pyxllib 0.3.197__py3-none-any.whl → 3.201.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (127) hide show
  1. pyxllib/__init__.py +14 -21
  2. pyxllib/algo/__init__.py +8 -8
  3. pyxllib/algo/disjoint.py +54 -54
  4. pyxllib/algo/geo.py +537 -541
  5. pyxllib/algo/intervals.py +964 -964
  6. pyxllib/algo/matcher.py +389 -389
  7. pyxllib/algo/newbie.py +166 -166
  8. pyxllib/algo/pupil.py +629 -629
  9. pyxllib/algo/shapelylib.py +67 -67
  10. pyxllib/algo/specialist.py +241 -241
  11. pyxllib/algo/stat.py +494 -494
  12. pyxllib/algo/treelib.py +145 -149
  13. pyxllib/algo/unitlib.py +62 -66
  14. pyxllib/autogui/__init__.py +5 -5
  15. pyxllib/autogui/activewin.py +246 -246
  16. pyxllib/autogui/all.py +9 -9
  17. pyxllib/autogui/autogui.py +846 -852
  18. pyxllib/autogui/uiautolib.py +362 -362
  19. pyxllib/autogui/virtualkey.py +102 -102
  20. pyxllib/autogui/wechat.py +827 -827
  21. pyxllib/autogui/wechat_msg.py +421 -421
  22. pyxllib/autogui/wxautolib.py +84 -84
  23. pyxllib/cv/__init__.py +5 -5
  24. pyxllib/cv/expert.py +267 -267
  25. pyxllib/cv/imfile.py +159 -159
  26. pyxllib/cv/imhash.py +39 -39
  27. pyxllib/cv/pupil.py +9 -9
  28. pyxllib/cv/rgbfmt.py +1525 -1525
  29. pyxllib/cv/slidercaptcha.py +137 -137
  30. pyxllib/cv/trackbartools.py +251 -251
  31. pyxllib/cv/xlcvlib.py +1040 -1040
  32. pyxllib/cv/xlpillib.py +423 -423
  33. pyxllib/data/echarts.py +236 -240
  34. pyxllib/data/jsonlib.py +85 -89
  35. pyxllib/data/oss.py +72 -72
  36. pyxllib/data/pglib.py +1111 -1127
  37. pyxllib/data/sqlite.py +568 -568
  38. pyxllib/data/sqllib.py +297 -297
  39. pyxllib/ext/JLineViewer.py +505 -505
  40. pyxllib/ext/__init__.py +6 -6
  41. pyxllib/ext/demolib.py +251 -246
  42. pyxllib/ext/drissionlib.py +277 -277
  43. pyxllib/ext/kq5034lib.py +12 -12
  44. pyxllib/ext/qt.py +449 -449
  45. pyxllib/ext/robustprocfile.py +493 -497
  46. pyxllib/ext/seleniumlib.py +76 -76
  47. pyxllib/ext/tk.py +173 -173
  48. pyxllib/ext/unixlib.py +821 -827
  49. pyxllib/ext/utools.py +345 -351
  50. pyxllib/ext/webhook.py +124 -119
  51. pyxllib/ext/win32lib.py +40 -40
  52. pyxllib/ext/wjxlib.py +91 -88
  53. pyxllib/ext/wpsapi.py +124 -124
  54. pyxllib/ext/xlwork.py +9 -9
  55. pyxllib/ext/yuquelib.py +1110 -1105
  56. pyxllib/file/__init__.py +17 -17
  57. pyxllib/file/docxlib.py +757 -761
  58. pyxllib/file/gitlib.py +309 -309
  59. pyxllib/file/libreoffice.py +165 -165
  60. pyxllib/file/movielib.py +144 -148
  61. pyxllib/file/newbie.py +10 -10
  62. pyxllib/file/onenotelib.py +1469 -1469
  63. pyxllib/file/packlib/__init__.py +330 -330
  64. pyxllib/file/packlib/zipfile.py +2441 -2441
  65. pyxllib/file/pdflib.py +422 -426
  66. pyxllib/file/pupil.py +185 -185
  67. pyxllib/file/specialist/__init__.py +681 -685
  68. pyxllib/file/specialist/dirlib.py +799 -799
  69. pyxllib/file/specialist/download.py +193 -193
  70. pyxllib/file/specialist/filelib.py +2825 -2829
  71. pyxllib/file/xlsxlib.py +3122 -3131
  72. pyxllib/file/xlsyncfile.py +341 -341
  73. pyxllib/prog/__init__.py +5 -5
  74. pyxllib/prog/cachetools.py +58 -64
  75. pyxllib/prog/deprecatedlib.py +233 -233
  76. pyxllib/prog/filelock.py +42 -42
  77. pyxllib/prog/ipyexec.py +253 -253
  78. pyxllib/prog/multiprogs.py +940 -940
  79. pyxllib/prog/newbie.py +451 -451
  80. pyxllib/prog/pupil.py +1208 -1197
  81. pyxllib/prog/sitepackages.py +33 -33
  82. pyxllib/prog/specialist/__init__.py +348 -391
  83. pyxllib/prog/specialist/bc.py +203 -203
  84. pyxllib/prog/specialist/browser.py +497 -497
  85. pyxllib/prog/specialist/common.py +347 -347
  86. pyxllib/prog/specialist/datetime.py +198 -198
  87. pyxllib/prog/specialist/tictoc.py +240 -240
  88. pyxllib/prog/specialist/xllog.py +180 -180
  89. pyxllib/prog/xlosenv.py +110 -108
  90. pyxllib/stdlib/__init__.py +17 -17
  91. pyxllib/stdlib/tablepyxl/__init__.py +10 -10
  92. pyxllib/stdlib/tablepyxl/style.py +303 -303
  93. pyxllib/stdlib/tablepyxl/tablepyxl.py +130 -130
  94. pyxllib/text/__init__.py +8 -8
  95. pyxllib/text/ahocorasick.py +36 -39
  96. pyxllib/text/airscript.js +754 -744
  97. pyxllib/text/charclasslib.py +121 -121
  98. pyxllib/text/jiebalib.py +267 -267
  99. pyxllib/text/jinjalib.py +27 -32
  100. pyxllib/text/jsa_ai_prompt.md +271 -271
  101. pyxllib/text/jscode.py +922 -922
  102. pyxllib/text/latex/__init__.py +158 -158
  103. pyxllib/text/levenshtein.py +303 -303
  104. pyxllib/text/nestenv.py +1215 -1215
  105. pyxllib/text/newbie.py +300 -300
  106. pyxllib/text/pupil/__init__.py +8 -8
  107. pyxllib/text/pupil/common.py +1121 -1121
  108. pyxllib/text/pupil/xlalign.py +326 -326
  109. pyxllib/text/pycode.py +47 -47
  110. pyxllib/text/specialist/__init__.py +8 -8
  111. pyxllib/text/specialist/common.py +112 -112
  112. pyxllib/text/specialist/ptag.py +186 -186
  113. pyxllib/text/spellchecker.py +172 -172
  114. pyxllib/text/templates/echart_base.html +10 -10
  115. pyxllib/text/templates/highlight_code.html +16 -16
  116. pyxllib/text/templates/latex_editor.html +102 -102
  117. pyxllib/text/vbacode.py +17 -17
  118. pyxllib/text/xmllib.py +741 -747
  119. pyxllib/xl.py +42 -39
  120. pyxllib/xlcv.py +17 -17
  121. pyxllib-3.201.1.dist-info/METADATA +296 -0
  122. pyxllib-3.201.1.dist-info/RECORD +125 -0
  123. {pyxllib-0.3.197.dist-info → pyxllib-3.201.1.dist-info}/licenses/LICENSE +190 -190
  124. pyxllib/ext/old.py +0 -663
  125. pyxllib-0.3.197.dist-info/METADATA +0 -48
  126. pyxllib-0.3.197.dist-info/RECORD +0 -126
  127. {pyxllib-0.3.197.dist-info → pyxllib-3.201.1.dist-info}/WHEEL +0 -0
pyxllib/ext/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
- #!/usr/bin/env python3
2
- # -*- coding: utf-8 -*-
3
- # @Author : 陈坤泽
4
- # @Email : 877362867@qq.com
5
- # @Date : 2018/09/19 19:41
6
-
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ # @Author : 陈坤泽
4
+ # @Email : 877362867@qq.com
5
+ # @Date : 2018/09/19 19:41
6
+
pyxllib/ext/demolib.py CHANGED
@@ -1,246 +1,251 @@
1
- #!/usr/bin/env python3
2
- # -*- coding: utf-8 -*-
3
- # @Author : 陈坤泽
4
- # @Email : 877362867@qq.com
5
- # @Date : 2020/03/16 09:19
6
-
7
-
8
- """一些python通用功能的性能测试
9
- 虽然其实大部分场合其实都是相通的
10
- 有时候test测试代码,其实也是演示如何使用的demo
11
-
12
- demo:示例代码,注重演示
13
- debug:调试代码,注重分析自己代码功能是否有bug
14
- test:测试代码,注重分析功能稳定性
15
- perf:性能测试,注重分析代码的运行效率
16
- """
17
-
18
- from pyxllib.xl import *
19
-
20
- ____stdlib = """
21
- 标准库相关
22
- """
23
-
24
-
25
- def test_re():
26
- """ 正则re模块相关功能测试
27
- """
28
- # 190103周四
29
- # py的正则[ ]语法,可以用连字符-匹配一个区间内的字符,
30
- # 例如数字0-9(你是不是蠢,不会用\d么),还有a-z、A-Z(\w),甚至①-⑩,但是一-十,注意'四'匹配不到
31
- dprint(re.sub(r'[一-十]', '', '一二三四五六七八九十'))
32
- # [05]demolib.py/98: re.sub(r'[一-十]', '', '一二三四五六七八九十')<str>='四'
33
-
34
- # 200319周四14:11,匹配顺序与内容有关,先出现的先匹配,而与正则里or语法参数顺序无关
35
- print(re.findall(r'(<(a|b)>.*?</\2>)', '<a><b></b></a>'))
36
- print(re.findall(r'(<(b|a)>.*?</\2>)', '<a><b></b></a>'))
37
- # 结果都是: [('<a><b></b></a>', 'a')]
38
- # TODO 200323周一17:22,其实是模式不够复杂,在特殊场景下,可选条件的前后顺序是有影响的
39
-
40
-
41
- def perf_concurrent():
42
- import time
43
- import concurrent.futures
44
-
45
- def func():
46
- s = 0
47
- for i in range(1000):
48
- for j in range(1000):
49
- s += j ** 5
50
- return s
51
-
52
- start = time.time()
53
- for i in range(5):
54
- func()
55
- print(f'单线程 During Time: {time.time() - start:.3f} s')
56
-
57
- start = time.time()
58
- executor = concurrent.futures.ThreadPoolExecutor(4)
59
- for i in range(5):
60
- executor.submit(func)
61
- executor.shutdown()
62
- print(f'多线程 During Time: {time.time() - start:.3f} s')
63
-
64
-
65
- ____pyxllib = """
66
- pyxllib库相关
67
- """
68
-
69
-
70
- def demo_timer():
71
- """ 该函数也可以用来测电脑性能
72
-
73
- 代码中附带的示例结果是我在自己小米笔记本上的测试结果
74
- Intel(R) Core(TM) i7-10510U CPU@ 1.80GHz 2.30 GHz,15G 64位
75
- """
76
- import math
77
- import numpy
78
-
79
- print('1、普通用法(循环5*1000万次用时)')
80
- timer = Timer('循环')
81
- timer.start()
82
- for _ in range(5):
83
- for _ in range(10 ** 7):
84
- pass
85
- timer.stop()
86
- timer.report()
87
- # 循环 用时: 0.727s
88
-
89
- print('2、循环多轮计时')
90
- timer = Timer('自己算均值标准差耗时')
91
-
92
- # 数据量=200是大概的临界值,往下自己算快,往上用numpy算快
93
- # 临界量时,每万次计时需要0.45秒。其实整体都很快影响不大,所以Timer最终统一采用numpy来运算。
94
- data = list(range(10)) * 20
95
-
96
- for _ in range(5):
97
- timer.start() # 必须明确指定每次的 开始、结束 时间
98
- for _ in range(10 ** 4):
99
- n, sum_ = len(data), sum(data)
100
- mean1 = sum_ / n
101
- std1 = math.sqrt((sum([(x - mean1) ** 2 for x in data]) / n))
102
- timer.stop() # 每轮结束时标记
103
- timer.report()
104
- # 自己算均值标准差耗时 总耗时: 2.214s 均值标准差: 0.443±0.008s 总数: 5 最小值: 0.435s 最大值: 0.459s
105
- dprint(mean1, std1)
106
- # [05]timer.py/97: mean1<float>=4.5 std1<float>=2.8722813232690143
107
-
108
- print('3、with上下文用法')
109
- with Timer('使用numpy算均值标准差耗时') as t:
110
- for _ in range(5):
111
- t.start()
112
- for _ in range(10 ** 4):
113
- mean2, std2 = numpy.mean(data), numpy.std(data)
114
- t.stop()
115
- # 主要就是结束会自动report,其他没什么太大差别
116
- # 使用numpy算均值标准差耗时 总耗时: 2.282s 均值标准差: 0.456±0.015s 总数: 5 最小值: 0.442s 最大值: 0.483s
117
- dprint(mean2, std2)
118
- # [05]timer.py/109: mean2<numpy.float64>=4.5 std2<numpy.float64>=2.8722813232690143
119
-
120
- print('4、可以配合dformat输出定位信息')
121
- with Timer(dformat()) as t:
122
- for _ in range(5):
123
- t.start()
124
- for _ in range(10 ** 6):
125
- pass
126
- t.stop()
127
- # [04]timer.py/113: 总耗时: 0.096s 均值标准差: 0.019±0.002s 总数: 5 最小值: 0.018s 最大值: 0.023s
128
-
129
-
130
- def demo_dprint():
131
- """这里演示dprint常用功能
132
- """
133
- # 1 查看程序是否运行到某个位置
134
- dprint()
135
- # [05]dprint.py/169: 意思:这是堆栈的第5层,所运行的位置是 dprint.py文件的第169行
136
-
137
- # 2 查看变量、表达式的 '<类型>' 和 ':值'
138
- a, b, s = 1, 2, 'ab'
139
- dprint(a, b, a ^ b, s * 2)
140
- # [05]dprint.py/174: a<int>=1 b<int>=2 a ^ b<int>=3 s*2<str>='abab'
141
-
142
- # 3 异常警告
143
- b = 0
144
- if b:
145
- c = a / b
146
- else:
147
- c = 0
148
- dprint(a, b, c) # b=0不能作为除数,c默认值暂按0处理
149
- # [05]dprint.py/183: a<int>=1 b<int>=0 c<int>=0 # b=0不能作为除数,c默认值暂按0处理
150
-
151
- # 4 如果想在其他地方使用dprint的格式内容,可以调底层dformat函数实现
152
- with TicToc(dformat(fmt='[{depth:02}]{fullfilename}/{lineno}: {argmsg}')):
153
- for _ in range(10 ** 7):
154
- pass
155
- # [04]D:\slns\pyxllib\pyxllib\debug\pupil.py/187: 0.173 秒.
156
-
157
-
158
- def _test_getfile_speed():
159
- """
160
- 遍历D盘所有文件(205066个) 用时0.65秒
161
- 遍历D盘所有tex文件(7796个) 用时0.95秒
162
- 有筛选遍历D盘所有文件(193161个) 用时1.19秒
163
- 有筛选遍历D盘所有tex文件(4464个) 用时1.22秒
164
- + EnsureContent: 3.18秒,用list存储所有文本要 310 MB 开销,转str拼接差不多也是这个值
165
- + re.sub(r'\$.*?\$', r'', s) 4.48
166
- """
167
- timer = Timer(start_now=True)
168
- ls = list(getfiles(r'D:\\'))
169
- timer.stop_and_report(f'遍历D盘所有文件({len(ls)}个)')
170
-
171
- timer = Timer(start_now=True)
172
- ls = list(getfiles(r'D:\\', '.tex'))
173
- timer.stop_and_report(f'遍历D盘所有tex文件({len(ls)}个)')
174
-
175
- timer = Timer(start_now=True)
176
- ls = list(mygetfiles(r'D:\\'))
177
- timer.stop_and_report(f'有筛选遍历D盘所有文件({len(ls)}个)')
178
-
179
- timer = Timer(start_now=True)
180
- ls = list(mygetfiles(r'D:\\', '.tex'))
181
- timer.stop_and_report(f'有筛选遍历D盘所有tex文件({len(ls)}个)')
182
-
183
-
184
- ____perf = """
185
- """
186
-
187
-
188
- def check_os_status():
189
- """ 检查系统当前运行状态 """
190
- import time
191
- import psutil
192
-
193
- brief_str = [] # 简化显示
194
-
195
- # 1
196
- print(f'1 逻辑cpu数量:{psutil.cpu_count()} \t{psutil.cpu_percent(1) / 100:-3.0%}')
197
- brief_str.append(f'{psutil.cpu_count()}({psutil.cpu_percent(1) / 100:.0%})')
198
-
199
- # 2
200
- m = psutil.virtual_memory()
201
- print(f'2 内存大小:{m.total / (1024 ** 3):.0f} GB \t{m.percent / 100:-3.0%}')
202
- brief_str.append(f'{m.total / (1024 ** 3):.0f}GB({m.percent / 100:.0%})')
203
-
204
- # 3
205
- disks = psutil.disk_partitions()
206
- used, total = 0, 0
207
- for d in disks:
208
- msg = psutil.disk_usage(d.mountpoint)
209
- used += msg.used
210
- total += msg.total
211
- used /= 1024 ** 4
212
- total /= 1024 ** 4
213
- print(f'3 磁盘空间:{total:.2f} TB\t{used / total:-3.0%}')
214
- brief_str.append(f'{total:.2f}TB({used / total:.0%})')
215
- print('/'.join(brief_str))
216
-
217
- # 4
218
- msg1 = psutil.disk_io_counters()
219
- sec = 5 # 统计几秒内的读写状态
220
- time.sleep(sec)
221
- msg2 = psutil.disk_io_counters()
222
- print(f'4 读写:', end='')
223
- for name in ['read_bytes', 'write_bytes']:
224
- value = getattr(msg2, name) - getattr(msg1, name)
225
- if name.endswith('_count'):
226
- print(f'{name}={value / sec:.0f} /s', end=' ')
227
- else:
228
- print(f'{name}={value / (1024 ** 2) / sec:.0f}MB/s', end=' ')
229
- print()
230
-
231
- # 5
232
- msg1 = psutil.net_io_counters()
233
- sec = 5 # 统计几秒内的读写状态
234
- time.sleep(sec)
235
- msg2 = psutil.net_io_counters()
236
- print(f'5 网络:', end='')
237
- for name in ['bytes_sent', 'bytes_recv']:
238
- value = getattr(msg2, name) - getattr(msg1, name)
239
- print(f'{name}={value / (1024 ** 2) / sec:.0f}MB/s', end=' ')
240
- print()
241
-
242
-
243
- if __name__ == '__main__':
244
- import fire
245
-
246
- fire.Fire()
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ # @Author : 陈坤泽
4
+ # @Email : 877362867@qq.com
5
+ # @Date : 2020/03/16 09:19
6
+
7
+
8
+ """一些python通用功能的性能测试
9
+ 虽然其实大部分场合其实都是相通的
10
+ 有时候test测试代码,其实也是演示如何使用的demo
11
+
12
+ demo:示例代码,注重演示
13
+ debug:调试代码,注重分析自己代码功能是否有bug
14
+ test:测试代码,注重分析功能稳定性
15
+ perf:性能测试,注重分析代码的运行效率
16
+ """
17
+
18
+ import re
19
+
20
+ from pyxllib.prog.pupil import dprint, dformat
21
+ from pyxllib.prog.specialist import Timer, TicToc
22
+ from pyxllib.file.pupil import getfiles
23
+ from pyxllib.file.specialist import mygetfiles
24
+
25
+ ____stdlib = """
26
+ 标准库相关
27
+ """
28
+
29
+
30
+ def test_re():
31
+ """ 正则re模块相关功能测试
32
+ """
33
+ # 190103周四
34
+ # py的正则[ ]语法,可以用连字符-匹配一个区间内的字符,
35
+ # 例如数字0-9(你是不是蠢,不会用\d么),还有a-z、A-Z(\w),甚至①-⑩,但是一-十,注意''匹配不到
36
+ dprint(re.sub(r'[一-十]', '', '一二三四五六七八九十'))
37
+ # [05]demolib.py/98: re.sub(r'[一-十]', '', '一二三四五六七八九十')<str>='四'
38
+
39
+ # 200319周四14:11,匹配顺序与内容有关,先出现的先匹配,而与正则里or语法参数顺序无关
40
+ print(re.findall(r'(<(a|b)>.*?</\2>)', '<a><b></b></a>'))
41
+ print(re.findall(r'(<(b|a)>.*?</\2>)', '<a><b></b></a>'))
42
+ # 结果都是: [('<a><b></b></a>', 'a')]
43
+ # TODO 200323周一17:22,其实是模式不够复杂,在特殊场景下,可选条件的前后顺序是有影响的
44
+
45
+
46
+ def perf_concurrent():
47
+ import time
48
+ import concurrent.futures
49
+
50
+ def func():
51
+ s = 0
52
+ for i in range(1000):
53
+ for j in range(1000):
54
+ s += j ** 5
55
+ return s
56
+
57
+ start = time.time()
58
+ for i in range(5):
59
+ func()
60
+ print(f'单线程 During Time: {time.time() - start:.3f} s')
61
+
62
+ start = time.time()
63
+ executor = concurrent.futures.ThreadPoolExecutor(4)
64
+ for i in range(5):
65
+ executor.submit(func)
66
+ executor.shutdown()
67
+ print(f'多线程 During Time: {time.time() - start:.3f} s')
68
+
69
+
70
+ ____pyxllib = """
71
+ pyxllib库相关
72
+ """
73
+
74
+
75
+ def demo_timer():
76
+ """ 该函数也可以用来测电脑性能
77
+
78
+ 代码中附带的示例结果是我在自己小米笔记本上的测试结果
79
+ Intel(R) Core(TM) i7-10510U CPU@ 1.80GHz 2.30 GHz,15G 64位
80
+ """
81
+ import math
82
+ import numpy
83
+
84
+ print('1、普通用法(循环5*1000万次用时)')
85
+ timer = Timer('循环')
86
+ timer.start()
87
+ for _ in range(5):
88
+ for _ in range(10 ** 7):
89
+ pass
90
+ timer.stop()
91
+ timer.report()
92
+ # 循环 用时: 0.727s
93
+
94
+ print('2、循环多轮计时')
95
+ timer = Timer('自己算均值标准差耗时')
96
+
97
+ # 数据量=200是大概的临界值,往下自己算快,往上用numpy算快
98
+ # 临界量时,每万次计时需要0.45秒。其实整体都很快影响不大,所以Timer最终统一采用numpy来运算。
99
+ data = list(range(10)) * 20
100
+
101
+ for _ in range(5):
102
+ timer.start() # 必须明确指定每次的 开始、结束 时间
103
+ for _ in range(10 ** 4):
104
+ n, sum_ = len(data), sum(data)
105
+ mean1 = sum_ / n
106
+ std1 = math.sqrt((sum([(x - mean1) ** 2 for x in data]) / n))
107
+ timer.stop() # 每轮结束时标记
108
+ timer.report()
109
+ # 自己算均值标准差耗时 总耗时: 2.214s 均值标准差: 0.443±0.008s 总数: 5 最小值: 0.435s 最大值: 0.459s
110
+ dprint(mean1, std1)
111
+ # [05]timer.py/97: mean1<float>=4.5 std1<float>=2.8722813232690143
112
+
113
+ print('3、with上下文用法')
114
+ with Timer('使用numpy算均值标准差耗时') as t:
115
+ for _ in range(5):
116
+ t.start()
117
+ for _ in range(10 ** 4):
118
+ mean2, std2 = numpy.mean(data), numpy.std(data)
119
+ t.stop()
120
+ # 主要就是结束会自动report,其他没什么太大差别
121
+ # 使用numpy算均值标准差耗时 总耗时: 2.282s 均值标准差: 0.456±0.015s 总数: 5 最小值: 0.442s 最大值: 0.483s
122
+ dprint(mean2, std2)
123
+ # [05]timer.py/109: mean2<numpy.float64>=4.5 std2<numpy.float64>=2.8722813232690143
124
+
125
+ print('4、可以配合dformat输出定位信息')
126
+ with Timer(dformat()) as t:
127
+ for _ in range(5):
128
+ t.start()
129
+ for _ in range(10 ** 6):
130
+ pass
131
+ t.stop()
132
+ # [04]timer.py/113: 总耗时: 0.096s 均值标准差: 0.019±0.002s 总数: 5 最小值: 0.018s 最大值: 0.023s
133
+
134
+
135
+ def demo_dprint():
136
+ """这里演示dprint常用功能
137
+ """
138
+ # 1 查看程序是否运行到某个位置
139
+ dprint()
140
+ # [05]dprint.py/169: 意思:这是堆栈的第5层,所运行的位置是 dprint.py文件的第169行
141
+
142
+ # 2 查看变量、表达式的 '<类型>' 和 ':值'
143
+ a, b, s = 1, 2, 'ab'
144
+ dprint(a, b, a ^ b, s * 2)
145
+ # [05]dprint.py/174: a<int>=1 b<int>=2 a ^ b<int>=3 s*2<str>='abab'
146
+
147
+ # 3 异常警告
148
+ b = 0
149
+ if b:
150
+ c = a / b
151
+ else:
152
+ c = 0
153
+ dprint(a, b, c) # b=0不能作为除数,c默认值暂按0处理
154
+ # [05]dprint.py/183: a<int>=1 b<int>=0 c<int>=0 # b=0不能作为除数,c默认值暂按0处理
155
+
156
+ # 4 如果想在其他地方使用dprint的格式内容,可以调底层dformat函数实现
157
+ with TicToc(dformat(fmt='[{depth:02}]{fullfilename}/{lineno}: {argmsg}')):
158
+ for _ in range(10 ** 7):
159
+ pass
160
+ # [04]D:\slns\pyxllib\pyxllib\debug\pupil.py/187: 0.173 秒.
161
+
162
+
163
+ def _test_getfile_speed():
164
+ """
165
+ 遍历D盘所有文件(205066个) 用时0.65
166
+ 遍历D盘所有tex文件(7796个) 用时0.95秒
167
+ 有筛选遍历D盘所有文件(193161个) 用时1.19秒
168
+ 有筛选遍历D盘所有tex文件(4464个) 用时1.22秒
169
+ + EnsureContent: 3.18秒,用list存储所有文本要 310 MB 开销,转str拼接差不多也是这个值
170
+ + re.sub(r'\$.*?\$', r'', s): 4.48秒
171
+ """
172
+ timer = Timer(start_now=True)
173
+ ls = list(getfiles(r'D:\\'))
174
+ timer.stop_and_report(f'遍历D盘所有文件({len(ls)}个)')
175
+
176
+ timer = Timer(start_now=True)
177
+ ls = list(getfiles(r'D:\\', '.tex'))
178
+ timer.stop_and_report(f'遍历D盘所有tex文件({len(ls)}个)')
179
+
180
+ timer = Timer(start_now=True)
181
+ ls = list(mygetfiles(r'D:\\'))
182
+ timer.stop_and_report(f'有筛选遍历D盘所有文件({len(ls)}个)')
183
+
184
+ timer = Timer(start_now=True)
185
+ ls = list(mygetfiles(r'D:\\', '.tex'))
186
+ timer.stop_and_report(f'有筛选遍历D盘所有tex文件({len(ls)}个)')
187
+
188
+
189
+ ____perf = """
190
+ """
191
+
192
+
193
+ def check_os_status():
194
+ """ 检查系统当前运行状态 """
195
+ import time
196
+ import psutil
197
+
198
+ brief_str = [] # 简化显示
199
+
200
+ # 1
201
+ print(f'1 逻辑cpu数量:{psutil.cpu_count()} \t{psutil.cpu_percent(1) / 100:-3.0%}')
202
+ brief_str.append(f'{psutil.cpu_count()}({psutil.cpu_percent(1) / 100:.0%})')
203
+
204
+ # 2
205
+ m = psutil.virtual_memory()
206
+ print(f'2 内存大小:{m.total / (1024 ** 3):.0f} GB \t{m.percent / 100:-3.0%}')
207
+ brief_str.append(f'{m.total / (1024 ** 3):.0f}GB({m.percent / 100:.0%})')
208
+
209
+ # 3
210
+ disks = psutil.disk_partitions()
211
+ used, total = 0, 0
212
+ for d in disks:
213
+ msg = psutil.disk_usage(d.mountpoint)
214
+ used += msg.used
215
+ total += msg.total
216
+ used /= 1024 ** 4
217
+ total /= 1024 ** 4
218
+ print(f'3 磁盘空间:{total:.2f} TB\t{used / total:-3.0%}')
219
+ brief_str.append(f'{total:.2f}TB({used / total:.0%})')
220
+ print('/'.join(brief_str))
221
+
222
+ # 4
223
+ msg1 = psutil.disk_io_counters()
224
+ sec = 5 # 统计几秒内的读写状态
225
+ time.sleep(sec)
226
+ msg2 = psutil.disk_io_counters()
227
+ print(f'4 读写:', end='')
228
+ for name in ['read_bytes', 'write_bytes']:
229
+ value = getattr(msg2, name) - getattr(msg1, name)
230
+ if name.endswith('_count'):
231
+ print(f'{name}={value / sec:.0f} /s', end=' ')
232
+ else:
233
+ print(f'{name}={value / (1024 ** 2) / sec:.0f}MB/s', end=' ')
234
+ print()
235
+
236
+ # 5
237
+ msg1 = psutil.net_io_counters()
238
+ sec = 5 # 统计几秒内的读写状态
239
+ time.sleep(sec)
240
+ msg2 = psutil.net_io_counters()
241
+ print(f'5 网络:', end='')
242
+ for name in ['bytes_sent', 'bytes_recv']:
243
+ value = getattr(msg2, name) - getattr(msg1, name)
244
+ print(f'{name}={value / (1024 ** 2) / sec:.0f}MB/s', end=' ')
245
+ print()
246
+
247
+
248
+ if __name__ == '__main__':
249
+ import fire
250
+
251
+ fire.Fire()