quraite 0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- quraite/__init__.py +3 -0
- quraite/adapters/__init__.py +134 -0
- quraite/adapters/agno_adapter.py +159 -0
- quraite/adapters/base.py +123 -0
- quraite/adapters/bedrock_agents_adapter.py +343 -0
- quraite/adapters/flowise_adapter.py +275 -0
- quraite/adapters/google_adk_adapter.py +209 -0
- quraite/adapters/http_adapter.py +239 -0
- quraite/adapters/langflow_adapter.py +192 -0
- quraite/adapters/langgraph_adapter.py +304 -0
- quraite/adapters/langgraph_server_adapter.py +252 -0
- quraite/adapters/n8n_adapter.py +220 -0
- quraite/adapters/openai_agents_adapter.py +269 -0
- quraite/adapters/pydantic_ai_adapter.py +312 -0
- quraite/adapters/smolagents_adapter.py +152 -0
- quraite/logger.py +62 -0
- quraite/schema/__init__.py +0 -0
- quraite/schema/message.py +54 -0
- quraite/schema/response.py +16 -0
- quraite/serve/__init__.py +1 -0
- quraite/serve/cloudflared.py +210 -0
- quraite/serve/local_agent.py +360 -0
- quraite/traces/traces_adk_openinference.json +379 -0
- quraite/traces/traces_agno_multi_agent.json +669 -0
- quraite/traces/traces_agno_openinference.json +321 -0
- quraite/traces/traces_crewai_openinference.json +155 -0
- quraite/traces/traces_langgraph_openinference.json +349 -0
- quraite/traces/traces_langgraph_openinference_multi_agent.json +2705 -0
- quraite/traces/traces_langgraph_traceloop.json +510 -0
- quraite/traces/traces_openai_agents_multi_agent_1.json +402 -0
- quraite/traces/traces_openai_agents_openinference.json +341 -0
- quraite/traces/traces_pydantic_openinference.json +286 -0
- quraite/traces/traces_pydantic_openinference_multi_agent_1.json +399 -0
- quraite/traces/traces_pydantic_openinference_multi_agent_2.json +398 -0
- quraite/traces/traces_smol_agents_openinference.json +397 -0
- quraite/traces/traces_smol_agents_tool_calling_openinference.json +704 -0
- quraite/tracing/__init__.py +24 -0
- quraite/tracing/constants.py +16 -0
- quraite/tracing/span_exporter.py +115 -0
- quraite/tracing/span_processor.py +49 -0
- quraite/tracing/tool_extractors.py +290 -0
- quraite/tracing/trace.py +494 -0
- quraite/tracing/types.py +179 -0
- quraite/tracing/utils.py +170 -0
- quraite/utils/__init__.py +0 -0
- quraite/utils/json_utils.py +269 -0
- quraite-0.0.1.dist-info/METADATA +44 -0
- quraite-0.0.1.dist-info/RECORD +49 -0
- quraite-0.0.1.dist-info/WHEEL +4 -0
|
@@ -0,0 +1,304 @@
|
|
|
1
|
+
import json
|
|
2
|
+
import uuid
|
|
3
|
+
from typing import Optional
|
|
4
|
+
|
|
5
|
+
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage, ToolMessage
|
|
6
|
+
from langgraph.graph.state import CompiledStateGraph
|
|
7
|
+
from opentelemetry.trace import TracerProvider
|
|
8
|
+
|
|
9
|
+
from quraite.adapters.base import BaseAdapter
|
|
10
|
+
from quraite.logger import get_logger
|
|
11
|
+
from quraite.schema.message import AgentMessage, AssistantMessage, MessageContentText
|
|
12
|
+
from quraite.schema.message import SystemMessage as QuraiteSystemMessage
|
|
13
|
+
from quraite.schema.message import ToolCall
|
|
14
|
+
from quraite.schema.message import ToolMessage as QuraiteToolMessage
|
|
15
|
+
from quraite.schema.message import UserMessage
|
|
16
|
+
from quraite.schema.response import AgentInvocationResponse
|
|
17
|
+
from quraite.tracing.constants import QURAITE_ADAPTER_TRACE_PREFIX, Framework
|
|
18
|
+
from quraite.tracing.trace import AgentSpan, AgentTrace
|
|
19
|
+
|
|
20
|
+
LangchainMessage = HumanMessage | SystemMessage | AIMessage | ToolMessage
|
|
21
|
+
|
|
22
|
+
logger = get_logger(__name__)
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
class LanggraphAdapter(BaseAdapter):
|
|
26
|
+
"""
|
|
27
|
+
LangGraph adapter wrapper that converts any LangGraph agent
|
|
28
|
+
to a standardized callable interface (invoke) and converts the output to List[AgentMessage].
|
|
29
|
+
|
|
30
|
+
This class wraps any LangGraph CompiledGraph and provides:
|
|
31
|
+
- Synchronous invocation via invoke()
|
|
32
|
+
- Asynchronous invocation via ainvoke()
|
|
33
|
+
- Automatic conversion to List[AgentMessage] format
|
|
34
|
+
"""
|
|
35
|
+
|
|
36
|
+
def __init__(
|
|
37
|
+
self,
|
|
38
|
+
agent_graph: CompiledStateGraph,
|
|
39
|
+
agent_name: str = "LangGraph Agent",
|
|
40
|
+
tracer_provider: Optional[TracerProvider] = None,
|
|
41
|
+
):
|
|
42
|
+
"""
|
|
43
|
+
Initialize with a pre-configured LangGraph agent
|
|
44
|
+
|
|
45
|
+
Args:
|
|
46
|
+
agent_graph: Any CompiledGraph from LangGraph (must have invoke/ainvoke methods)
|
|
47
|
+
agent_name: Name of the agent for trajectory metadata
|
|
48
|
+
"""
|
|
49
|
+
logger.debug("Initializing LanggraphAdapter with agent_name=%s", agent_name)
|
|
50
|
+
self.agent_graph = agent_graph
|
|
51
|
+
self.agent_name = agent_name
|
|
52
|
+
self._init_tracing(tracer_provider, required=False)
|
|
53
|
+
logger.info(
|
|
54
|
+
"LanggraphAdapter initialized successfully (tracing_enabled=%s)",
|
|
55
|
+
bool(tracer_provider),
|
|
56
|
+
)
|
|
57
|
+
|
|
58
|
+
def _prepare_input(
|
|
59
|
+
self, input: list[AgentMessage]
|
|
60
|
+
) -> dict[str, list[HumanMessage]]:
|
|
61
|
+
"""
|
|
62
|
+
Prepare input for LangGraph agent from List[Message].
|
|
63
|
+
|
|
64
|
+
Args:
|
|
65
|
+
input: List[AgentMessage] containing user_message
|
|
66
|
+
|
|
67
|
+
Returns:
|
|
68
|
+
Dictionary with 'messages' key containing the prepared UserMessage
|
|
69
|
+
"""
|
|
70
|
+
logger.debug("Preparing input from %d messages", len(input))
|
|
71
|
+
|
|
72
|
+
if not input or input[-1].role != "user":
|
|
73
|
+
logger.error(
|
|
74
|
+
"Invalid input: no user message found (input_length=%d)", len(input)
|
|
75
|
+
)
|
|
76
|
+
raise ValueError("No user message found in the input")
|
|
77
|
+
|
|
78
|
+
last_user_message = input[-1]
|
|
79
|
+
|
|
80
|
+
if not last_user_message.content:
|
|
81
|
+
logger.error("User message has no content")
|
|
82
|
+
raise ValueError("User message has no content")
|
|
83
|
+
|
|
84
|
+
text_content = next(
|
|
85
|
+
(
|
|
86
|
+
content_item.text
|
|
87
|
+
for content_item in last_user_message.content
|
|
88
|
+
if content_item.type == "text" and content_item.text
|
|
89
|
+
),
|
|
90
|
+
None,
|
|
91
|
+
)
|
|
92
|
+
|
|
93
|
+
if not text_content:
|
|
94
|
+
logger.error("No text content found in user message")
|
|
95
|
+
raise ValueError("No text content found in user message")
|
|
96
|
+
|
|
97
|
+
logger.debug("Prepared input with text_content length=%d", len(text_content))
|
|
98
|
+
return {"messages": [HumanMessage(content=text_content)]}
|
|
99
|
+
|
|
100
|
+
def _convert_langchain_messages_to_quraite_messages(
|
|
101
|
+
self,
|
|
102
|
+
messages: list[LangchainMessage],
|
|
103
|
+
) -> list[AgentMessage]:
|
|
104
|
+
logger.debug(
|
|
105
|
+
"Converting %d langchain messages to quraite format", len(messages)
|
|
106
|
+
)
|
|
107
|
+
converted_messages: list[AgentMessage] = []
|
|
108
|
+
|
|
109
|
+
for idx, msg in enumerate(messages):
|
|
110
|
+
match msg:
|
|
111
|
+
case SystemMessage():
|
|
112
|
+
logger.debug("Converting SystemMessage at index %d", idx)
|
|
113
|
+
converted_messages.append(
|
|
114
|
+
QuraiteSystemMessage(
|
|
115
|
+
content=[MessageContentText(type="text", text=msg.content)]
|
|
116
|
+
)
|
|
117
|
+
)
|
|
118
|
+
|
|
119
|
+
case HumanMessage():
|
|
120
|
+
logger.debug("Converting HumanMessage at index %d", idx)
|
|
121
|
+
converted_messages.append(
|
|
122
|
+
UserMessage(
|
|
123
|
+
content=[MessageContentText(type="text", text=msg.content)]
|
|
124
|
+
)
|
|
125
|
+
)
|
|
126
|
+
|
|
127
|
+
case AIMessage():
|
|
128
|
+
logger.debug(
|
|
129
|
+
"Converting AIMessage at index %d (has_tool_calls=%s)",
|
|
130
|
+
idx,
|
|
131
|
+
bool(msg.tool_calls),
|
|
132
|
+
)
|
|
133
|
+
text_content, tool_calls = self._extract_ai_message_content(msg)
|
|
134
|
+
converted_messages.append(
|
|
135
|
+
AssistantMessage(
|
|
136
|
+
content=text_content if text_content else None,
|
|
137
|
+
tool_calls=tool_calls if tool_calls else None,
|
|
138
|
+
)
|
|
139
|
+
)
|
|
140
|
+
|
|
141
|
+
case ToolMessage():
|
|
142
|
+
logger.debug(
|
|
143
|
+
"Converting ToolMessage at index %d (tool_call_id=%s)",
|
|
144
|
+
idx,
|
|
145
|
+
msg.tool_call_id,
|
|
146
|
+
)
|
|
147
|
+
if not msg.content:
|
|
148
|
+
tool_message_content = ""
|
|
149
|
+
elif isinstance(msg.content, str):
|
|
150
|
+
tool_message_content = msg.content
|
|
151
|
+
else:
|
|
152
|
+
tool_message_content = json.dumps(msg.content)
|
|
153
|
+
|
|
154
|
+
converted_messages.append(
|
|
155
|
+
QuraiteToolMessage(
|
|
156
|
+
tool_call_id=msg.tool_call_id,
|
|
157
|
+
content=[
|
|
158
|
+
MessageContentText(
|
|
159
|
+
type="text", text=tool_message_content
|
|
160
|
+
)
|
|
161
|
+
],
|
|
162
|
+
)
|
|
163
|
+
)
|
|
164
|
+
|
|
165
|
+
logger.info("Converted %d messages successfully", len(converted_messages))
|
|
166
|
+
return converted_messages
|
|
167
|
+
|
|
168
|
+
def _extract_ai_message_content(
|
|
169
|
+
self, msg: AIMessage
|
|
170
|
+
) -> tuple[list[MessageContentText], list[ToolCall]]:
|
|
171
|
+
text_content = []
|
|
172
|
+
|
|
173
|
+
if msg.content:
|
|
174
|
+
match msg.content:
|
|
175
|
+
case str(text):
|
|
176
|
+
text_content.append(MessageContentText(type="text", text=text))
|
|
177
|
+
case list():
|
|
178
|
+
text_content.extend(
|
|
179
|
+
MessageContentText(type="text", text=content.get("text"))
|
|
180
|
+
for content in msg.content
|
|
181
|
+
if isinstance(content, dict) and content.get("type") == "text"
|
|
182
|
+
)
|
|
183
|
+
|
|
184
|
+
tool_calls = []
|
|
185
|
+
if msg.tool_calls:
|
|
186
|
+
logger.debug("Extracting %d tool calls from AIMessage", len(msg.tool_calls))
|
|
187
|
+
tool_calls.extend(
|
|
188
|
+
ToolCall(
|
|
189
|
+
id=tool_call.get("id"), # type: ignore[union-attr]
|
|
190
|
+
name=tool_call.get("name"), # type: ignore[union-attr]
|
|
191
|
+
arguments=tool_call.get("args"), # type: ignore[union-attr]
|
|
192
|
+
)
|
|
193
|
+
for tool_call in msg.tool_calls
|
|
194
|
+
)
|
|
195
|
+
|
|
196
|
+
return text_content, tool_calls
|
|
197
|
+
|
|
198
|
+
async def ainvoke(
|
|
199
|
+
self,
|
|
200
|
+
input: list[AgentMessage],
|
|
201
|
+
session_id: str | None,
|
|
202
|
+
) -> AgentInvocationResponse:
|
|
203
|
+
"""
|
|
204
|
+
Asynchronous invocation method - invokes the LangGraph agent and converts the output to List[AgentMessage]
|
|
205
|
+
|
|
206
|
+
Args:
|
|
207
|
+
input: List[AgentMessage] containing user_message
|
|
208
|
+
session_id: Optional conversation ID for maintaining context
|
|
209
|
+
|
|
210
|
+
Returns:
|
|
211
|
+
List[AgentMessage] or AgentTrace - converted messages from the agent's response or trace
|
|
212
|
+
"""
|
|
213
|
+
logger.info(
|
|
214
|
+
"ainvoke called (session_id=%s, input_messages=%d)", session_id, len(input)
|
|
215
|
+
)
|
|
216
|
+
|
|
217
|
+
try:
|
|
218
|
+
agent_input = self._prepare_input(input)
|
|
219
|
+
config = {"configurable": {"thread_id": session_id}} if session_id else {}
|
|
220
|
+
|
|
221
|
+
if self.tracer_provider:
|
|
222
|
+
logger.debug("Invoking with tracing enabled")
|
|
223
|
+
return await self._ainvoke_with_tracing(agent_input, config)
|
|
224
|
+
|
|
225
|
+
logger.debug("Invoking without tracing")
|
|
226
|
+
return await self._ainvoke_without_tracing(agent_input, config)
|
|
227
|
+
|
|
228
|
+
except ValueError:
|
|
229
|
+
logger.exception("ValueError during ainvoke")
|
|
230
|
+
raise
|
|
231
|
+
except Exception:
|
|
232
|
+
logger.exception("Unexpected error during ainvoke")
|
|
233
|
+
raise
|
|
234
|
+
|
|
235
|
+
async def _ainvoke_with_tracing(
|
|
236
|
+
self,
|
|
237
|
+
agent_input: dict[str, list[HumanMessage]],
|
|
238
|
+
config: dict,
|
|
239
|
+
) -> AgentInvocationResponse:
|
|
240
|
+
"""Execute ainvoke with tracing enabled."""
|
|
241
|
+
adapter_trace_id = f"{QURAITE_ADAPTER_TRACE_PREFIX}-{uuid.uuid4()}"
|
|
242
|
+
logger.debug("Starting traced invocation (trace_id=%s)", adapter_trace_id)
|
|
243
|
+
|
|
244
|
+
with self.tracer.start_as_current_span(name=adapter_trace_id):
|
|
245
|
+
result = await self.agent_graph.ainvoke(agent_input, config=config)
|
|
246
|
+
|
|
247
|
+
trace_readable_spans = self.quraite_span_exporter.get_trace_by_testcase(
|
|
248
|
+
adapter_trace_id
|
|
249
|
+
)
|
|
250
|
+
|
|
251
|
+
if trace_readable_spans:
|
|
252
|
+
logger.info("Retrieved %d spans from trace", len(trace_readable_spans))
|
|
253
|
+
agent_trace = AgentTrace(
|
|
254
|
+
spans=[
|
|
255
|
+
AgentSpan.from_readable_oi_span(span)
|
|
256
|
+
for span in trace_readable_spans
|
|
257
|
+
]
|
|
258
|
+
)
|
|
259
|
+
|
|
260
|
+
trajectory = agent_trace.to_agent_trajectory(framework=Framework.LANGGRAPH)
|
|
261
|
+
logger.debug("Generated trajectory with %d messages", len(trajectory))
|
|
262
|
+
|
|
263
|
+
return AgentInvocationResponse(
|
|
264
|
+
agent_trace=agent_trace,
|
|
265
|
+
agent_trajectory=trajectory,
|
|
266
|
+
)
|
|
267
|
+
|
|
268
|
+
logger.warning("No trace spans found for trace_id=%s", adapter_trace_id)
|
|
269
|
+
return AgentInvocationResponse()
|
|
270
|
+
|
|
271
|
+
async def _ainvoke_without_tracing(
|
|
272
|
+
self,
|
|
273
|
+
agent_input: dict[str, list[HumanMessage]],
|
|
274
|
+
config: dict,
|
|
275
|
+
) -> AgentInvocationResponse:
|
|
276
|
+
"""Execute ainvoke without tracing."""
|
|
277
|
+
logger.debug("Starting non-traced invocation")
|
|
278
|
+
agent_messages = []
|
|
279
|
+
|
|
280
|
+
try:
|
|
281
|
+
async for event in self.agent_graph.astream(agent_input, config=config):
|
|
282
|
+
logger.debug(
|
|
283
|
+
"Received stream event with %d values", len(event.values())
|
|
284
|
+
)
|
|
285
|
+
for result in event.values():
|
|
286
|
+
if messages := result.get("messages"):
|
|
287
|
+
logger.debug("Processing %d messages from event", len(messages))
|
|
288
|
+
agent_messages.extend(messages)
|
|
289
|
+
|
|
290
|
+
logger.info(
|
|
291
|
+
"Streaming complete, received %d total messages", len(agent_messages)
|
|
292
|
+
)
|
|
293
|
+
|
|
294
|
+
agent_trajectory = self._convert_langchain_messages_to_quraite_messages(
|
|
295
|
+
agent_messages
|
|
296
|
+
)
|
|
297
|
+
|
|
298
|
+
return AgentInvocationResponse(
|
|
299
|
+
agent_trajectory=agent_trajectory,
|
|
300
|
+
)
|
|
301
|
+
|
|
302
|
+
except ValueError:
|
|
303
|
+
logger.exception("Error converting messages to List[AgentMessage]")
|
|
304
|
+
return AgentInvocationResponse()
|
|
@@ -0,0 +1,252 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import Annotated, Any, List, Optional, Union
|
|
4
|
+
|
|
5
|
+
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage, ToolMessage
|
|
6
|
+
from langgraph.pregel.remote import RemoteGraph
|
|
7
|
+
from langgraph_sdk import get_client, get_sync_client
|
|
8
|
+
from pydantic import Discriminator
|
|
9
|
+
|
|
10
|
+
from quraite.adapters.base import BaseAdapter
|
|
11
|
+
from quraite.logger import get_logger
|
|
12
|
+
from quraite.schema.message import AgentMessage, AssistantMessage, MessageContentText
|
|
13
|
+
from quraite.schema.message import SystemMessage as QuraiteSystemMessage
|
|
14
|
+
from quraite.schema.message import ToolCall, ToolMessage, UserMessage
|
|
15
|
+
from quraite.schema.response import AgentInvocationResponse
|
|
16
|
+
|
|
17
|
+
LangchainMessage = Annotated[
|
|
18
|
+
Union[HumanMessage, SystemMessage, AIMessage, ToolMessage],
|
|
19
|
+
Discriminator(discriminator="type"),
|
|
20
|
+
]
|
|
21
|
+
|
|
22
|
+
logger = get_logger(__name__)
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
class LanggraphServerAdapter(BaseAdapter):
|
|
26
|
+
"""Remote LangGraph server adapter based on langgraph-sdk.
|
|
27
|
+
|
|
28
|
+
Args:
|
|
29
|
+
base_url: The base URL of the LangGraph server
|
|
30
|
+
assistant_id: The ID of the assistant to invoke
|
|
31
|
+
**kwargs: Additional keyword arguments passed directly to
|
|
32
|
+
langgraph_sdk.get_client() and get_sync_client().
|
|
33
|
+
Common options include:
|
|
34
|
+
- api_key: API key for authentication
|
|
35
|
+
- headers: Additional HTTP headers
|
|
36
|
+
- timeout: Request timeout configuration
|
|
37
|
+
"""
|
|
38
|
+
|
|
39
|
+
def __init__(
|
|
40
|
+
self,
|
|
41
|
+
*,
|
|
42
|
+
base_url: str,
|
|
43
|
+
assistant_id: Optional[str] = None,
|
|
44
|
+
graph_name: Optional[str] = None,
|
|
45
|
+
**kwargs,
|
|
46
|
+
) -> None:
|
|
47
|
+
self.base_url = base_url
|
|
48
|
+
self.assistant_id = assistant_id
|
|
49
|
+
self.graph_name = graph_name
|
|
50
|
+
|
|
51
|
+
logger.debug(
|
|
52
|
+
"Initializing LanggraphServerAdapter (base_url=%s, assistant_id=%s, graph_name=%s)",
|
|
53
|
+
base_url,
|
|
54
|
+
assistant_id,
|
|
55
|
+
graph_name,
|
|
56
|
+
)
|
|
57
|
+
try:
|
|
58
|
+
sync_client = get_sync_client(url=self.base_url, **kwargs)
|
|
59
|
+
async_client = get_client(url=self.base_url, **kwargs)
|
|
60
|
+
if self.assistant_id:
|
|
61
|
+
self.remote_graph = RemoteGraph(
|
|
62
|
+
self.assistant_id,
|
|
63
|
+
url=self.base_url,
|
|
64
|
+
sync_client=sync_client,
|
|
65
|
+
client=async_client,
|
|
66
|
+
)
|
|
67
|
+
else:
|
|
68
|
+
self.remote_graph = RemoteGraph(
|
|
69
|
+
self.graph_name,
|
|
70
|
+
url=self.base_url,
|
|
71
|
+
sync_client=sync_client,
|
|
72
|
+
client=async_client,
|
|
73
|
+
)
|
|
74
|
+
except Exception as exc:
|
|
75
|
+
raise RuntimeError(
|
|
76
|
+
f"Failed to initialize LangGraph RemoteGraph for {self.base_url}: {exc}"
|
|
77
|
+
)
|
|
78
|
+
logger.info(
|
|
79
|
+
"LanggraphServerAdapter initialized (assistant_id=%s, graph_name=%s)",
|
|
80
|
+
self.assistant_id,
|
|
81
|
+
self.graph_name,
|
|
82
|
+
)
|
|
83
|
+
|
|
84
|
+
def _prepare_input(self, input: List[AgentMessage]) -> Any:
|
|
85
|
+
"""
|
|
86
|
+
Prepare input for LangGraph agent from List[AgentMessage].
|
|
87
|
+
|
|
88
|
+
Args:
|
|
89
|
+
input: List[AgentMessage] containing user_message
|
|
90
|
+
|
|
91
|
+
Returns:
|
|
92
|
+
Dict with messages list containing user_message
|
|
93
|
+
"""
|
|
94
|
+
logger.debug("Preparing Langgraph server input from %d messages", len(input))
|
|
95
|
+
if not input or input[-1].role != "user":
|
|
96
|
+
logger.error("Langgraph server input missing user message")
|
|
97
|
+
raise ValueError("No user message found in the input")
|
|
98
|
+
|
|
99
|
+
last_user_message = input[-1]
|
|
100
|
+
# Check if content list is not empty and has text
|
|
101
|
+
if not last_user_message.content:
|
|
102
|
+
logger.error("Langgraph server user message missing content")
|
|
103
|
+
raise ValueError("User message has no content")
|
|
104
|
+
|
|
105
|
+
# Find the first text content item
|
|
106
|
+
text_content = None
|
|
107
|
+
for content_item in last_user_message.content:
|
|
108
|
+
if content_item.type == "text" and content_item.text:
|
|
109
|
+
text_content = content_item.text
|
|
110
|
+
break
|
|
111
|
+
|
|
112
|
+
if not text_content:
|
|
113
|
+
logger.error("Langgraph server user message missing text content")
|
|
114
|
+
raise ValueError("No text content found in user message")
|
|
115
|
+
|
|
116
|
+
logger.debug(
|
|
117
|
+
"Prepared Langgraph server input (text_length=%d)", len(text_content)
|
|
118
|
+
)
|
|
119
|
+
return {"messages": [HumanMessage(content=text_content).model_dump()]}
|
|
120
|
+
|
|
121
|
+
def _convert_langchain_messages_to_quraite_messages(
|
|
122
|
+
self,
|
|
123
|
+
messages: List[dict],
|
|
124
|
+
) -> List[AgentMessage]:
|
|
125
|
+
logger.debug(
|
|
126
|
+
"Converting %d Langgraph server messages to quraite format", len(messages)
|
|
127
|
+
)
|
|
128
|
+
converted_messages: List[AgentMessage] = []
|
|
129
|
+
|
|
130
|
+
for msg in messages:
|
|
131
|
+
if msg.get("type") == "system":
|
|
132
|
+
converted_messages.append(
|
|
133
|
+
QuraiteSystemMessage(
|
|
134
|
+
content=[
|
|
135
|
+
MessageContentText(type="text", text=msg.get("content", ""))
|
|
136
|
+
],
|
|
137
|
+
)
|
|
138
|
+
)
|
|
139
|
+
|
|
140
|
+
elif msg.get("type") == "human":
|
|
141
|
+
converted_messages.append(
|
|
142
|
+
UserMessage(
|
|
143
|
+
content=[
|
|
144
|
+
MessageContentText(type="text", text=msg.get("content", ""))
|
|
145
|
+
],
|
|
146
|
+
)
|
|
147
|
+
)
|
|
148
|
+
|
|
149
|
+
elif msg.get("type") == "ai":
|
|
150
|
+
text_content: List[MessageContentText] = []
|
|
151
|
+
tool_calls_list: List[ToolCall] = []
|
|
152
|
+
|
|
153
|
+
# Extract text content - sometimes it's a string, sometimes a list of dicts
|
|
154
|
+
content = msg.get("content")
|
|
155
|
+
if isinstance(content, str) and content:
|
|
156
|
+
text_content.append(MessageContentText(type="text", text=content))
|
|
157
|
+
elif isinstance(content, list):
|
|
158
|
+
for content_item in content:
|
|
159
|
+
if isinstance(content_item, dict):
|
|
160
|
+
if content_item.get("type") == "text" and content_item.get(
|
|
161
|
+
"text"
|
|
162
|
+
):
|
|
163
|
+
text_content.append(
|
|
164
|
+
MessageContentText(
|
|
165
|
+
type="text", text=content_item.get("text")
|
|
166
|
+
)
|
|
167
|
+
)
|
|
168
|
+
|
|
169
|
+
# Extract tool calls if present
|
|
170
|
+
if msg.get("tool_calls"):
|
|
171
|
+
for tool_call in msg.get("tool_calls"):
|
|
172
|
+
if isinstance(tool_call, dict):
|
|
173
|
+
tool_calls_list.append(
|
|
174
|
+
ToolCall(
|
|
175
|
+
id=tool_call.get("id", ""),
|
|
176
|
+
name=tool_call.get("name", ""),
|
|
177
|
+
arguments=tool_call.get("args", {}),
|
|
178
|
+
)
|
|
179
|
+
)
|
|
180
|
+
|
|
181
|
+
converted_messages.append(
|
|
182
|
+
AssistantMessage(
|
|
183
|
+
content=text_content if text_content else None,
|
|
184
|
+
tool_calls=tool_calls_list if tool_calls_list else None,
|
|
185
|
+
)
|
|
186
|
+
)
|
|
187
|
+
|
|
188
|
+
elif msg.get("type") == "tool":
|
|
189
|
+
tool_content = msg.get("content", "")
|
|
190
|
+
converted_messages.append(
|
|
191
|
+
ToolMessage(
|
|
192
|
+
tool_call_id=msg.get("tool_call_id", ""),
|
|
193
|
+
content=[
|
|
194
|
+
MessageContentText(type="text", text=str(tool_content))
|
|
195
|
+
],
|
|
196
|
+
)
|
|
197
|
+
)
|
|
198
|
+
|
|
199
|
+
else:
|
|
200
|
+
# Skip unsupported message types
|
|
201
|
+
continue
|
|
202
|
+
|
|
203
|
+
logger.info(
|
|
204
|
+
"Langgraph server message conversion produced %d messages",
|
|
205
|
+
len(converted_messages),
|
|
206
|
+
)
|
|
207
|
+
return converted_messages
|
|
208
|
+
|
|
209
|
+
async def ainvoke(
|
|
210
|
+
self,
|
|
211
|
+
input: List[AgentMessage],
|
|
212
|
+
session_id: Annotated[Union[str, None], "Thread ID used by LangGraph API"],
|
|
213
|
+
) -> AgentInvocationResponse:
|
|
214
|
+
agent_messages = []
|
|
215
|
+
agent_input = self._prepare_input(input)
|
|
216
|
+
if session_id:
|
|
217
|
+
config = {"configurable": {"thread_id": session_id}}
|
|
218
|
+
else:
|
|
219
|
+
config = {}
|
|
220
|
+
|
|
221
|
+
try:
|
|
222
|
+
logger.info("Langgraph server ainvoke called (session_id=%s)", session_id)
|
|
223
|
+
async for event in self.remote_graph.astream(agent_input, config=config):
|
|
224
|
+
for _, result in event.items():
|
|
225
|
+
if result.get("messages"):
|
|
226
|
+
logger.debug(
|
|
227
|
+
"Langgraph server received %d messages from stream chunk",
|
|
228
|
+
len(result.get("messages")),
|
|
229
|
+
)
|
|
230
|
+
agent_messages += result.get("messages")
|
|
231
|
+
|
|
232
|
+
except Exception as e:
|
|
233
|
+
logger.exception("Error invoking Langgraph remote graph")
|
|
234
|
+
raise RuntimeError(f"Error invoking LangGraph agent: {e}") from e
|
|
235
|
+
|
|
236
|
+
try:
|
|
237
|
+
# Convert to List[AgentMessage]
|
|
238
|
+
agent_trajectory = self._convert_langchain_messages_to_quraite_messages(
|
|
239
|
+
agent_messages
|
|
240
|
+
)
|
|
241
|
+
logger.info(
|
|
242
|
+
"Langgraph server ainvoke produced %d trajectory messages",
|
|
243
|
+
len(agent_trajectory),
|
|
244
|
+
)
|
|
245
|
+
|
|
246
|
+
return AgentInvocationResponse(
|
|
247
|
+
agent_trajectory=agent_trajectory,
|
|
248
|
+
)
|
|
249
|
+
|
|
250
|
+
except ValueError:
|
|
251
|
+
logger.exception("Langgraph server conversion to AgentMessage failed")
|
|
252
|
+
return AgentInvocationResponse()
|