pyxllib 0.3.197__py3-none-any.whl → 0.3.200__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (126) hide show
  1. pyxllib/__init__.py +21 -21
  2. pyxllib/algo/__init__.py +8 -8
  3. pyxllib/algo/disjoint.py +54 -54
  4. pyxllib/algo/geo.py +541 -541
  5. pyxllib/algo/intervals.py +964 -964
  6. pyxllib/algo/matcher.py +389 -389
  7. pyxllib/algo/newbie.py +166 -166
  8. pyxllib/algo/pupil.py +629 -629
  9. pyxllib/algo/shapelylib.py +67 -67
  10. pyxllib/algo/specialist.py +241 -241
  11. pyxllib/algo/stat.py +494 -494
  12. pyxllib/algo/treelib.py +149 -149
  13. pyxllib/algo/unitlib.py +66 -66
  14. pyxllib/autogui/__init__.py +5 -5
  15. pyxllib/autogui/activewin.py +246 -246
  16. pyxllib/autogui/all.py +9 -9
  17. pyxllib/autogui/autogui.py +852 -852
  18. pyxllib/autogui/uiautolib.py +362 -362
  19. pyxllib/autogui/virtualkey.py +102 -102
  20. pyxllib/autogui/wechat.py +827 -827
  21. pyxllib/autogui/wechat_msg.py +421 -421
  22. pyxllib/autogui/wxautolib.py +84 -84
  23. pyxllib/cv/__init__.py +5 -5
  24. pyxllib/cv/expert.py +267 -267
  25. pyxllib/cv/imfile.py +159 -159
  26. pyxllib/cv/imhash.py +39 -39
  27. pyxllib/cv/pupil.py +9 -9
  28. pyxllib/cv/rgbfmt.py +1525 -1525
  29. pyxllib/cv/slidercaptcha.py +137 -137
  30. pyxllib/cv/trackbartools.py +251 -251
  31. pyxllib/cv/xlcvlib.py +1040 -1040
  32. pyxllib/cv/xlpillib.py +423 -423
  33. pyxllib/data/echarts.py +240 -240
  34. pyxllib/data/jsonlib.py +89 -89
  35. pyxllib/data/oss.py +72 -72
  36. pyxllib/data/pglib.py +1127 -1127
  37. pyxllib/data/sqlite.py +568 -568
  38. pyxllib/data/sqllib.py +297 -297
  39. pyxllib/ext/JLineViewer.py +505 -505
  40. pyxllib/ext/__init__.py +6 -6
  41. pyxllib/ext/demolib.py +246 -246
  42. pyxllib/ext/drissionlib.py +277 -277
  43. pyxllib/ext/kq5034lib.py +12 -12
  44. pyxllib/ext/old.py +663 -663
  45. pyxllib/ext/qt.py +449 -449
  46. pyxllib/ext/robustprocfile.py +497 -497
  47. pyxllib/ext/seleniumlib.py +76 -76
  48. pyxllib/ext/tk.py +173 -173
  49. pyxllib/ext/unixlib.py +827 -827
  50. pyxllib/ext/utools.py +351 -351
  51. pyxllib/ext/webhook.py +124 -119
  52. pyxllib/ext/win32lib.py +40 -40
  53. pyxllib/ext/wjxlib.py +88 -88
  54. pyxllib/ext/wpsapi.py +124 -124
  55. pyxllib/ext/xlwork.py +9 -9
  56. pyxllib/ext/yuquelib.py +1105 -1105
  57. pyxllib/file/__init__.py +17 -17
  58. pyxllib/file/docxlib.py +761 -761
  59. pyxllib/file/gitlib.py +309 -309
  60. pyxllib/file/libreoffice.py +165 -165
  61. pyxllib/file/movielib.py +148 -148
  62. pyxllib/file/newbie.py +10 -10
  63. pyxllib/file/onenotelib.py +1469 -1469
  64. pyxllib/file/packlib/__init__.py +330 -330
  65. pyxllib/file/packlib/zipfile.py +2441 -2441
  66. pyxllib/file/pdflib.py +426 -426
  67. pyxllib/file/pupil.py +185 -185
  68. pyxllib/file/specialist/__init__.py +685 -685
  69. pyxllib/file/specialist/dirlib.py +799 -799
  70. pyxllib/file/specialist/download.py +193 -193
  71. pyxllib/file/specialist/filelib.py +2829 -2829
  72. pyxllib/file/xlsxlib.py +3131 -3131
  73. pyxllib/file/xlsyncfile.py +341 -341
  74. pyxllib/prog/__init__.py +5 -5
  75. pyxllib/prog/cachetools.py +64 -64
  76. pyxllib/prog/deprecatedlib.py +233 -233
  77. pyxllib/prog/filelock.py +42 -42
  78. pyxllib/prog/ipyexec.py +253 -253
  79. pyxllib/prog/multiprogs.py +940 -940
  80. pyxllib/prog/newbie.py +451 -451
  81. pyxllib/prog/pupil.py +1197 -1197
  82. pyxllib/prog/sitepackages.py +33 -33
  83. pyxllib/prog/specialist/__init__.py +391 -391
  84. pyxllib/prog/specialist/bc.py +203 -203
  85. pyxllib/prog/specialist/browser.py +497 -497
  86. pyxllib/prog/specialist/common.py +347 -347
  87. pyxllib/prog/specialist/datetime.py +198 -198
  88. pyxllib/prog/specialist/tictoc.py +240 -240
  89. pyxllib/prog/specialist/xllog.py +180 -180
  90. pyxllib/prog/xlosenv.py +108 -108
  91. pyxllib/stdlib/__init__.py +17 -17
  92. pyxllib/stdlib/tablepyxl/__init__.py +10 -10
  93. pyxllib/stdlib/tablepyxl/style.py +303 -303
  94. pyxllib/stdlib/tablepyxl/tablepyxl.py +130 -130
  95. pyxllib/text/__init__.py +8 -8
  96. pyxllib/text/ahocorasick.py +39 -39
  97. pyxllib/text/airscript.js +744 -744
  98. pyxllib/text/charclasslib.py +121 -121
  99. pyxllib/text/jiebalib.py +267 -267
  100. pyxllib/text/jinjalib.py +32 -32
  101. pyxllib/text/jsa_ai_prompt.md +271 -271
  102. pyxllib/text/jscode.py +922 -922
  103. pyxllib/text/latex/__init__.py +158 -158
  104. pyxllib/text/levenshtein.py +303 -303
  105. pyxllib/text/nestenv.py +1215 -1215
  106. pyxllib/text/newbie.py +300 -300
  107. pyxllib/text/pupil/__init__.py +8 -8
  108. pyxllib/text/pupil/common.py +1121 -1121
  109. pyxllib/text/pupil/xlalign.py +326 -326
  110. pyxllib/text/pycode.py +47 -47
  111. pyxllib/text/specialist/__init__.py +8 -8
  112. pyxllib/text/specialist/common.py +112 -112
  113. pyxllib/text/specialist/ptag.py +186 -186
  114. pyxllib/text/spellchecker.py +172 -172
  115. pyxllib/text/templates/echart_base.html +10 -10
  116. pyxllib/text/templates/highlight_code.html +16 -16
  117. pyxllib/text/templates/latex_editor.html +102 -102
  118. pyxllib/text/vbacode.py +17 -17
  119. pyxllib/text/xmllib.py +747 -747
  120. pyxllib/xl.py +42 -39
  121. pyxllib/xlcv.py +17 -17
  122. {pyxllib-0.3.197.dist-info → pyxllib-0.3.200.dist-info}/METADATA +1 -1
  123. pyxllib-0.3.200.dist-info/RECORD +126 -0
  124. {pyxllib-0.3.197.dist-info → pyxllib-0.3.200.dist-info}/licenses/LICENSE +190 -190
  125. pyxllib-0.3.197.dist-info/RECORD +0 -126
  126. {pyxllib-0.3.197.dist-info → pyxllib-0.3.200.dist-info}/WHEEL +0 -0
pyxllib/ext/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
- #!/usr/bin/env python3
2
- # -*- coding: utf-8 -*-
3
- # @Author : 陈坤泽
4
- # @Email : 877362867@qq.com
5
- # @Date : 2018/09/19 19:41
6
-
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ # @Author : 陈坤泽
4
+ # @Email : 877362867@qq.com
5
+ # @Date : 2018/09/19 19:41
6
+
pyxllib/ext/demolib.py CHANGED
@@ -1,246 +1,246 @@
1
- #!/usr/bin/env python3
2
- # -*- coding: utf-8 -*-
3
- # @Author : 陈坤泽
4
- # @Email : 877362867@qq.com
5
- # @Date : 2020/03/16 09:19
6
-
7
-
8
- """一些python通用功能的性能测试
9
- 虽然其实大部分场合其实都是相通的
10
- 有时候test测试代码,其实也是演示如何使用的demo
11
-
12
- demo:示例代码,注重演示
13
- debug:调试代码,注重分析自己代码功能是否有bug
14
- test:测试代码,注重分析功能稳定性
15
- perf:性能测试,注重分析代码的运行效率
16
- """
17
-
18
- from pyxllib.xl import *
19
-
20
- ____stdlib = """
21
- 标准库相关
22
- """
23
-
24
-
25
- def test_re():
26
- """ 正则re模块相关功能测试
27
- """
28
- # 190103周四
29
- # py的正则[ ]语法,可以用连字符-匹配一个区间内的字符,
30
- # 例如数字0-9(你是不是蠢,不会用\d么),还有a-z、A-Z(\w),甚至①-⑩,但是一-十,注意'四'匹配不到
31
- dprint(re.sub(r'[一-十]', '', '一二三四五六七八九十'))
32
- # [05]demolib.py/98: re.sub(r'[一-十]', '', '一二三四五六七八九十')<str>='四'
33
-
34
- # 200319周四14:11,匹配顺序与内容有关,先出现的先匹配,而与正则里or语法参数顺序无关
35
- print(re.findall(r'(<(a|b)>.*?</\2>)', '<a><b></b></a>'))
36
- print(re.findall(r'(<(b|a)>.*?</\2>)', '<a><b></b></a>'))
37
- # 结果都是: [('<a><b></b></a>', 'a')]
38
- # TODO 200323周一17:22,其实是模式不够复杂,在特殊场景下,可选条件的前后顺序是有影响的
39
-
40
-
41
- def perf_concurrent():
42
- import time
43
- import concurrent.futures
44
-
45
- def func():
46
- s = 0
47
- for i in range(1000):
48
- for j in range(1000):
49
- s += j ** 5
50
- return s
51
-
52
- start = time.time()
53
- for i in range(5):
54
- func()
55
- print(f'单线程 During Time: {time.time() - start:.3f} s')
56
-
57
- start = time.time()
58
- executor = concurrent.futures.ThreadPoolExecutor(4)
59
- for i in range(5):
60
- executor.submit(func)
61
- executor.shutdown()
62
- print(f'多线程 During Time: {time.time() - start:.3f} s')
63
-
64
-
65
- ____pyxllib = """
66
- pyxllib库相关
67
- """
68
-
69
-
70
- def demo_timer():
71
- """ 该函数也可以用来测电脑性能
72
-
73
- 代码中附带的示例结果是我在自己小米笔记本上的测试结果
74
- Intel(R) Core(TM) i7-10510U CPU@ 1.80GHz 2.30 GHz,15G 64位
75
- """
76
- import math
77
- import numpy
78
-
79
- print('1、普通用法(循环5*1000万次用时)')
80
- timer = Timer('循环')
81
- timer.start()
82
- for _ in range(5):
83
- for _ in range(10 ** 7):
84
- pass
85
- timer.stop()
86
- timer.report()
87
- # 循环 用时: 0.727s
88
-
89
- print('2、循环多轮计时')
90
- timer = Timer('自己算均值标准差耗时')
91
-
92
- # 数据量=200是大概的临界值,往下自己算快,往上用numpy算快
93
- # 临界量时,每万次计时需要0.45秒。其实整体都很快影响不大,所以Timer最终统一采用numpy来运算。
94
- data = list(range(10)) * 20
95
-
96
- for _ in range(5):
97
- timer.start() # 必须明确指定每次的 开始、结束 时间
98
- for _ in range(10 ** 4):
99
- n, sum_ = len(data), sum(data)
100
- mean1 = sum_ / n
101
- std1 = math.sqrt((sum([(x - mean1) ** 2 for x in data]) / n))
102
- timer.stop() # 每轮结束时标记
103
- timer.report()
104
- # 自己算均值标准差耗时 总耗时: 2.214s 均值标准差: 0.443±0.008s 总数: 5 最小值: 0.435s 最大值: 0.459s
105
- dprint(mean1, std1)
106
- # [05]timer.py/97: mean1<float>=4.5 std1<float>=2.8722813232690143
107
-
108
- print('3、with上下文用法')
109
- with Timer('使用numpy算均值标准差耗时') as t:
110
- for _ in range(5):
111
- t.start()
112
- for _ in range(10 ** 4):
113
- mean2, std2 = numpy.mean(data), numpy.std(data)
114
- t.stop()
115
- # 主要就是结束会自动report,其他没什么太大差别
116
- # 使用numpy算均值标准差耗时 总耗时: 2.282s 均值标准差: 0.456±0.015s 总数: 5 最小值: 0.442s 最大值: 0.483s
117
- dprint(mean2, std2)
118
- # [05]timer.py/109: mean2<numpy.float64>=4.5 std2<numpy.float64>=2.8722813232690143
119
-
120
- print('4、可以配合dformat输出定位信息')
121
- with Timer(dformat()) as t:
122
- for _ in range(5):
123
- t.start()
124
- for _ in range(10 ** 6):
125
- pass
126
- t.stop()
127
- # [04]timer.py/113: 总耗时: 0.096s 均值标准差: 0.019±0.002s 总数: 5 最小值: 0.018s 最大值: 0.023s
128
-
129
-
130
- def demo_dprint():
131
- """这里演示dprint常用功能
132
- """
133
- # 1 查看程序是否运行到某个位置
134
- dprint()
135
- # [05]dprint.py/169: 意思:这是堆栈的第5层,所运行的位置是 dprint.py文件的第169行
136
-
137
- # 2 查看变量、表达式的 '<类型>' 和 ':值'
138
- a, b, s = 1, 2, 'ab'
139
- dprint(a, b, a ^ b, s * 2)
140
- # [05]dprint.py/174: a<int>=1 b<int>=2 a ^ b<int>=3 s*2<str>='abab'
141
-
142
- # 3 异常警告
143
- b = 0
144
- if b:
145
- c = a / b
146
- else:
147
- c = 0
148
- dprint(a, b, c) # b=0不能作为除数,c默认值暂按0处理
149
- # [05]dprint.py/183: a<int>=1 b<int>=0 c<int>=0 # b=0不能作为除数,c默认值暂按0处理
150
-
151
- # 4 如果想在其他地方使用dprint的格式内容,可以调底层dformat函数实现
152
- with TicToc(dformat(fmt='[{depth:02}]{fullfilename}/{lineno}: {argmsg}')):
153
- for _ in range(10 ** 7):
154
- pass
155
- # [04]D:\slns\pyxllib\pyxllib\debug\pupil.py/187: 0.173 秒.
156
-
157
-
158
- def _test_getfile_speed():
159
- """
160
- 遍历D盘所有文件(205066个) 用时0.65秒
161
- 遍历D盘所有tex文件(7796个) 用时0.95秒
162
- 有筛选遍历D盘所有文件(193161个) 用时1.19秒
163
- 有筛选遍历D盘所有tex文件(4464个) 用时1.22秒
164
- + EnsureContent: 3.18秒,用list存储所有文本要 310 MB 开销,转str拼接差不多也是这个值
165
- + re.sub(r'\$.*?\$', r'', s): 4.48秒
166
- """
167
- timer = Timer(start_now=True)
168
- ls = list(getfiles(r'D:\\'))
169
- timer.stop_and_report(f'遍历D盘所有文件({len(ls)}个)')
170
-
171
- timer = Timer(start_now=True)
172
- ls = list(getfiles(r'D:\\', '.tex'))
173
- timer.stop_and_report(f'遍历D盘所有tex文件({len(ls)}个)')
174
-
175
- timer = Timer(start_now=True)
176
- ls = list(mygetfiles(r'D:\\'))
177
- timer.stop_and_report(f'有筛选遍历D盘所有文件({len(ls)}个)')
178
-
179
- timer = Timer(start_now=True)
180
- ls = list(mygetfiles(r'D:\\', '.tex'))
181
- timer.stop_and_report(f'有筛选遍历D盘所有tex文件({len(ls)}个)')
182
-
183
-
184
- ____perf = """
185
- """
186
-
187
-
188
- def check_os_status():
189
- """ 检查系统当前运行状态 """
190
- import time
191
- import psutil
192
-
193
- brief_str = [] # 简化显示
194
-
195
- # 1
196
- print(f'1 逻辑cpu数量:{psutil.cpu_count()} \t{psutil.cpu_percent(1) / 100:-3.0%}')
197
- brief_str.append(f'{psutil.cpu_count()}({psutil.cpu_percent(1) / 100:.0%})')
198
-
199
- # 2
200
- m = psutil.virtual_memory()
201
- print(f'2 内存大小:{m.total / (1024 ** 3):.0f} GB \t{m.percent / 100:-3.0%}')
202
- brief_str.append(f'{m.total / (1024 ** 3):.0f}GB({m.percent / 100:.0%})')
203
-
204
- # 3
205
- disks = psutil.disk_partitions()
206
- used, total = 0, 0
207
- for d in disks:
208
- msg = psutil.disk_usage(d.mountpoint)
209
- used += msg.used
210
- total += msg.total
211
- used /= 1024 ** 4
212
- total /= 1024 ** 4
213
- print(f'3 磁盘空间:{total:.2f} TB\t{used / total:-3.0%}')
214
- brief_str.append(f'{total:.2f}TB({used / total:.0%})')
215
- print('/'.join(brief_str))
216
-
217
- # 4
218
- msg1 = psutil.disk_io_counters()
219
- sec = 5 # 统计几秒内的读写状态
220
- time.sleep(sec)
221
- msg2 = psutil.disk_io_counters()
222
- print(f'4 读写:', end='')
223
- for name in ['read_bytes', 'write_bytes']:
224
- value = getattr(msg2, name) - getattr(msg1, name)
225
- if name.endswith('_count'):
226
- print(f'{name}={value / sec:.0f} /s', end=' ')
227
- else:
228
- print(f'{name}={value / (1024 ** 2) / sec:.0f}MB/s', end=' ')
229
- print()
230
-
231
- # 5
232
- msg1 = psutil.net_io_counters()
233
- sec = 5 # 统计几秒内的读写状态
234
- time.sleep(sec)
235
- msg2 = psutil.net_io_counters()
236
- print(f'5 网络:', end='')
237
- for name in ['bytes_sent', 'bytes_recv']:
238
- value = getattr(msg2, name) - getattr(msg1, name)
239
- print(f'{name}={value / (1024 ** 2) / sec:.0f}MB/s', end=' ')
240
- print()
241
-
242
-
243
- if __name__ == '__main__':
244
- import fire
245
-
246
- fire.Fire()
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ # @Author : 陈坤泽
4
+ # @Email : 877362867@qq.com
5
+ # @Date : 2020/03/16 09:19
6
+
7
+
8
+ """一些python通用功能的性能测试
9
+ 虽然其实大部分场合其实都是相通的
10
+ 有时候test测试代码,其实也是演示如何使用的demo
11
+
12
+ demo:示例代码,注重演示
13
+ debug:调试代码,注重分析自己代码功能是否有bug
14
+ test:测试代码,注重分析功能稳定性
15
+ perf:性能测试,注重分析代码的运行效率
16
+ """
17
+
18
+ from pyxllib.xl import *
19
+
20
+ ____stdlib = """
21
+ 标准库相关
22
+ """
23
+
24
+
25
+ def test_re():
26
+ """ 正则re模块相关功能测试
27
+ """
28
+ # 190103周四
29
+ # py的正则[ ]语法,可以用连字符-匹配一个区间内的字符,
30
+ # 例如数字0-9(你是不是蠢,不会用\d么),还有a-z、A-Z(\w),甚至①-⑩,但是一-十,注意'四'匹配不到
31
+ dprint(re.sub(r'[一-十]', '', '一二三四五六七八九十'))
32
+ # [05]demolib.py/98: re.sub(r'[一-十]', '', '一二三四五六七八九十')<str>='四'
33
+
34
+ # 200319周四14:11,匹配顺序与内容有关,先出现的先匹配,而与正则里or语法参数顺序无关
35
+ print(re.findall(r'(<(a|b)>.*?</\2>)', '<a><b></b></a>'))
36
+ print(re.findall(r'(<(b|a)>.*?</\2>)', '<a><b></b></a>'))
37
+ # 结果都是: [('<a><b></b></a>', 'a')]
38
+ # TODO 200323周一17:22,其实是模式不够复杂,在特殊场景下,可选条件的前后顺序是有影响的
39
+
40
+
41
+ def perf_concurrent():
42
+ import time
43
+ import concurrent.futures
44
+
45
+ def func():
46
+ s = 0
47
+ for i in range(1000):
48
+ for j in range(1000):
49
+ s += j ** 5
50
+ return s
51
+
52
+ start = time.time()
53
+ for i in range(5):
54
+ func()
55
+ print(f'单线程 During Time: {time.time() - start:.3f} s')
56
+
57
+ start = time.time()
58
+ executor = concurrent.futures.ThreadPoolExecutor(4)
59
+ for i in range(5):
60
+ executor.submit(func)
61
+ executor.shutdown()
62
+ print(f'多线程 During Time: {time.time() - start:.3f} s')
63
+
64
+
65
+ ____pyxllib = """
66
+ pyxllib库相关
67
+ """
68
+
69
+
70
+ def demo_timer():
71
+ """ 该函数也可以用来测电脑性能
72
+
73
+ 代码中附带的示例结果是我在自己小米笔记本上的测试结果
74
+ Intel(R) Core(TM) i7-10510U CPU@ 1.80GHz 2.30 GHz,15G 64位
75
+ """
76
+ import math
77
+ import numpy
78
+
79
+ print('1、普通用法(循环5*1000万次用时)')
80
+ timer = Timer('循环')
81
+ timer.start()
82
+ for _ in range(5):
83
+ for _ in range(10 ** 7):
84
+ pass
85
+ timer.stop()
86
+ timer.report()
87
+ # 循环 用时: 0.727s
88
+
89
+ print('2、循环多轮计时')
90
+ timer = Timer('自己算均值标准差耗时')
91
+
92
+ # 数据量=200是大概的临界值,往下自己算快,往上用numpy算快
93
+ # 临界量时,每万次计时需要0.45秒。其实整体都很快影响不大,所以Timer最终统一采用numpy来运算。
94
+ data = list(range(10)) * 20
95
+
96
+ for _ in range(5):
97
+ timer.start() # 必须明确指定每次的 开始、结束 时间
98
+ for _ in range(10 ** 4):
99
+ n, sum_ = len(data), sum(data)
100
+ mean1 = sum_ / n
101
+ std1 = math.sqrt((sum([(x - mean1) ** 2 for x in data]) / n))
102
+ timer.stop() # 每轮结束时标记
103
+ timer.report()
104
+ # 自己算均值标准差耗时 总耗时: 2.214s 均值标准差: 0.443±0.008s 总数: 5 最小值: 0.435s 最大值: 0.459s
105
+ dprint(mean1, std1)
106
+ # [05]timer.py/97: mean1<float>=4.5 std1<float>=2.8722813232690143
107
+
108
+ print('3、with上下文用法')
109
+ with Timer('使用numpy算均值标准差耗时') as t:
110
+ for _ in range(5):
111
+ t.start()
112
+ for _ in range(10 ** 4):
113
+ mean2, std2 = numpy.mean(data), numpy.std(data)
114
+ t.stop()
115
+ # 主要就是结束会自动report,其他没什么太大差别
116
+ # 使用numpy算均值标准差耗时 总耗时: 2.282s 均值标准差: 0.456±0.015s 总数: 5 最小值: 0.442s 最大值: 0.483s
117
+ dprint(mean2, std2)
118
+ # [05]timer.py/109: mean2<numpy.float64>=4.5 std2<numpy.float64>=2.8722813232690143
119
+
120
+ print('4、可以配合dformat输出定位信息')
121
+ with Timer(dformat()) as t:
122
+ for _ in range(5):
123
+ t.start()
124
+ for _ in range(10 ** 6):
125
+ pass
126
+ t.stop()
127
+ # [04]timer.py/113: 总耗时: 0.096s 均值标准差: 0.019±0.002s 总数: 5 最小值: 0.018s 最大值: 0.023s
128
+
129
+
130
+ def demo_dprint():
131
+ """这里演示dprint常用功能
132
+ """
133
+ # 1 查看程序是否运行到某个位置
134
+ dprint()
135
+ # [05]dprint.py/169: 意思:这是堆栈的第5层,所运行的位置是 dprint.py文件的第169行
136
+
137
+ # 2 查看变量、表达式的 '<类型>' 和 ':值'
138
+ a, b, s = 1, 2, 'ab'
139
+ dprint(a, b, a ^ b, s * 2)
140
+ # [05]dprint.py/174: a<int>=1 b<int>=2 a ^ b<int>=3 s*2<str>='abab'
141
+
142
+ # 3 异常警告
143
+ b = 0
144
+ if b:
145
+ c = a / b
146
+ else:
147
+ c = 0
148
+ dprint(a, b, c) # b=0不能作为除数,c默认值暂按0处理
149
+ # [05]dprint.py/183: a<int>=1 b<int>=0 c<int>=0 # b=0不能作为除数,c默认值暂按0处理
150
+
151
+ # 4 如果想在其他地方使用dprint的格式内容,可以调底层dformat函数实现
152
+ with TicToc(dformat(fmt='[{depth:02}]{fullfilename}/{lineno}: {argmsg}')):
153
+ for _ in range(10 ** 7):
154
+ pass
155
+ # [04]D:\slns\pyxllib\pyxllib\debug\pupil.py/187: 0.173 秒.
156
+
157
+
158
+ def _test_getfile_speed():
159
+ """
160
+ 遍历D盘所有文件(205066个) 用时0.65秒
161
+ 遍历D盘所有tex文件(7796个) 用时0.95秒
162
+ 有筛选遍历D盘所有文件(193161个) 用时1.19秒
163
+ 有筛选遍历D盘所有tex文件(4464个) 用时1.22秒
164
+ + EnsureContent: 3.18秒,用list存储所有文本要 310 MB 开销,转str拼接差不多也是这个值
165
+ + re.sub(r'\$.*?\$', r'', s): 4.48秒
166
+ """
167
+ timer = Timer(start_now=True)
168
+ ls = list(getfiles(r'D:\\'))
169
+ timer.stop_and_report(f'遍历D盘所有文件({len(ls)}个)')
170
+
171
+ timer = Timer(start_now=True)
172
+ ls = list(getfiles(r'D:\\', '.tex'))
173
+ timer.stop_and_report(f'遍历D盘所有tex文件({len(ls)}个)')
174
+
175
+ timer = Timer(start_now=True)
176
+ ls = list(mygetfiles(r'D:\\'))
177
+ timer.stop_and_report(f'有筛选遍历D盘所有文件({len(ls)}个)')
178
+
179
+ timer = Timer(start_now=True)
180
+ ls = list(mygetfiles(r'D:\\', '.tex'))
181
+ timer.stop_and_report(f'有筛选遍历D盘所有tex文件({len(ls)}个)')
182
+
183
+
184
+ ____perf = """
185
+ """
186
+
187
+
188
+ def check_os_status():
189
+ """ 检查系统当前运行状态 """
190
+ import time
191
+ import psutil
192
+
193
+ brief_str = [] # 简化显示
194
+
195
+ # 1
196
+ print(f'1 逻辑cpu数量:{psutil.cpu_count()} \t{psutil.cpu_percent(1) / 100:-3.0%}')
197
+ brief_str.append(f'{psutil.cpu_count()}({psutil.cpu_percent(1) / 100:.0%})')
198
+
199
+ # 2
200
+ m = psutil.virtual_memory()
201
+ print(f'2 内存大小:{m.total / (1024 ** 3):.0f} GB \t{m.percent / 100:-3.0%}')
202
+ brief_str.append(f'{m.total / (1024 ** 3):.0f}GB({m.percent / 100:.0%})')
203
+
204
+ # 3
205
+ disks = psutil.disk_partitions()
206
+ used, total = 0, 0
207
+ for d in disks:
208
+ msg = psutil.disk_usage(d.mountpoint)
209
+ used += msg.used
210
+ total += msg.total
211
+ used /= 1024 ** 4
212
+ total /= 1024 ** 4
213
+ print(f'3 磁盘空间:{total:.2f} TB\t{used / total:-3.0%}')
214
+ brief_str.append(f'{total:.2f}TB({used / total:.0%})')
215
+ print('/'.join(brief_str))
216
+
217
+ # 4
218
+ msg1 = psutil.disk_io_counters()
219
+ sec = 5 # 统计几秒内的读写状态
220
+ time.sleep(sec)
221
+ msg2 = psutil.disk_io_counters()
222
+ print(f'4 读写:', end='')
223
+ for name in ['read_bytes', 'write_bytes']:
224
+ value = getattr(msg2, name) - getattr(msg1, name)
225
+ if name.endswith('_count'):
226
+ print(f'{name}={value / sec:.0f} /s', end=' ')
227
+ else:
228
+ print(f'{name}={value / (1024 ** 2) / sec:.0f}MB/s', end=' ')
229
+ print()
230
+
231
+ # 5
232
+ msg1 = psutil.net_io_counters()
233
+ sec = 5 # 统计几秒内的读写状态
234
+ time.sleep(sec)
235
+ msg2 = psutil.net_io_counters()
236
+ print(f'5 网络:', end='')
237
+ for name in ['bytes_sent', 'bytes_recv']:
238
+ value = getattr(msg2, name) - getattr(msg1, name)
239
+ print(f'{name}={value / (1024 ** 2) / sec:.0f}MB/s', end=' ')
240
+ print()
241
+
242
+
243
+ if __name__ == '__main__':
244
+ import fire
245
+
246
+ fire.Fire()