pyxllib 0.3.197__py3-none-any.whl → 0.3.200__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyxllib/__init__.py +21 -21
- pyxllib/algo/__init__.py +8 -8
- pyxllib/algo/disjoint.py +54 -54
- pyxllib/algo/geo.py +541 -541
- pyxllib/algo/intervals.py +964 -964
- pyxllib/algo/matcher.py +389 -389
- pyxllib/algo/newbie.py +166 -166
- pyxllib/algo/pupil.py +629 -629
- pyxllib/algo/shapelylib.py +67 -67
- pyxllib/algo/specialist.py +241 -241
- pyxllib/algo/stat.py +494 -494
- pyxllib/algo/treelib.py +149 -149
- pyxllib/algo/unitlib.py +66 -66
- pyxllib/autogui/__init__.py +5 -5
- pyxllib/autogui/activewin.py +246 -246
- pyxllib/autogui/all.py +9 -9
- pyxllib/autogui/autogui.py +852 -852
- pyxllib/autogui/uiautolib.py +362 -362
- pyxllib/autogui/virtualkey.py +102 -102
- pyxllib/autogui/wechat.py +827 -827
- pyxllib/autogui/wechat_msg.py +421 -421
- pyxllib/autogui/wxautolib.py +84 -84
- pyxllib/cv/__init__.py +5 -5
- pyxllib/cv/expert.py +267 -267
- pyxllib/cv/imfile.py +159 -159
- pyxllib/cv/imhash.py +39 -39
- pyxllib/cv/pupil.py +9 -9
- pyxllib/cv/rgbfmt.py +1525 -1525
- pyxllib/cv/slidercaptcha.py +137 -137
- pyxllib/cv/trackbartools.py +251 -251
- pyxllib/cv/xlcvlib.py +1040 -1040
- pyxllib/cv/xlpillib.py +423 -423
- pyxllib/data/echarts.py +240 -240
- pyxllib/data/jsonlib.py +89 -89
- pyxllib/data/oss.py +72 -72
- pyxllib/data/pglib.py +1127 -1127
- pyxllib/data/sqlite.py +568 -568
- pyxllib/data/sqllib.py +297 -297
- pyxllib/ext/JLineViewer.py +505 -505
- pyxllib/ext/__init__.py +6 -6
- pyxllib/ext/demolib.py +246 -246
- pyxllib/ext/drissionlib.py +277 -277
- pyxllib/ext/kq5034lib.py +12 -12
- pyxllib/ext/old.py +663 -663
- pyxllib/ext/qt.py +449 -449
- pyxllib/ext/robustprocfile.py +497 -497
- pyxllib/ext/seleniumlib.py +76 -76
- pyxllib/ext/tk.py +173 -173
- pyxllib/ext/unixlib.py +827 -827
- pyxllib/ext/utools.py +351 -351
- pyxllib/ext/webhook.py +124 -119
- pyxllib/ext/win32lib.py +40 -40
- pyxllib/ext/wjxlib.py +88 -88
- pyxllib/ext/wpsapi.py +124 -124
- pyxllib/ext/xlwork.py +9 -9
- pyxllib/ext/yuquelib.py +1105 -1105
- pyxllib/file/__init__.py +17 -17
- pyxllib/file/docxlib.py +761 -761
- pyxllib/file/gitlib.py +309 -309
- pyxllib/file/libreoffice.py +165 -165
- pyxllib/file/movielib.py +148 -148
- pyxllib/file/newbie.py +10 -10
- pyxllib/file/onenotelib.py +1469 -1469
- pyxllib/file/packlib/__init__.py +330 -330
- pyxllib/file/packlib/zipfile.py +2441 -2441
- pyxllib/file/pdflib.py +426 -426
- pyxllib/file/pupil.py +185 -185
- pyxllib/file/specialist/__init__.py +685 -685
- pyxllib/file/specialist/dirlib.py +799 -799
- pyxllib/file/specialist/download.py +193 -193
- pyxllib/file/specialist/filelib.py +2829 -2829
- pyxllib/file/xlsxlib.py +3131 -3131
- pyxllib/file/xlsyncfile.py +341 -341
- pyxllib/prog/__init__.py +5 -5
- pyxllib/prog/cachetools.py +64 -64
- pyxllib/prog/deprecatedlib.py +233 -233
- pyxllib/prog/filelock.py +42 -42
- pyxllib/prog/ipyexec.py +253 -253
- pyxllib/prog/multiprogs.py +940 -940
- pyxllib/prog/newbie.py +451 -451
- pyxllib/prog/pupil.py +1197 -1197
- pyxllib/prog/sitepackages.py +33 -33
- pyxllib/prog/specialist/__init__.py +391 -391
- pyxllib/prog/specialist/bc.py +203 -203
- pyxllib/prog/specialist/browser.py +497 -497
- pyxllib/prog/specialist/common.py +347 -347
- pyxllib/prog/specialist/datetime.py +198 -198
- pyxllib/prog/specialist/tictoc.py +240 -240
- pyxllib/prog/specialist/xllog.py +180 -180
- pyxllib/prog/xlosenv.py +108 -108
- pyxllib/stdlib/__init__.py +17 -17
- pyxllib/stdlib/tablepyxl/__init__.py +10 -10
- pyxllib/stdlib/tablepyxl/style.py +303 -303
- pyxllib/stdlib/tablepyxl/tablepyxl.py +130 -130
- pyxllib/text/__init__.py +8 -8
- pyxllib/text/ahocorasick.py +39 -39
- pyxllib/text/airscript.js +744 -744
- pyxllib/text/charclasslib.py +121 -121
- pyxllib/text/jiebalib.py +267 -267
- pyxllib/text/jinjalib.py +32 -32
- pyxllib/text/jsa_ai_prompt.md +271 -271
- pyxllib/text/jscode.py +922 -922
- pyxllib/text/latex/__init__.py +158 -158
- pyxllib/text/levenshtein.py +303 -303
- pyxllib/text/nestenv.py +1215 -1215
- pyxllib/text/newbie.py +300 -300
- pyxllib/text/pupil/__init__.py +8 -8
- pyxllib/text/pupil/common.py +1121 -1121
- pyxllib/text/pupil/xlalign.py +326 -326
- pyxllib/text/pycode.py +47 -47
- pyxllib/text/specialist/__init__.py +8 -8
- pyxllib/text/specialist/common.py +112 -112
- pyxllib/text/specialist/ptag.py +186 -186
- pyxllib/text/spellchecker.py +172 -172
- pyxllib/text/templates/echart_base.html +10 -10
- pyxllib/text/templates/highlight_code.html +16 -16
- pyxllib/text/templates/latex_editor.html +102 -102
- pyxllib/text/vbacode.py +17 -17
- pyxllib/text/xmllib.py +747 -747
- pyxllib/xl.py +42 -39
- pyxllib/xlcv.py +17 -17
- {pyxllib-0.3.197.dist-info → pyxllib-0.3.200.dist-info}/METADATA +1 -1
- pyxllib-0.3.200.dist-info/RECORD +126 -0
- {pyxllib-0.3.197.dist-info → pyxllib-0.3.200.dist-info}/licenses/LICENSE +190 -190
- pyxllib-0.3.197.dist-info/RECORD +0 -126
- {pyxllib-0.3.197.dist-info → pyxllib-0.3.200.dist-info}/WHEEL +0 -0
pyxllib/data/sqllib.py
CHANGED
@@ -1,297 +1,297 @@
|
|
1
|
-
#!/usr/bin/env python3
|
2
|
-
# -*- coding: utf-8 -*-
|
3
|
-
# @Author : 陈坤泽
|
4
|
-
# @Email : 877362867@qq.com
|
5
|
-
# @Date : 2020/06/03 09:52
|
6
|
-
|
7
|
-
from pyxllib.prog.pupil import check_install_package
|
8
|
-
|
9
|
-
check_install_package('bidict')
|
10
|
-
check_install_package('sqlalchemy')
|
11
|
-
check_install_package('mysqlclient')
|
12
|
-
|
13
|
-
import math
|
14
|
-
|
15
|
-
from bidict import bidict
|
16
|
-
import pandas as pd
|
17
|
-
import sqlalchemy
|
18
|
-
|
19
|
-
from pyxllib.file.specialist import File
|
20
|
-
|
21
|
-
SQL_LIB_ACCOUNT_FILE = File(__file__).parent / 'sqllibaccount.pkl'
|
22
|
-
|
23
|
-
|
24
|
-
def create_account_df(file='sqllibaccount.pkl'):
|
25
|
-
"""请在这里设置您个人的账户密码,并在运行完后,销毁明文信息"""
|
26
|
-
df = pd.DataFrame.from_records([
|
27
|
-
['ckz', 'rm.sbsql.rds.aliyuncs.com', '', '', 'dddddd'],
|
28
|
-
['ckzlocal', '0.0.0.0', '', '', 'eeeeee'],
|
29
|
-
], columns=['index_name', 'host', 'port', 'user', 'passwd'])
|
30
|
-
df['port'] = df['port'].replace('', '3306') # 没写端口的默认值
|
31
|
-
df['user'] = df['user'].replace('', 'root') # 没写用户名的默认值
|
32
|
-
df['passwd'] = df['passwd'].replace('', '123456') # 没写密码的默认值
|
33
|
-
df.set_index('index_name', inplace=True)
|
34
|
-
File(file).write(df)
|
35
|
-
|
36
|
-
|
37
|
-
class SqlEngine:
|
38
|
-
"""mysql 通用基础类
|
39
|
-
"""
|
40
|
-
|
41
|
-
def __init__(self, alias=None, database=None, *,
|
42
|
-
user='root', passwd='123456', host=None, port='3306',
|
43
|
-
connect_timeout=None, account_file_path=None):
|
44
|
-
""" 初始化需要连接数据库
|
45
|
-
|
46
|
-
:param alias: 数据库的简化别名,为了方便快速调用及隐藏明文密码
|
47
|
-
使用该参数将会覆盖掉已有的user、passwd、host、port参数值
|
48
|
-
例如我自己设置的别名有:
|
49
|
-
ckz,我自己阿里云上的个人数据库
|
50
|
-
ckzlocal,本PC开的数据库
|
51
|
-
:param account_file_path: 使用alias时才有效
|
52
|
-
该参数指定存储账号信息的pkl文件所在位置,注意pkl的格式必须用类似下述的代码方式生成
|
53
|
-
默认从与该脚本同目录下的 sqllibaccount.pkl 文件获取
|
54
|
-
|
55
|
-
:param database: 数据库名称
|
56
|
-
例如在快乐做教研时一些相关数据库名:
|
57
|
-
tr,教研
|
58
|
-
tr_develop,教研开发数据
|
59
|
-
tr_test,教研测试数据
|
60
|
-
|
61
|
-
:param connect_timeout: 连接超时时等待秒数
|
62
|
-
如果设置,建议2秒以上
|
63
|
-
|
64
|
-
:return:
|
65
|
-
"""
|
66
|
-
|
67
|
-
# 1 读取地址、账号信息
|
68
|
-
if alias:
|
69
|
-
if account_file_path is None:
|
70
|
-
account_file_path = File(SQL_LIB_ACCOUNT_FILE)
|
71
|
-
# dprint(alias,account_file_path)
|
72
|
-
record = File(account_file_path).read().loc[alias] # 从文件读取账号信息
|
73
|
-
user, passwd, host, port = record.user, record.passwd, record.host, record.port
|
74
|
-
|
75
|
-
# 2 '数据库类型+数据库驱动名称://用户名:口令@机器地址:端口号/数据库名'
|
76
|
-
address = f'mysql+mysqldb://{user}:{passwd}@{host}:{port}/{database}?charset=utf8mb4'
|
77
|
-
# 3 存储成员
|
78
|
-
self.alias, self.database = alias, database
|
79
|
-
connect_args = {"connect_timeout": connect_timeout} if connect_timeout else {}
|
80
|
-
self.engine = sqlalchemy.create_engine(address, connect_args=connect_args)
|
81
|
-
|
82
|
-
def query(self, sql, index_col=None, coerce_float=True, params=None,
|
83
|
-
parse_dates=None, columns=None, chunksize=None):
|
84
|
-
"""本质上就是pd.read_sql函数
|
85
|
-
|
86
|
-
pd.read_sql()知道这些就够用了 - 漫步量化 - CSDN博客:
|
87
|
-
https://blog.csdn.net/The_Time_Runner/article/details/86601988
|
88
|
-
|
89
|
-
官方文档:pandas.read_sql — pandas 0.25.1 documentation:
|
90
|
-
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_sql.html
|
91
|
-
|
92
|
-
:param sql: 命令字符串,可以写%s设置
|
93
|
-
这里我做了扩展:
|
94
|
-
单语句: '...'
|
95
|
-
多语句: ['...', '...'],默认\n隔开
|
96
|
-
:param index_col: 设为索引列
|
97
|
-
:param coerce_float: 设为float类型的列
|
98
|
-
:param params: 和sql命令相关,具体语法规则与所用的引擎相关,例如我这里是用sqlalchemy,支持用法
|
99
|
-
'SELECT point_name FROM tr_point LIMIT %s', params=(5,)) # list、tuple等列举每个%s的值
|
100
|
-
'SELECT point_name FROM tr_point LIMIT %(n)s', params={'n', 5}) # 是用dict关联命名参数
|
101
|
-
:param parse_dates: 转为datetime类型的列
|
102
|
-
:param columns: 要选取的列。一般没啥用,因为在sql命令里面一般就指定要选择的列了
|
103
|
-
:param chunksize: 如果提供了一个整数值,那么就会返回一个generator,每次输出的行数就是提供的值的大小
|
104
|
-
:return: DataFrame类型的数据
|
105
|
-
"""
|
106
|
-
# 1 合并sql命令
|
107
|
-
if isinstance(sql, str): sql = [sql]
|
108
|
-
sql = '\n'.join(sql)
|
109
|
-
|
110
|
-
# 含有 % 的特殊符号要转义
|
111
|
-
# import sqlalchemy
|
112
|
-
# sql = sqlalchemy.text(sql)
|
113
|
-
|
114
|
-
# 2 解析结果
|
115
|
-
res = pd.read_sql(sql, self.engine, index_col=index_col, coerce_float=coerce_float, params=params,
|
116
|
-
parse_dates=parse_dates, columns=columns, chunksize=chunksize)
|
117
|
-
return res
|
118
|
-
|
119
|
-
def execute(self, statement, *multiparams, **params):
|
120
|
-
"""本质上就是sqlalchemy.con.execute的封装
|
121
|
-
|
122
|
-
可以这样使用:
|
123
|
-
hsql.execute('UPDATE spell_check SET count=:count WHERE old=:old AND new=:new',
|
124
|
-
count=count[0] + add, old=old, new=new)
|
125
|
-
"""
|
126
|
-
# 1 解析sql命令
|
127
|
-
if isinstance(statement, str): statement = [statement]
|
128
|
-
statement = '\n'.join(statement)
|
129
|
-
statement = sqlalchemy.text(statement)
|
130
|
-
|
131
|
-
# 2 如果设置了getdf参数
|
132
|
-
res = self.engine.execute(statement, *multiparams, **params)
|
133
|
-
return res
|
134
|
-
|
135
|
-
def insert_from_df(self, df, table_name, patch_size=100, if_exists='append'):
|
136
|
-
"""将df写入con数据库的table_name表格
|
137
|
-
|
138
|
-
190731周三18:51,TODO
|
139
|
-
可以先用:df.to_sql('formula_stat', HistudySQL('dev', 'tr_develop').con, if_exists='replace')
|
140
|
-
191017周四10:21,目前这函数改来改去,都还没严格测试呢~~
|
141
|
-
|
142
|
-
这个函数开发要参考:DataFrame.to_sql()
|
143
|
-
是因为其con参数好像不支持pymysql
|
144
|
-
|
145
|
-
:param df: DataFrane类型表格数据
|
146
|
-
:param table_name: 要写入的表格名
|
147
|
-
:param patch_size: 每轮要写入的数量
|
148
|
-
如果df很大,是无法一次性用sql语句写入的,一般要分批写
|
149
|
-
patch_size是设置每批导入多少条数据
|
150
|
-
:param if_exists: {'fail', 'replace', 'append'}, default 'append'
|
151
|
-
How to behave if the table already exists.
|
152
|
-
|
153
|
-
* fail: Raise a ValueError.
|
154
|
-
* replace: Drop the table before inserting new values.
|
155
|
-
* append: Insert new values to the existing table.
|
156
|
-
"""
|
157
|
-
con = self.engine
|
158
|
-
# TODO 增加表格是否存在的判断;我这个函数本质上只能往已存在的表格插入数据
|
159
|
-
if if_exists == 'append':
|
160
|
-
pass
|
161
|
-
elif if_exists == 'replace':
|
162
|
-
con.query(f'TRUNCATE TABLE {table_name}')
|
163
|
-
elif if_exists == 'fail':
|
164
|
-
raise ValueError('表格已存在')
|
165
|
-
else:
|
166
|
-
raise NotImplementedError
|
167
|
-
|
168
|
-
# 1 删除table中不支持的df的列
|
169
|
-
cols = pd.read_sql(f'SHOW COLUMNS FROM {table_name}', con)['Field']
|
170
|
-
cols = list(set(df.columns) & set(cols))
|
171
|
-
df = df[cols]
|
172
|
-
|
173
|
-
# 2 将df每一行数据转成mysql语句文本
|
174
|
-
data = [] # data[i]是第i条数据的sql文本
|
175
|
-
|
176
|
-
# 除了nan,bool值、None值都能正常转换
|
177
|
-
def func(x):
|
178
|
-
# s = con.escape(str(x))
|
179
|
-
s = x
|
180
|
-
if s == 'nan': s = 'NULL' # nan转为NULL
|
181
|
-
return s
|
182
|
-
|
183
|
-
for idx, row in df.iterrows():
|
184
|
-
t = ', '.join(map(func, row))
|
185
|
-
data.append('(' + t + ')')
|
186
|
-
|
187
|
-
# 3 分批导入
|
188
|
-
columns = '( ' + ', '.join(cols) + ' )'
|
189
|
-
for j in range(0, math.ceil(len(data) / patch_size)):
|
190
|
-
subdata = ',\n'.join(data[j * patch_size:(j + 1) * patch_size])
|
191
|
-
con.execute("INSERT IGNORE INTO :a :b VALUES :c",
|
192
|
-
a=table_name, b=columns, c=subdata)
|
193
|
-
con.commit() # 更新后才会起作用
|
194
|
-
|
195
|
-
|
196
|
-
class SqlCodeGenerator:
|
197
|
-
@staticmethod
|
198
|
-
def keys_count(table, keys):
|
199
|
-
codes = [f'-- 分析{table}表中,{keys}出现的种类和次数,按照出现次数从多到少排序',
|
200
|
-
f'SELECT {keys}, COUNT(*) cnt FROM {table} GROUP BY {keys} ORDER BY cnt DESC']
|
201
|
-
return '\n'.join(codes)
|
202
|
-
|
203
|
-
@staticmethod
|
204
|
-
def one2many(table, keys, vars):
|
205
|
-
codes = [f'-- 分析{table}表中,{keys}构成的键,对应{vars}构成的值,是否有一对多的关系,按多到少排序',
|
206
|
-
f'SELECT {keys}, COUNT(DISTINCT {vars}) cnt',
|
207
|
-
f'FROM {table} GROUP BY {keys}',
|
208
|
-
'HAVING cnt > 1 ORDER BY cnt DESC']
|
209
|
-
return '\n'.join(codes)
|
210
|
-
|
211
|
-
|
212
|
-
def demo_sqlengine():
|
213
|
-
db = SqlEngine('ckz', 'runoob')
|
214
|
-
df = db.query('SELECT * FROM apps')
|
215
|
-
print(df)
|
216
|
-
|
217
|
-
|
218
|
-
class MultiEnumTable:
|
219
|
-
"""多份枚举表的双向映射
|
220
|
-
目前是用来做数据库表中的枚举值映射,但实际可以通用于很多地方
|
221
|
-
|
222
|
-
>>> met = MultiEnumTable()
|
223
|
-
>>> met.add_enum_table('subject', [5, 8, 6], ['语文', '数学', '英语'])
|
224
|
-
>>> met.add_enum_table_from_dict('grade', {1: '小学', 2: '初中', 3: '高中'})
|
225
|
-
|
226
|
-
>>> met['subject'][6]
|
227
|
-
'英语'
|
228
|
-
>>> met['subject'].inverse['英语']
|
229
|
-
6
|
230
|
-
|
231
|
-
>>> met.decode('subject', 5)
|
232
|
-
'语文'
|
233
|
-
>>> met.encode('subject', '数学')
|
234
|
-
8
|
235
|
-
|
236
|
-
>>> met.decodes('grade', [1, 3, 3, 2, 1])
|
237
|
-
['小学', '高中', '高中', '初中', '小学']
|
238
|
-
>>> met.encodes('grade', ['小学', '高中', '大学', '初中', '小学'])
|
239
|
-
[1, 3, None, 2, 1]
|
240
|
-
"""
|
241
|
-
|
242
|
-
def __init__(self):
|
243
|
-
self.enum_tables = dict()
|
244
|
-
|
245
|
-
def __getitem__(self, table):
|
246
|
-
return self.enum_tables[table]
|
247
|
-
|
248
|
-
def add_enum_table(self, table, ids, values):
|
249
|
-
"""增加一个映射表"""
|
250
|
-
self.enum_tables[table] = bidict({k: v for k, v in zip(ids, values)})
|
251
|
-
|
252
|
-
def add_enum_table_from_dict(self, table, d):
|
253
|
-
self.enum_tables[table] = bidict({k: v for k, v in d.items()})
|
254
|
-
|
255
|
-
def set_alias(self, table, alias):
|
256
|
-
"""已有table的其他alias别名
|
257
|
-
:param alias: list
|
258
|
-
"""
|
259
|
-
for a in alias:
|
260
|
-
self.enum_tables[a] = self.enum_tables[table]
|
261
|
-
|
262
|
-
def decode(self, table, id_, default=None):
|
263
|
-
"""转明文"""
|
264
|
-
return self.enum_tables[table].get(id_, default)
|
265
|
-
|
266
|
-
def encode(self, table, value, default=None):
|
267
|
-
"""转id"""
|
268
|
-
return self.enum_tables[table].inverse.get(value, default)
|
269
|
-
|
270
|
-
def decodes(self, table, ids, default=None):
|
271
|
-
d = self.enum_tables[table]
|
272
|
-
return [d.get(k, default) for k in ids]
|
273
|
-
|
274
|
-
def encodes(self, table, values, default=None):
|
275
|
-
d = self.enum_tables[table].inverse
|
276
|
-
return [d.get(v, default) for v in values]
|
277
|
-
|
278
|
-
|
279
|
-
def adjust_repeat_data(li, suffix='+'):
|
280
|
-
""" 分析序列li里的值,对出现重复的值进行特殊标记去重
|
281
|
-
:param li: list,每个元素值一般是str
|
282
|
-
:param suffix: 通过增加什么后缀来去重
|
283
|
-
:return: 新的无重复数值的li
|
284
|
-
|
285
|
-
>>> adjust_repeat_data(['a', 'b', 'a', 'c'])
|
286
|
-
['a', 'b', 'a+', 'c']
|
287
|
-
"""
|
288
|
-
res = []
|
289
|
-
values = set()
|
290
|
-
for x in li:
|
291
|
-
while x in values:
|
292
|
-
x += suffix
|
293
|
-
# print(x)
|
294
|
-
res.append(x)
|
295
|
-
values.add(x)
|
296
|
-
|
297
|
-
return res
|
1
|
+
#!/usr/bin/env python3
|
2
|
+
# -*- coding: utf-8 -*-
|
3
|
+
# @Author : 陈坤泽
|
4
|
+
# @Email : 877362867@qq.com
|
5
|
+
# @Date : 2020/06/03 09:52
|
6
|
+
|
7
|
+
from pyxllib.prog.pupil import check_install_package
|
8
|
+
|
9
|
+
check_install_package('bidict')
|
10
|
+
check_install_package('sqlalchemy')
|
11
|
+
check_install_package('mysqlclient')
|
12
|
+
|
13
|
+
import math
|
14
|
+
|
15
|
+
from bidict import bidict
|
16
|
+
import pandas as pd
|
17
|
+
import sqlalchemy
|
18
|
+
|
19
|
+
from pyxllib.file.specialist import File
|
20
|
+
|
21
|
+
SQL_LIB_ACCOUNT_FILE = File(__file__).parent / 'sqllibaccount.pkl'
|
22
|
+
|
23
|
+
|
24
|
+
def create_account_df(file='sqllibaccount.pkl'):
|
25
|
+
"""请在这里设置您个人的账户密码,并在运行完后,销毁明文信息"""
|
26
|
+
df = pd.DataFrame.from_records([
|
27
|
+
['ckz', 'rm.sbsql.rds.aliyuncs.com', '', '', 'dddddd'],
|
28
|
+
['ckzlocal', '0.0.0.0', '', '', 'eeeeee'],
|
29
|
+
], columns=['index_name', 'host', 'port', 'user', 'passwd'])
|
30
|
+
df['port'] = df['port'].replace('', '3306') # 没写端口的默认值
|
31
|
+
df['user'] = df['user'].replace('', 'root') # 没写用户名的默认值
|
32
|
+
df['passwd'] = df['passwd'].replace('', '123456') # 没写密码的默认值
|
33
|
+
df.set_index('index_name', inplace=True)
|
34
|
+
File(file).write(df)
|
35
|
+
|
36
|
+
|
37
|
+
class SqlEngine:
|
38
|
+
"""mysql 通用基础类
|
39
|
+
"""
|
40
|
+
|
41
|
+
def __init__(self, alias=None, database=None, *,
|
42
|
+
user='root', passwd='123456', host=None, port='3306',
|
43
|
+
connect_timeout=None, account_file_path=None):
|
44
|
+
""" 初始化需要连接数据库
|
45
|
+
|
46
|
+
:param alias: 数据库的简化别名,为了方便快速调用及隐藏明文密码
|
47
|
+
使用该参数将会覆盖掉已有的user、passwd、host、port参数值
|
48
|
+
例如我自己设置的别名有:
|
49
|
+
ckz,我自己阿里云上的个人数据库
|
50
|
+
ckzlocal,本PC开的数据库
|
51
|
+
:param account_file_path: 使用alias时才有效
|
52
|
+
该参数指定存储账号信息的pkl文件所在位置,注意pkl的格式必须用类似下述的代码方式生成
|
53
|
+
默认从与该脚本同目录下的 sqllibaccount.pkl 文件获取
|
54
|
+
|
55
|
+
:param database: 数据库名称
|
56
|
+
例如在快乐做教研时一些相关数据库名:
|
57
|
+
tr,教研
|
58
|
+
tr_develop,教研开发数据
|
59
|
+
tr_test,教研测试数据
|
60
|
+
|
61
|
+
:param connect_timeout: 连接超时时等待秒数
|
62
|
+
如果设置,建议2秒以上
|
63
|
+
|
64
|
+
:return:
|
65
|
+
"""
|
66
|
+
|
67
|
+
# 1 读取地址、账号信息
|
68
|
+
if alias:
|
69
|
+
if account_file_path is None:
|
70
|
+
account_file_path = File(SQL_LIB_ACCOUNT_FILE)
|
71
|
+
# dprint(alias,account_file_path)
|
72
|
+
record = File(account_file_path).read().loc[alias] # 从文件读取账号信息
|
73
|
+
user, passwd, host, port = record.user, record.passwd, record.host, record.port
|
74
|
+
|
75
|
+
# 2 '数据库类型+数据库驱动名称://用户名:口令@机器地址:端口号/数据库名'
|
76
|
+
address = f'mysql+mysqldb://{user}:{passwd}@{host}:{port}/{database}?charset=utf8mb4'
|
77
|
+
# 3 存储成员
|
78
|
+
self.alias, self.database = alias, database
|
79
|
+
connect_args = {"connect_timeout": connect_timeout} if connect_timeout else {}
|
80
|
+
self.engine = sqlalchemy.create_engine(address, connect_args=connect_args)
|
81
|
+
|
82
|
+
def query(self, sql, index_col=None, coerce_float=True, params=None,
|
83
|
+
parse_dates=None, columns=None, chunksize=None):
|
84
|
+
"""本质上就是pd.read_sql函数
|
85
|
+
|
86
|
+
pd.read_sql()知道这些就够用了 - 漫步量化 - CSDN博客:
|
87
|
+
https://blog.csdn.net/The_Time_Runner/article/details/86601988
|
88
|
+
|
89
|
+
官方文档:pandas.read_sql — pandas 0.25.1 documentation:
|
90
|
+
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_sql.html
|
91
|
+
|
92
|
+
:param sql: 命令字符串,可以写%s设置
|
93
|
+
这里我做了扩展:
|
94
|
+
单语句: '...'
|
95
|
+
多语句: ['...', '...'],默认\n隔开
|
96
|
+
:param index_col: 设为索引列
|
97
|
+
:param coerce_float: 设为float类型的列
|
98
|
+
:param params: 和sql命令相关,具体语法规则与所用的引擎相关,例如我这里是用sqlalchemy,支持用法
|
99
|
+
'SELECT point_name FROM tr_point LIMIT %s', params=(5,)) # list、tuple等列举每个%s的值
|
100
|
+
'SELECT point_name FROM tr_point LIMIT %(n)s', params={'n', 5}) # 是用dict关联命名参数
|
101
|
+
:param parse_dates: 转为datetime类型的列
|
102
|
+
:param columns: 要选取的列。一般没啥用,因为在sql命令里面一般就指定要选择的列了
|
103
|
+
:param chunksize: 如果提供了一个整数值,那么就会返回一个generator,每次输出的行数就是提供的值的大小
|
104
|
+
:return: DataFrame类型的数据
|
105
|
+
"""
|
106
|
+
# 1 合并sql命令
|
107
|
+
if isinstance(sql, str): sql = [sql]
|
108
|
+
sql = '\n'.join(sql)
|
109
|
+
|
110
|
+
# 含有 % 的特殊符号要转义
|
111
|
+
# import sqlalchemy
|
112
|
+
# sql = sqlalchemy.text(sql)
|
113
|
+
|
114
|
+
# 2 解析结果
|
115
|
+
res = pd.read_sql(sql, self.engine, index_col=index_col, coerce_float=coerce_float, params=params,
|
116
|
+
parse_dates=parse_dates, columns=columns, chunksize=chunksize)
|
117
|
+
return res
|
118
|
+
|
119
|
+
def execute(self, statement, *multiparams, **params):
|
120
|
+
"""本质上就是sqlalchemy.con.execute的封装
|
121
|
+
|
122
|
+
可以这样使用:
|
123
|
+
hsql.execute('UPDATE spell_check SET count=:count WHERE old=:old AND new=:new',
|
124
|
+
count=count[0] + add, old=old, new=new)
|
125
|
+
"""
|
126
|
+
# 1 解析sql命令
|
127
|
+
if isinstance(statement, str): statement = [statement]
|
128
|
+
statement = '\n'.join(statement)
|
129
|
+
statement = sqlalchemy.text(statement)
|
130
|
+
|
131
|
+
# 2 如果设置了getdf参数
|
132
|
+
res = self.engine.execute(statement, *multiparams, **params)
|
133
|
+
return res
|
134
|
+
|
135
|
+
def insert_from_df(self, df, table_name, patch_size=100, if_exists='append'):
|
136
|
+
"""将df写入con数据库的table_name表格
|
137
|
+
|
138
|
+
190731周三18:51,TODO
|
139
|
+
可以先用:df.to_sql('formula_stat', HistudySQL('dev', 'tr_develop').con, if_exists='replace')
|
140
|
+
191017周四10:21,目前这函数改来改去,都还没严格测试呢~~
|
141
|
+
|
142
|
+
这个函数开发要参考:DataFrame.to_sql()
|
143
|
+
是因为其con参数好像不支持pymysql
|
144
|
+
|
145
|
+
:param df: DataFrane类型表格数据
|
146
|
+
:param table_name: 要写入的表格名
|
147
|
+
:param patch_size: 每轮要写入的数量
|
148
|
+
如果df很大,是无法一次性用sql语句写入的,一般要分批写
|
149
|
+
patch_size是设置每批导入多少条数据
|
150
|
+
:param if_exists: {'fail', 'replace', 'append'}, default 'append'
|
151
|
+
How to behave if the table already exists.
|
152
|
+
|
153
|
+
* fail: Raise a ValueError.
|
154
|
+
* replace: Drop the table before inserting new values.
|
155
|
+
* append: Insert new values to the existing table.
|
156
|
+
"""
|
157
|
+
con = self.engine
|
158
|
+
# TODO 增加表格是否存在的判断;我这个函数本质上只能往已存在的表格插入数据
|
159
|
+
if if_exists == 'append':
|
160
|
+
pass
|
161
|
+
elif if_exists == 'replace':
|
162
|
+
con.query(f'TRUNCATE TABLE {table_name}')
|
163
|
+
elif if_exists == 'fail':
|
164
|
+
raise ValueError('表格已存在')
|
165
|
+
else:
|
166
|
+
raise NotImplementedError
|
167
|
+
|
168
|
+
# 1 删除table中不支持的df的列
|
169
|
+
cols = pd.read_sql(f'SHOW COLUMNS FROM {table_name}', con)['Field']
|
170
|
+
cols = list(set(df.columns) & set(cols))
|
171
|
+
df = df[cols]
|
172
|
+
|
173
|
+
# 2 将df每一行数据转成mysql语句文本
|
174
|
+
data = [] # data[i]是第i条数据的sql文本
|
175
|
+
|
176
|
+
# 除了nan,bool值、None值都能正常转换
|
177
|
+
def func(x):
|
178
|
+
# s = con.escape(str(x))
|
179
|
+
s = x
|
180
|
+
if s == 'nan': s = 'NULL' # nan转为NULL
|
181
|
+
return s
|
182
|
+
|
183
|
+
for idx, row in df.iterrows():
|
184
|
+
t = ', '.join(map(func, row))
|
185
|
+
data.append('(' + t + ')')
|
186
|
+
|
187
|
+
# 3 分批导入
|
188
|
+
columns = '( ' + ', '.join(cols) + ' )'
|
189
|
+
for j in range(0, math.ceil(len(data) / patch_size)):
|
190
|
+
subdata = ',\n'.join(data[j * patch_size:(j + 1) * patch_size])
|
191
|
+
con.execute("INSERT IGNORE INTO :a :b VALUES :c",
|
192
|
+
a=table_name, b=columns, c=subdata)
|
193
|
+
con.commit() # 更新后才会起作用
|
194
|
+
|
195
|
+
|
196
|
+
class SqlCodeGenerator:
|
197
|
+
@staticmethod
|
198
|
+
def keys_count(table, keys):
|
199
|
+
codes = [f'-- 分析{table}表中,{keys}出现的种类和次数,按照出现次数从多到少排序',
|
200
|
+
f'SELECT {keys}, COUNT(*) cnt FROM {table} GROUP BY {keys} ORDER BY cnt DESC']
|
201
|
+
return '\n'.join(codes)
|
202
|
+
|
203
|
+
@staticmethod
|
204
|
+
def one2many(table, keys, vars):
|
205
|
+
codes = [f'-- 分析{table}表中,{keys}构成的键,对应{vars}构成的值,是否有一对多的关系,按多到少排序',
|
206
|
+
f'SELECT {keys}, COUNT(DISTINCT {vars}) cnt',
|
207
|
+
f'FROM {table} GROUP BY {keys}',
|
208
|
+
'HAVING cnt > 1 ORDER BY cnt DESC']
|
209
|
+
return '\n'.join(codes)
|
210
|
+
|
211
|
+
|
212
|
+
def demo_sqlengine():
|
213
|
+
db = SqlEngine('ckz', 'runoob')
|
214
|
+
df = db.query('SELECT * FROM apps')
|
215
|
+
print(df)
|
216
|
+
|
217
|
+
|
218
|
+
class MultiEnumTable:
|
219
|
+
"""多份枚举表的双向映射
|
220
|
+
目前是用来做数据库表中的枚举值映射,但实际可以通用于很多地方
|
221
|
+
|
222
|
+
>>> met = MultiEnumTable()
|
223
|
+
>>> met.add_enum_table('subject', [5, 8, 6], ['语文', '数学', '英语'])
|
224
|
+
>>> met.add_enum_table_from_dict('grade', {1: '小学', 2: '初中', 3: '高中'})
|
225
|
+
|
226
|
+
>>> met['subject'][6]
|
227
|
+
'英语'
|
228
|
+
>>> met['subject'].inverse['英语']
|
229
|
+
6
|
230
|
+
|
231
|
+
>>> met.decode('subject', 5)
|
232
|
+
'语文'
|
233
|
+
>>> met.encode('subject', '数学')
|
234
|
+
8
|
235
|
+
|
236
|
+
>>> met.decodes('grade', [1, 3, 3, 2, 1])
|
237
|
+
['小学', '高中', '高中', '初中', '小学']
|
238
|
+
>>> met.encodes('grade', ['小学', '高中', '大学', '初中', '小学'])
|
239
|
+
[1, 3, None, 2, 1]
|
240
|
+
"""
|
241
|
+
|
242
|
+
def __init__(self):
|
243
|
+
self.enum_tables = dict()
|
244
|
+
|
245
|
+
def __getitem__(self, table):
|
246
|
+
return self.enum_tables[table]
|
247
|
+
|
248
|
+
def add_enum_table(self, table, ids, values):
|
249
|
+
"""增加一个映射表"""
|
250
|
+
self.enum_tables[table] = bidict({k: v for k, v in zip(ids, values)})
|
251
|
+
|
252
|
+
def add_enum_table_from_dict(self, table, d):
|
253
|
+
self.enum_tables[table] = bidict({k: v for k, v in d.items()})
|
254
|
+
|
255
|
+
def set_alias(self, table, alias):
|
256
|
+
"""已有table的其他alias别名
|
257
|
+
:param alias: list
|
258
|
+
"""
|
259
|
+
for a in alias:
|
260
|
+
self.enum_tables[a] = self.enum_tables[table]
|
261
|
+
|
262
|
+
def decode(self, table, id_, default=None):
|
263
|
+
"""转明文"""
|
264
|
+
return self.enum_tables[table].get(id_, default)
|
265
|
+
|
266
|
+
def encode(self, table, value, default=None):
|
267
|
+
"""转id"""
|
268
|
+
return self.enum_tables[table].inverse.get(value, default)
|
269
|
+
|
270
|
+
def decodes(self, table, ids, default=None):
|
271
|
+
d = self.enum_tables[table]
|
272
|
+
return [d.get(k, default) for k in ids]
|
273
|
+
|
274
|
+
def encodes(self, table, values, default=None):
|
275
|
+
d = self.enum_tables[table].inverse
|
276
|
+
return [d.get(v, default) for v in values]
|
277
|
+
|
278
|
+
|
279
|
+
def adjust_repeat_data(li, suffix='+'):
|
280
|
+
""" 分析序列li里的值,对出现重复的值进行特殊标记去重
|
281
|
+
:param li: list,每个元素值一般是str
|
282
|
+
:param suffix: 通过增加什么后缀来去重
|
283
|
+
:return: 新的无重复数值的li
|
284
|
+
|
285
|
+
>>> adjust_repeat_data(['a', 'b', 'a', 'c'])
|
286
|
+
['a', 'b', 'a+', 'c']
|
287
|
+
"""
|
288
|
+
res = []
|
289
|
+
values = set()
|
290
|
+
for x in li:
|
291
|
+
while x in values:
|
292
|
+
x += suffix
|
293
|
+
# print(x)
|
294
|
+
res.append(x)
|
295
|
+
values.add(x)
|
296
|
+
|
297
|
+
return res
|