
214
+ )
215
+ return AgentInvocationResponse(
216
+ agent_trajectory=agent_trajectory,
217
+ )
218
+ except Exception as e:
219
+ logger.exception("Error processing n8n response")
220
+ raise RuntimeError(f"Error processing n8n response: {e}") from e
@@ -0,0 +1,269 @@
1
+ import json
2
+ import uuid
3
+ from typing import Dict, List, Optional, Union
4
+
5
+ from agents import (
6
+ Agent,
7
+ MessageOutputItem,
8
+ ReasoningItem,
9
+ RunItem,
10
+ Runner,
11
+ SQLiteSession,
12
+ ToolCallItem,
13
+ ToolCallOutputItem,
14
+ TResponseInputItem,
15
+ )
16
+ from agents.memory import Session
17
+ from opentelemetry.trace import TracerProvider
18
+
19
+ from quraite.adapters.base import BaseAdapter
20
+ from quraite.logger import get_logger
21
+ from quraite.schema.message import (
22
+ AgentMessage,
23
+ AssistantMessage,
24
+ MessageContentReasoning,
25
+ MessageContentText,
26
+ ToolCall,
27
+ ToolMessage,
28
+ )
29
+ from quraite.schema.response import AgentInvocationResponse
30
+ from quraite.tracing.constants import QURAITE_ADAPTER_TRACE_PREFIX, Framework
31
+ from quraite.tracing.trace import AgentSpan, AgentTrace
32
+
33
+ logger = get_logger(__name__)
34
+
35
+
36
+ class OpenaiAgentsAdapter(BaseAdapter):
37
+ def __init__(
38
+ self,
39
+ agent: Agent,
40
+ agent_name: str = "OpenAI Agents",
41
+ tracer_provider: Optional[TracerProvider] = None,
42
+ ):
43
+ self.agent = agent
44
+ self.sessions: Dict[str, Session] = {}
45
+ self._init_tracing(tracer_provider, required=False)
46
+ self.agent_name = agent_name
47
+ logger.info(
48
+ "OpenaiAgentsAdapter initialized (agent_name=%s, tracing_enabled=%s)",
49
+ agent_name,
50
+ bool(tracer_provider),
51
+ )
52
+
53
+ def _convert_run_items_to_messages(
54
+ self, run_items: List[RunItem]
55
+ ) -> List[AgentMessage]:
56
+ logger.debug("Converting %d OpenAI run items to messages", len(run_items))
57
+ messages: List[AgentMessage] = []
58
+ text_content: List[MessageContentText] = []
59
+ reasoning_content: List[MessageContentReasoning] = []
60
+ tool_calls: List[ToolCall] = []
61
+
62
+ def flush_assistant_message():
63
+ nonlocal text_content, reasoning_content, tool_calls
64
+ if text_content or reasoning_content or tool_calls:
65
+ content = []
66
+ if text_content:
67
+ content.extend(text_content)
68
+ if reasoning_content:
69
+ content.extend(reasoning_content)
70
+ messages.append(
71
+ AssistantMessage(
72
+ content=content if content else None,
73
+ tool_calls=tool_calls if tool_calls else None,
74
+ )
75
+ )
76
+ text_content = []
77
+ reasoning_content = []
78
+ tool_calls = []
79
+
80
+ for item in run_items:
81
+ if item.type in [
82
+ "handoff_call_item",
83
+ "handoff_output_item",
84
+ "mcp_list_tools_item",
85
+ "mcp_approval_request_item",
86
+ "mcp_approval_response_item",
87
+ ]:
88
+ continue
89
+
90
+ if isinstance(item, MessageOutputItem):
91
+ text_parts = []
92
+ for content_item in item.raw_item.content:
93
+ if hasattr(content_item, "text"):
94
+ text_parts.append(content_item.text)
95
+ if text_parts:
96
+ text_content.append(
97
+ MessageContentText(type="text", text="".join(text_parts))
98
+ )
99
+
100
+ elif isinstance(item, ReasoningItem):
101
+ if item.raw_item.summary:
102
+ summary = ""
103
+ for summary_item in item.raw_item.summary:
104
+ summary += summary_item.text
105
+ summary += "\n"
106
+ reasoning_content.append(
107
+ MessageContentReasoning(type="reasoning", reasoning=summary)
108
+ )
109
+
110
+ elif isinstance(item, ToolCallItem):
111
+ raw = item.raw_item
112
+ arguments = None
113
+ if hasattr(raw, "arguments"):
114
+ try:
115
+ arguments = (
116
+ json.loads(raw.arguments)
117
+ if isinstance(raw.arguments, str)
118
+ else raw.arguments
119
+ )
120
+ except:
121
+ arguments = {"raw": str(raw.arguments)}
122
+ tool_calls.append(
123
+ ToolCall(
124
+ id=getattr(raw, "call_id", ""),
125
+ name=getattr(raw, "name", ""),
126
+ arguments=arguments or {},
127
+ )
128
+ )
129
+
130
+ elif isinstance(item, ToolCallOutputItem):
131
+ flush_assistant_message()
132
+ tool_result = json.dumps({"output": item.output})
133
+ messages.append(
134
+ ToolMessage(
135
+ tool_call_id=item.raw_item.get("call_id", ""),
136
+ content=[MessageContentText(type="text", text=tool_result)],
137
+ )
138
+ )
139
+ continue
140
+
141
+ flush_assistant_message()
142
+ logger.info("Converted OpenAI agent run into %d messages", len(messages))
143
+ return messages
144
+
145
+ def _prepare_input(self, input: List[AgentMessage]) -> str:
146
+ logger.debug("Preparing OpenAI input from %d messages", len(input))
147
+ if not input or input[-1].role != "user":
148
+ logger.error("OpenAI input missing user message")
149
+ raise ValueError("No user message found in the input")
150
+
151
+ last_user_message = input[-1]
152
+ if not last_user_message.content:
153
+ logger.error("OpenAI user message missing content")
154
+ raise ValueError("User message has no content")
155
+
156
+ text_content = None
157
+ for content_item in last_user_message.content:
158
+ if content_item.type == "text" and content_item.text:
159
+ text_content = content_item.text
160
+ break
161
+
162
+ if not text_content:
163
+ logger.error("OpenAI user message missing text content")
164
+ raise ValueError("No text content found in user message")
165
+
166
+ logger.debug("Prepared OpenAI input (text_length=%d)", len(text_content))
167
+ return text_content
168
+
169
+ async def ainvoke(
170
+ self,
171
+ input: List[AgentMessage],
172
+ session_id: Union[str, None] = None,
173
+ ) -> AgentInvocationResponse:
174
+ """Asynchronous invocation method - invokes the OpenAI Agents agent and converts to List[AgentMessage]."""
175
+ try:
176
+ logger.info(
177
+ "OpenAI ainvoke called (session_id=%s, input_messages=%d)",
178
+ session_id,
179
+ len(input),
180
+ )
181
+ agent_input: Union[str, List[TResponseInputItem]] = self._prepare_input(
182
+ input
183
+ )
184
+
185
+ if session_id not in self.sessions:
186
+ self.sessions[session_id] = SQLiteSession(session_id=session_id)
187
+ session = self.sessions[session_id]
188
+
189
+ if self.tracer_provider:
190
+ return await self._ainvoke_with_tracing(agent_input, session)
191
+
192
+ return await self._ainvoke_without_tracing(agent_input, session)
193
+ except Exception as exc:
194
+ logger.exception("Error invoking OpenAI agent")
195
+ raise Exception(f"Error invoking Openai agent: {exc}") from exc
196
+
197
+ async def _ainvoke_with_tracing(
198
+ self,
199
+ agent_input: Union[str, List[TResponseInputItem]],
200
+ session: Session,
201
+ ) -> AgentInvocationResponse:
202
+ """Execute ainvoke with tracing enabled."""
203
+ adapter_trace_id = f"{QURAITE_ADAPTER_TRACE_PREFIX}-{uuid.uuid4()}"
204
+ logger.debug(
205
+ "Starting OpenAI traced invocation (trace_id=%s, session_id=%s)",
206
+ adapter_trace_id,
207
+ session.session_id if session else None,
208
+ )
209
+
210
+ with self.tracer.start_as_current_span(name=adapter_trace_id):
211
+ await Runner.run(
212
+ self.agent,
213
+ input=agent_input,
214
+ session=session,
215
+ )
216
+
217
+ trace_readable_spans = self.quraite_span_exporter.get_trace_by_testcase(
218
+ adapter_trace_id
219
+ )
220
+
221
+ if trace_readable_spans:
222
+ agent_trace = AgentTrace(
223
+ spans=[
224
+ AgentSpan.from_readable_oi_span(span)
225
+ for span in trace_readable_spans
226
+ ]
227
+ )
228
+ logger.info(
229
+ "OpenAI trace collected %d spans for trace_id=%s",
230
+ len(trace_readable_spans),
231
+ adapter_trace_id,
232
+ )
233
+ else:
234
+ logger.warning(
235
+ "No spans exported for OpenAI trace_id=%s",
236
+ adapter_trace_id,
237
+ )
238
+
239
+ return AgentInvocationResponse(
240
+ agent_trace=agent_trace,
241
+ agent_trajectory=agent_trace.to_agent_trajectory(
242
+ framework=Framework.OPENAI_AGENTS
243
+ ),
244
+ )
245
+
246
+ async def _ainvoke_without_tracing(
247
+ self,
248
+ agent_input: Union[str, List[TResponseInputItem]],
249
+ session: Session,
250
+ ) -> AgentInvocationResponse:
251
+ """Execute ainvoke without tracing."""
252
+ result = await Runner.run(
253
+ self.agent,
254
+ input=agent_input,
255
+ session=session,
256
+ )
257
+
258
+ try:
259
+ agent_trajectory = self._convert_run_items_to_messages(result.new_items)
260
+ logger.info(
261
+ "OpenAI agent produced %d trajectory messages (no tracing)",
262
+ len(agent_trajectory),
263
+ )
264
+ return AgentInvocationResponse(
265
+ agent_trajectory=agent_trajectory,
266
+ )
267
+ except Exception as exc:
268
+ logger.exception("Error converting OpenAI run items to messages")
269
+ raise Exception(f"Error converting run items to messages: {exc}") from exc