pyvale 2025.7.1__cp311-cp311-win_amd64.whl → 2025.8.1__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of pyvale might be problematic. Click here for more details.

Files changed (186) hide show
  1. pyvale/__init__.py +12 -92
  2. pyvale/blender/__init__.py +23 -0
  3. pyvale/{pyvaleexceptions.py → blender/blenderexceptions.py} +0 -3
  4. pyvale/{blenderlightdata.py → blender/blenderlightdata.py} +3 -3
  5. pyvale/{blendermaterialdata.py → blender/blendermaterialdata.py} +1 -1
  6. pyvale/{blenderrenderdata.py → blender/blenderrenderdata.py} +5 -3
  7. pyvale/{blenderscene.py → blender/blenderscene.py} +33 -30
  8. pyvale/{blendertools.py → blender/blendertools.py} +14 -10
  9. pyvale/dataset/__init__.py +7 -0
  10. pyvale/dataset/dataset.py +443 -0
  11. pyvale/dic/__init__.py +20 -0
  12. pyvale/dic/cpp/dicfourier.cpp +36 -4
  13. pyvale/dic/cpp/dicinterpolator.cpp +56 -1
  14. pyvale/dic/cpp/dicmain.cpp +24 -19
  15. pyvale/dic/cpp/dicoptimizer.cpp +6 -1
  16. pyvale/dic/cpp/dicscanmethod.cpp +32 -32
  17. pyvale/dic/cpp/dicsignalhandler.cpp +16 -0
  18. pyvale/dic/cpp/dicstrain.cpp +7 -3
  19. pyvale/dic/cpp/dicutil.cpp +79 -23
  20. pyvale/{dic2d.py → dic/dic2d.py} +51 -29
  21. pyvale/dic/dic2dconv.py +6 -0
  22. pyvale/dic/dic2dcpp.cp311-win_amd64.pyd +0 -0
  23. pyvale/{dicchecks.py → dic/dicchecks.py} +28 -16
  24. pyvale/dic/dicdataimport.py +370 -0
  25. pyvale/{dicregionofinterest.py → dic/dicregionofinterest.py} +169 -12
  26. pyvale/{dicresults.py → dic/dicresults.py} +4 -1
  27. pyvale/{dicstrain.py → dic/dicstrain.py} +9 -9
  28. pyvale/examples/basics/{ex1_1_basicscalars_therm2d.py → ex1a_basicscalars_therm2d.py} +12 -9
  29. pyvale/examples/basics/{ex1_2_sensormodel_therm2d.py → ex1b_sensormodel_therm2d.py} +17 -14
  30. pyvale/examples/basics/{ex1_3_customsens_therm3d.py → ex1c_customsens_therm3d.py} +27 -24
  31. pyvale/examples/basics/{ex1_4_basicerrors_therm3d.py → ex1d_basicerrors_therm3d.py} +32 -29
  32. pyvale/examples/basics/{ex1_5_fielderrs_therm3d.py → ex1e_fielderrs_therm3d.py} +19 -15
  33. pyvale/examples/basics/{ex1_6_caliberrs_therm2d.py → ex1f_caliberrs_therm2d.py} +20 -16
  34. pyvale/examples/basics/{ex1_7_spatavg_therm2d.py → ex1g_spatavg_therm2d.py} +19 -16
  35. pyvale/examples/basics/{ex2_1_basicvectors_disp2d.py → ex2a_basicvectors_disp2d.py} +13 -10
  36. pyvale/examples/basics/{ex2_2_vectorsens_disp2d.py → ex2b_vectorsens_disp2d.py} +19 -15
  37. pyvale/examples/basics/{ex2_3_sensangle_disp2d.py → ex2c_sensangle_disp2d.py} +21 -18
  38. pyvale/examples/basics/{ex2_4_chainfielderrs_disp2d.py → ex2d_chainfielderrs_disp2d.py} +31 -29
  39. pyvale/examples/basics/{ex2_5_vectorfields3d_disp3d.py → ex2e_vectorfields3d_disp3d.py} +21 -18
  40. pyvale/examples/basics/{ex3_1_basictensors_strain2d.py → ex3a_basictensors_strain2d.py} +16 -14
  41. pyvale/examples/basics/{ex3_2_tensorsens2d_strain2d.py → ex3b_tensorsens2d_strain2d.py} +17 -14
  42. pyvale/examples/basics/{ex3_3_tensorsens3d_strain3d.py → ex3c_tensorsens3d_strain3d.py} +25 -22
  43. pyvale/examples/basics/{ex4_1_expsim2d_thermmech2d.py → ex4a_expsim2d_thermmech2d.py} +17 -14
  44. pyvale/examples/basics/{ex4_2_expsim3d_thermmech3d.py → ex4b_expsim3d_thermmech3d.py} +37 -34
  45. pyvale/examples/basics/ex5_nomesh.py +24 -0
  46. pyvale/examples/dic/ex1_2_blenderdeformed.py +174 -0
  47. pyvale/examples/dic/ex1_region_of_interest.py +6 -3
  48. pyvale/examples/dic/ex2_plate_with_hole.py +21 -18
  49. pyvale/examples/dic/ex3_plate_with_hole_strain.py +8 -6
  50. pyvale/examples/dic/ex4_dic_blender.py +17 -15
  51. pyvale/examples/dic/ex5_dic_challenge.py +19 -14
  52. pyvale/examples/genanalyticdata/ex1_1_scalarvisualisation.py +16 -10
  53. pyvale/examples/genanalyticdata/ex1_2_scalarcasebuild.py +3 -3
  54. pyvale/examples/genanalyticdata/ex2_1_analyticsensors.py +29 -23
  55. pyvale/examples/genanalyticdata/ex2_2_analyticsensors_nomesh.py +67 -0
  56. pyvale/examples/imagedef2d/ex_imagedef2d_todisk.py +12 -9
  57. pyvale/examples/mooseherder/ex0_create_moose_config.py +65 -0
  58. pyvale/examples/mooseherder/ex1a_modify_moose_input.py +71 -0
  59. pyvale/examples/mooseherder/ex1b_modify_gmsh_input.py +69 -0
  60. pyvale/examples/mooseherder/ex2a_run_moose_once.py +80 -0
  61. pyvale/examples/mooseherder/ex2b_run_gmsh_once.py +64 -0
  62. pyvale/examples/mooseherder/ex2c_run_both_once.py +114 -0
  63. pyvale/examples/mooseherder/ex3_run_moose_seq_para.py +157 -0
  64. pyvale/examples/mooseherder/ex4_run_gmsh-moose_seq_para.py +176 -0
  65. pyvale/examples/mooseherder/ex5_run_moose_paramulti.py +136 -0
  66. pyvale/examples/mooseherder/ex6_read_moose_exodus.py +163 -0
  67. pyvale/examples/mooseherder/ex7a_read_moose_herd_results.py +153 -0
  68. pyvale/examples/mooseherder/ex7b_read_multi_herd_results.py +116 -0
  69. pyvale/examples/mooseherder/ex7c_read_multi_gmshmoose_results.py +127 -0
  70. pyvale/examples/mooseherder/ex7d_readconfig_multi_gmshmoose_results.py +143 -0
  71. pyvale/examples/mooseherder/ex8_read_existing_sweep_output.py +72 -0
  72. pyvale/examples/renderblender/ex1_1_blenderscene.py +24 -20
  73. pyvale/examples/renderblender/ex1_2_blenderdeformed.py +22 -18
  74. pyvale/examples/renderblender/ex2_1_stereoscene.py +36 -29
  75. pyvale/examples/renderblender/ex2_2_stereodeformed.py +26 -20
  76. pyvale/examples/renderblender/ex3_1_blendercalibration.py +24 -17
  77. pyvale/examples/renderrasterisation/ex_rastenp.py +14 -12
  78. pyvale/examples/renderrasterisation/ex_rastercyth_oneframe.py +14 -15
  79. pyvale/examples/renderrasterisation/ex_rastercyth_static_cypara.py +13 -11
  80. pyvale/examples/renderrasterisation/ex_rastercyth_static_pypara.py +13 -11
  81. pyvale/mooseherder/__init__.py +32 -0
  82. pyvale/mooseherder/directorymanager.py +416 -0
  83. pyvale/mooseherder/exodusreader.py +763 -0
  84. pyvale/mooseherder/gmshrunner.py +163 -0
  85. pyvale/mooseherder/inputmodifier.py +236 -0
  86. pyvale/mooseherder/mooseconfig.py +226 -0
  87. pyvale/mooseherder/mooseherd.py +527 -0
  88. pyvale/mooseherder/mooserunner.py +303 -0
  89. pyvale/mooseherder/outputreader.py +22 -0
  90. pyvale/mooseherder/simdata.py +92 -0
  91. pyvale/mooseherder/simrunner.py +31 -0
  92. pyvale/mooseherder/sweepreader.py +356 -0
  93. pyvale/mooseherder/sweeptools.py +76 -0
  94. pyvale/sensorsim/__init__.py +82 -0
  95. pyvale/{camera.py → sensorsim/camera.py} +7 -7
  96. pyvale/{camerasensor.py → sensorsim/camerasensor.py} +7 -7
  97. pyvale/{camerastereo.py → sensorsim/camerastereo.py} +2 -2
  98. pyvale/{cameratools.py → sensorsim/cameratools.py} +4 -4
  99. pyvale/{cython → sensorsim/cython}/rastercyth.c +596 -596
  100. pyvale/{cython → sensorsim/cython}/rastercyth.cp311-win_amd64.pyd +0 -0
  101. pyvale/{cython → sensorsim/cython}/rastercyth.py +16 -17
  102. pyvale/{errorcalculator.py → sensorsim/errorcalculator.py} +1 -1
  103. pyvale/{errorintegrator.py → sensorsim/errorintegrator.py} +2 -2
  104. pyvale/{errorrand.py → sensorsim/errorrand.py} +4 -4
  105. pyvale/{errorsyscalib.py → sensorsim/errorsyscalib.py} +2 -2
  106. pyvale/{errorsysdep.py → sensorsim/errorsysdep.py} +2 -2
  107. pyvale/{errorsysfield.py → sensorsim/errorsysfield.py} +8 -8
  108. pyvale/{errorsysindep.py → sensorsim/errorsysindep.py} +3 -3
  109. pyvale/sensorsim/exceptions.py +8 -0
  110. pyvale/{experimentsimulator.py → sensorsim/experimentsimulator.py} +23 -3
  111. pyvale/{field.py → sensorsim/field.py} +1 -1
  112. pyvale/{fieldconverter.py → sensorsim/fieldconverter.py} +72 -19
  113. pyvale/sensorsim/fieldinterp.py +37 -0
  114. pyvale/sensorsim/fieldinterpmesh.py +124 -0
  115. pyvale/sensorsim/fieldinterppoints.py +55 -0
  116. pyvale/{fieldsampler.py → sensorsim/fieldsampler.py} +4 -4
  117. pyvale/{fieldscalar.py → sensorsim/fieldscalar.py} +28 -24
  118. pyvale/{fieldtensor.py → sensorsim/fieldtensor.py} +33 -31
  119. pyvale/{fieldvector.py → sensorsim/fieldvector.py} +33 -31
  120. pyvale/{imagedef2d.py → sensorsim/imagedef2d.py} +9 -5
  121. pyvale/{integratorfactory.py → sensorsim/integratorfactory.py} +6 -6
  122. pyvale/{integratorquadrature.py → sensorsim/integratorquadrature.py} +3 -3
  123. pyvale/{integratorrectangle.py → sensorsim/integratorrectangle.py} +3 -3
  124. pyvale/{integratorspatial.py → sensorsim/integratorspatial.py} +1 -1
  125. pyvale/{rastercy.py → sensorsim/rastercy.py} +5 -5
  126. pyvale/{rasternp.py → sensorsim/rasternp.py} +9 -9
  127. pyvale/{rasteropts.py → sensorsim/rasteropts.py} +1 -1
  128. pyvale/{renderer.py → sensorsim/renderer.py} +1 -1
  129. pyvale/{rendermesh.py → sensorsim/rendermesh.py} +5 -5
  130. pyvale/{renderscene.py → sensorsim/renderscene.py} +2 -2
  131. pyvale/{sensorarray.py → sensorsim/sensorarray.py} +1 -1
  132. pyvale/{sensorarrayfactory.py → sensorsim/sensorarrayfactory.py} +12 -12
  133. pyvale/{sensorarraypoint.py → sensorsim/sensorarraypoint.py} +10 -8
  134. pyvale/{sensordata.py → sensorsim/sensordata.py} +1 -1
  135. pyvale/{sensortools.py → sensorsim/sensortools.py} +2 -20
  136. pyvale/sensorsim/simtools.py +174 -0
  137. pyvale/{visualexpplotter.py → sensorsim/visualexpplotter.py} +3 -3
  138. pyvale/{visualimages.py → sensorsim/visualimages.py} +2 -2
  139. pyvale/{visualsimanimator.py → sensorsim/visualsimanimator.py} +4 -4
  140. pyvale/{visualsimplotter.py → sensorsim/visualsimplotter.py} +5 -5
  141. pyvale/{visualsimsensors.py → sensorsim/visualsimsensors.py} +12 -12
  142. pyvale/{visualtools.py → sensorsim/visualtools.py} +1 -1
  143. pyvale/{visualtraceplotter.py → sensorsim/visualtraceplotter.py} +2 -2
  144. pyvale/simcases/case17.geo +3 -0
  145. pyvale/simcases/case17.i +4 -4
  146. pyvale/simcases/run_1case.py +1 -9
  147. pyvale/simcases/run_all_cases.py +1 -1
  148. pyvale/simcases/run_build_case.py +1 -1
  149. pyvale/simcases/run_example_cases.py +1 -1
  150. pyvale/verif/__init__.py +12 -0
  151. pyvale/{analyticsimdatafactory.py → verif/analyticsimdatafactory.py} +2 -2
  152. pyvale/{analyticsimdatagenerator.py → verif/analyticsimdatagenerator.py} +2 -2
  153. pyvale/verif/psens.py +125 -0
  154. pyvale/verif/psensconst.py +18 -0
  155. pyvale/verif/psensmech.py +227 -0
  156. pyvale/verif/psensmultiphys.py +187 -0
  157. pyvale/verif/psensscalar.py +347 -0
  158. pyvale/verif/psenstensor.py +123 -0
  159. pyvale/verif/psensvector.py +116 -0
  160. {pyvale-2025.7.1.dist-info → pyvale-2025.8.1.dist-info}/METADATA +6 -7
  161. pyvale-2025.8.1.dist-info/RECORD +260 -0
  162. pyvale/dataset.py +0 -415
  163. pyvale/dic2dcpp.cp311-win_amd64.pyd +0 -0
  164. pyvale/dicdataimport.py +0 -247
  165. pyvale/simtools.py +0 -67
  166. pyvale-2025.7.1.dist-info/RECORD +0 -211
  167. /pyvale/{blendercalibrationdata.py → blender/blendercalibrationdata.py} +0 -0
  168. /pyvale/{dicspecklegenerator.py → dic/dicspecklegenerator.py} +0 -0
  169. /pyvale/{dicspecklequality.py → dic/dicspecklequality.py} +0 -0
  170. /pyvale/{dicstrainresults.py → dic/dicstrainresults.py} +0 -0
  171. /pyvale/{cameradata.py → sensorsim/cameradata.py} +0 -0
  172. /pyvale/{cameradata2d.py → sensorsim/cameradata2d.py} +0 -0
  173. /pyvale/{errordriftcalc.py → sensorsim/errordriftcalc.py} +0 -0
  174. /pyvale/{fieldtransform.py → sensorsim/fieldtransform.py} +0 -0
  175. /pyvale/{generatorsrandom.py → sensorsim/generatorsrandom.py} +0 -0
  176. /pyvale/{imagetools.py → sensorsim/imagetools.py} +0 -0
  177. /pyvale/{integratortype.py → sensorsim/integratortype.py} +0 -0
  178. /pyvale/{output.py → sensorsim/output.py} +0 -0
  179. /pyvale/{raster.py → sensorsim/raster.py} +0 -0
  180. /pyvale/{sensordescriptor.py → sensorsim/sensordescriptor.py} +0 -0
  181. /pyvale/{visualimagedef.py → sensorsim/visualimagedef.py} +0 -0
  182. /pyvale/{visualopts.py → sensorsim/visualopts.py} +0 -0
  183. /pyvale/{analyticmeshgen.py → verif/analyticmeshgen.py} +0 -0
  184. {pyvale-2025.7.1.dist-info → pyvale-2025.8.1.dist-info}/WHEEL +0 -0
  185. {pyvale-2025.7.1.dist-info → pyvale-2025.8.1.dist-info}/licenses/LICENSE +0 -0
  186. {pyvale-2025.7.1.dist-info → pyvale-2025.8.1.dist-info}/top_level.txt +0 -0
@@ -23,8 +23,11 @@ Test case: thermo-mechanical analysis of a 2D plate with a temperature gradient.
23
23
 
24
24
  import numpy as np
25
25
  import matplotlib.pyplot as plt
26
- import mooseherder as mh
27
- import pyvale as pyv
26
+
27
+ # Pyvale imports
28
+ import pyvale.mooseherder as mh
29
+ import pyvale.sensorsim as sens
30
+ import pyvale.dataset as dataset
28
31
 
29
32
  #%%
30
33
  # Here we get a list of paths to a set of 3 simulations in this case the
@@ -32,7 +35,7 @@ import pyvale as pyv
32
35
  # coefficient on the other. The mechanical deformation is a result of
33
36
  # thermal expansion. The 3 simulation cases cover a nominal thermal
34
37
  # and a perturbation of +/-10%.
35
- data_paths = pyv.DataSet.thermomechanical_2d_experiment_paths()
38
+ data_paths = dataset.thermomechanical_2d_experiment_paths()
36
39
  elem_dims: int = 2
37
40
 
38
41
  #%%
@@ -43,7 +46,7 @@ disp_comps = ("disp_x","disp_y")
43
46
  sim_list = []
44
47
  for pp in data_paths:
45
48
  sim_data = mh.ExodusReader(pp).read_all_sim_data()
46
- sim_data = pyv.scale_length_units(scale=1000.0,
49
+ sim_data = sens.scale_length_units(scale=1000.0,
47
50
  sim_data=sim_data,
48
51
  disp_comps=disp_comps)
49
52
  sim_list.append(sim_data)
@@ -60,10 +63,10 @@ n_sens = (4,1,1)
60
63
  x_lims = (0.0,100.0)
61
64
  y_lims = (0.0,50.0)
62
65
  z_lims = (0.0,0.0)
63
- tc_sens_pos = pyv.create_sensor_pos_array(n_sens,x_lims,y_lims,z_lims)
66
+ tc_sens_pos = sens.create_sensor_pos_array(n_sens,x_lims,y_lims,z_lims)
64
67
 
65
- tc_sens_data = pyv.SensorData(positions=tc_sens_pos,
66
- sample_times=sample_times)
68
+ tc_sens_data = sens.SensorData(positions=tc_sens_pos,
69
+ sample_times=sample_times)
67
70
 
68
71
  #%%
69
72
  # We use the sensor array factory to give us thermocouples with basic 2%
@@ -72,7 +75,7 @@ tc_sens_data = pyv.SensorData(positions=tc_sens_pos,
72
75
  # we run our experiment the field object that relies on this will switch the
73
76
  # sim data for the required simulation in our list.
74
77
  tc_field_name = "temperature"
75
- tc_array = pyv.SensorArrayFactory \
78
+ tc_array = sens.SensorArrayFactory \
76
79
  .thermocouples_basic_errs(sim_list[0],
77
80
  tc_sens_data,
78
81
  elem_dims=elem_dims,
@@ -82,8 +85,8 @@ tc_array = pyv.SensorArrayFactory \
82
85
  #%%
83
86
  # We place 3 strain gauges along the direction of the temperature gradient.
84
87
  n_sens = (3,1,1)
85
- sg_sens_pos = pyv.create_sensor_pos_array(n_sens,x_lims,y_lims,z_lims)
86
- sg_sens_data = pyv.SensorData(positions=sg_sens_pos,
88
+ sg_sens_pos = sens.create_sensor_pos_array(n_sens,x_lims,y_lims,z_lims)
89
+ sg_sens_data = sens.SensorData(positions=sg_sens_pos,
87
90
  sample_times=sample_times)
88
91
 
89
92
  #%%
@@ -91,7 +94,7 @@ sg_sens_data = pyv.SensorData(positions=sg_sens_pos,
91
94
  sg_field_name = "strain"
92
95
  sg_norm_comps = ("strain_xx","strain_yy")
93
96
  sg_dev_comps = ("strain_xy",)
94
- sg_array = pyv.SensorArrayFactory \
97
+ sg_array = sens.SensorArrayFactory \
95
98
  .strain_gauges_basic_errs(sim_list[0],
96
99
  sg_sens_data,
97
100
  elem_dims=elem_dims,
@@ -106,7 +109,7 @@ sg_array = pyv.SensorArrayFactory \
106
109
  # use this to create an experiment simulator while specifying how many
107
110
  # simulate experiments we want to run per simulation and sensor array.
108
111
  sensor_arrays = [tc_array,sg_array]
109
- exp_sim = pyv.ExperimentSimulator(sim_list,
112
+ exp_sim = sens.ExperimentSimulator(sim_list,
110
113
  sensor_arrays,
111
114
  num_exp_per_sim=1000)
112
115
 
@@ -163,12 +166,12 @@ print(80*"=")
163
166
  # deviation. In the next example we will see how to control these plots.
164
167
  # For now we will plot the temperature traces for the first simulation and
165
168
  # the strain traces for the third simulation in our list of SimData objects.
166
- (fig,ax) = pyv.plot_exp_traces(exp_sim,
169
+ (fig,ax) = sens.plot_exp_traces(exp_sim,
167
170
  component="temperature",
168
171
  sens_array_num=0,
169
172
  sim_num=0)
170
173
 
171
- (fig,ax) = pyv.plot_exp_traces(exp_sim,
174
+ (fig,ax) = sens.plot_exp_traces(exp_sim,
172
175
  component="strain_yy",
173
176
  sens_array_num=1,
174
177
  sim_num=2)
@@ -20,14 +20,17 @@ Test case: thermo-mechanical analysis of a divertor heatsink in 3D
20
20
  from pathlib import Path
21
21
  import numpy as np
22
22
  import matplotlib.pyplot as plt
23
- import mooseherder as mh
24
- import pyvale as pyv
23
+
24
+ # Pyvale imports
25
+ import pyvale.mooseherder as mh
26
+ import pyvale.sensorsim as sens
27
+ import pyvale.dataset as dataset
25
28
 
26
29
  #%%
27
30
  # First we get the path to simulation output file and then read the
28
31
  # simulation into a `SimData` object. In this case our simulation is a
29
32
  # thermomechanical model of a divertor heatsink.
30
- sim_path = pyv.DataSet.thermomechanical_3d_path()
33
+ sim_path = dataset.thermomechanical_3d_path()
31
34
  sim_data = mh.ExodusReader(sim_path).read_all_sim_data()
32
35
  elem_dims: int = 3
33
36
 
@@ -35,7 +38,7 @@ elem_dims: int = 3
35
38
  # We scale our length and displacement units to mm to help with
36
39
  # visualisation.
37
40
  disp_comps = ("disp_x","disp_y","disp_z")
38
- sim_data = pyv.scale_length_units(scale=1000.0,
41
+ sim_data = sens.scale_length_units(scale=1000.0,
39
42
  sim_data=sim_data,
40
43
  disp_comps=disp_comps)
41
44
 
@@ -59,15 +62,15 @@ x_lims = (12.5,12.5)
59
62
  y_lims = (0.0,33.0)
60
63
  z_lims = (0.0,12.0)
61
64
  n_sens = (1,4,1)
62
- tc_sens_pos = pyv.create_sensor_pos_array(n_sens,x_lims,y_lims,z_lims)
65
+ tc_sens_pos = sens.create_sensor_pos_array(n_sens,x_lims,y_lims,z_lims)
63
66
 
64
- tc_sens_data = pyv.SensorData(positions=tc_sens_pos,
67
+ tc_sens_data = sens.SensorData(positions=tc_sens_pos,
65
68
  sample_times=sample_times)
66
69
  #%%
67
70
  # We use the sensor array factory to create our thermocouple array with no
68
71
  # errors.
69
72
  tc_field_name = "temperature"
70
- tc_array = pyv.SensorArrayFactory \
73
+ tc_array = sens.SensorArrayFactory \
71
74
  .thermocouples_no_errs(sim_data,
72
75
  tc_sens_data,
73
76
  elem_dims=elem_dims,
@@ -76,30 +79,30 @@ tc_array = pyv.SensorArrayFactory \
76
79
  # Now we build our error chain starting with some basic errors on the order
77
80
  # of 1 degree.
78
81
  tc_err_chain = []
79
- tc_err_chain.append(pyv.ErrSysUnif(low=1.0,high=1.0))
80
- tc_err_chain.append(pyv.ErrRandNorm(std=1.0))
82
+ tc_err_chain.append(sens.ErrSysUnif(low=1.0,high=1.0))
83
+ tc_err_chain.append(sens.ErrRandNorm(std=1.0))
81
84
 
82
85
  #%%
83
86
  # Now we add positioning error for our thermocouples.
84
87
  tc_pos_uncert = 0.1 # units = mm
85
- tc_pos_rand = (pyv.GenNormal(std=tc_pos_uncert),
86
- pyv.GenNormal(std=tc_pos_uncert),
87
- pyv.GenNormal(std=tc_pos_uncert))
88
+ tc_pos_rand = (sens.GenNormal(std=tc_pos_uncert),
89
+ sens.GenNormal(std=tc_pos_uncert),
90
+ sens.GenNormal(std=tc_pos_uncert))
88
91
 
89
92
  #%%
90
93
  # We block translation in x so the thermocouples stay attached.
91
94
  tc_pos_lock = np.full(tc_sens_pos.shape,False,dtype=bool)
92
95
  tc_pos_lock[:,0] = True
93
96
 
94
- tc_field_err_data = pyv.ErrFieldData(pos_rand_xyz=tc_pos_rand,
97
+ tc_field_err_data = sens.ErrFieldData(pos_rand_xyz=tc_pos_rand,
95
98
  pos_lock_xyz=tc_pos_lock)
96
- tc_err_chain.append(pyv.ErrSysField(tc_array.get_field(),
99
+ tc_err_chain.append(sens.ErrSysField(tc_array.get_field(),
97
100
 
98
101
  tc_field_err_data))
99
102
  #%%
100
103
  # We have finished our error chain so we can build our error integrator and
101
104
  # attach it to our thermocouple array.
102
- tc_error_int = pyv.ErrIntegrator(tc_err_chain,
105
+ tc_error_int = sens.ErrIntegrator(tc_err_chain,
103
106
  tc_sens_data,
104
107
  tc_array.get_measurement_shape())
105
108
  tc_array.set_error_integrator(tc_error_int)
@@ -107,7 +110,7 @@ tc_array.set_error_integrator(tc_error_int)
107
110
  #%%
108
111
  # We visualise our thermcouple locations on our mesh to make sure they are
109
112
  # in the correct positions.
110
- pv_plot = pyv.plot_point_sensors_on_sim(tc_array,"temperature")
113
+ pv_plot = sens.plot_point_sensors_on_sim(tc_array,"temperature")
111
114
  pv_plot.camera_position = [(59.354, 43.428, 69.946),
112
115
  (-2.858, 13.189, 4.523),
113
116
  (-0.215, 0.948, -0.233)]
@@ -127,9 +130,9 @@ x_lims = (9.4,9.4)
127
130
  y_lims = (0.0,33.0)
128
131
  z_lims = (12.0,12.0)
129
132
  n_sens = (1,4,1)
130
- sg_sens_pos = pyv.create_sensor_pos_array(n_sens,x_lims,y_lims,z_lims)
133
+ sg_sens_pos = sens.create_sensor_pos_array(n_sens,x_lims,y_lims,z_lims)
131
134
 
132
- sg_sens_data = pyv.SensorData(positions=sg_sens_pos,
135
+ sg_sens_data = sens.SensorData(positions=sg_sens_pos,
133
136
  sample_times=sample_times)
134
137
 
135
138
  #%%
@@ -138,7 +141,7 @@ sg_sens_data = pyv.SensorData(positions=sg_sens_pos,
138
141
  sg_field_name = "strain"
139
142
  sg_norm_comps = ("strain_xx","strain_yy","strain_zz")
140
143
  sg_dev_comps = ("strain_xy","strain_yz","strain_xz")
141
- sg_array = pyv.SensorArrayFactory \
144
+ sg_array = sens.SensorArrayFactory \
142
145
  .strain_gauges_no_errs(sim_data,
143
146
  sg_sens_data,
144
147
  elem_dims=elem_dims,
@@ -150,30 +153,30 @@ sg_array = pyv.SensorArrayFactory \
150
153
  # Now we build our error chain starting with some basic errors on the order
151
154
  # of 1 percent.
152
155
  sg_err_chain = []
153
- sg_err_chain.append(pyv.ErrSysUnifPercent(low_percent=1.0,high_percent=1.0))
154
- sg_err_chain.append(pyv.ErrRandNormPercent(std_percent=1.0))
156
+ sg_err_chain.append(sens.ErrSysUnifPercent(low_percent=1.0,high_percent=1.0))
157
+ sg_err_chain.append(sens.ErrRandNormPercent(std_percent=1.0))
155
158
 
156
159
  #%%
157
160
  # We are going to add +/-2 degree rotation uncertainty to our strain gauges.
158
161
  angle_uncert = 2.0
159
- angle_rand_zyx = (pyv.GenUniform(low=-angle_uncert,high=angle_uncert), # units = deg
160
- pyv.GenUniform(low=-angle_uncert,high=angle_uncert),
161
- pyv.GenUniform(low=-angle_uncert,high=angle_uncert))
162
+ angle_rand_zyx = (sens.GenUniform(low=-angle_uncert,high=angle_uncert), # units = deg
163
+ sens.GenUniform(low=-angle_uncert,high=angle_uncert),
164
+ sens.GenUniform(low=-angle_uncert,high=angle_uncert))
162
165
 
163
166
  #%%
164
167
  # We only allow rotation on the face the strain gauges are on
165
168
  angle_lock = np.full(sg_sens_pos.shape,True,dtype=bool)
166
169
  angle_lock[:,0] = False # Allow rotation about z
167
170
 
168
- sg_field_err_data = pyv.ErrFieldData(ang_rand_zyx=angle_rand_zyx,
171
+ sg_field_err_data = sens.ErrFieldData(ang_rand_zyx=angle_rand_zyx,
169
172
  ang_lock_zyx=angle_lock)
170
- sg_err_chain.append(pyv.ErrSysField(sg_array.get_field(),
173
+ sg_err_chain.append(sens.ErrSysField(sg_array.get_field(),
171
174
  sg_field_err_data))
172
175
 
173
176
  #%%
174
177
  # We have finished our error chain so we can build our error integrator and
175
178
  # attach it to our thermocouple array.
176
- sg_error_int = pyv.ErrIntegrator(sg_err_chain,
179
+ sg_error_int = sens.ErrIntegrator(sg_err_chain,
177
180
  sg_sens_data,
178
181
  sg_array.get_measurement_shape())
179
182
  sg_array.set_error_integrator(sg_error_int)
@@ -181,7 +184,7 @@ sg_array.set_error_integrator(sg_error_int)
181
184
  #%%
182
185
  # Now we visualise the strain gauge locations to make sure they are where
183
186
  # we expect them to be.
184
- pv_plot = pyv.plot_point_sensors_on_sim(sg_array,"strain_yy")
187
+ pv_plot = sens.plot_point_sensors_on_sim(sg_array,"strain_yy")
185
188
  pv_plot.camera_position = [(59.354, 43.428, 69.946),
186
189
  (-2.858, 13.189, 4.523),
187
190
  (-0.215, 0.948, -0.233)]
@@ -200,7 +203,7 @@ pv_plot.show()
200
203
  # all points on the graph.
201
204
  sim_list = [sim_data,]
202
205
  sensor_arrays = [tc_array,sg_array]
203
- exp_sim = pyv.ExperimentSimulator(sim_list,
206
+ exp_sim = sens.ExperimentSimulator(sim_list,
204
207
  sensor_arrays,
205
208
  num_exp_per_sim=100)
206
209
 
@@ -246,11 +249,11 @@ print(80*"=")
246
249
  # the median as the centre line and to fill between the min and max values.
247
250
  # Note that the default here is to plot the mean and fill between 3 times
248
251
  # the standard deviation.
249
- trace_opts = pyv.TraceOptsExperiment(plot_all_exp_points=True,
250
- centre=pyv.EExpVisCentre.MEDIAN,
251
- fill_between=pyv.EExpVisBounds.MINMAX)
252
+ trace_opts = sens.TraceOptsExperiment(plot_all_exp_points=True,
253
+ centre=sens.EExpVisCentre.MEDIAN,
254
+ fill_between=sens.EExpVisBounds.MINMAX)
252
255
 
253
- (fig,ax) = pyv.plot_exp_traces(exp_sim,
256
+ (fig,ax) = sens.plot_exp_traces(exp_sim,
254
257
  component="temperature",
255
258
  sens_array_num=0,
256
259
  sim_num=0,
@@ -259,7 +262,7 @@ if save_figs:
259
262
  fig.savefig(fig_save_path/(save_tag+"_tc_traces.png"),
260
263
  dpi=300, format='png', bbox_inches='tight')
261
264
 
262
- (fig,ax) = pyv.plot_exp_traces(exp_sim,
265
+ (fig,ax) = sens.plot_exp_traces(exp_sim,
263
266
  component="strain_yy",
264
267
  sens_array_num=1,
265
268
  sim_num=0,
@@ -0,0 +1,24 @@
1
+ # ==============================================================================
2
+ # pyvale: the python validation engine
3
+ # License: MIT
4
+ # Copyright (C) 2025 The Computer Aided Validation Team
5
+ # ==============================================================================
6
+
7
+ """Basics: No mesh
8
+ ================================================================================
9
+
10
+ TODO
11
+ """
12
+
13
+ import numpy as np
14
+ import pyvale as pyv
15
+
16
+ # Build an analytic mesh in 2D and create a bi-linear field on the mesh
17
+
18
+ # Run normal pyvale to see output of a sensor array
19
+
20
+
21
+
22
+
23
+
24
+
@@ -0,0 +1,174 @@
1
+ # ==============================================================================
2
+ # pyvale: the python validation engine
3
+ # License: MIT
4
+ # Copyright (C) 2025 The Computer Aided Validation Team
5
+ # ==============================================================================
6
+
7
+ """
8
+ Deforming a sample with 2D DIC
9
+ ===============================================
10
+
11
+ This example follows a similar workflow to the previous Blender example.
12
+ In this example, defomation is applied to sample, and images are rendered at
13
+ each timestep.
14
+
15
+ Test case: mechanical analysis of a plate with a hole loaded in tension.
16
+ """
17
+
18
+ import numpy as np
19
+ from scipy.spatial.transform import Rotation
20
+ from pathlib import Path
21
+
22
+ # Pyvale imports
23
+ import pyvale.sensorsim as sens
24
+ import pyvale.dataset as dataset
25
+ import pyvale.blender as blender
26
+ import pyvale.mooseherder as mh
27
+
28
+ # %%
29
+ # The simulation results are loaded in here in the same way as the previous
30
+ # example. As mentioned this `data_path` can be replaced with your own MOOSE
31
+ # simulation output in exodus format (*.e).
32
+
33
+ data_path = dataset.render_mechanical_3d_path()
34
+ sim_data = mh.ExodusReader(data_path).read_all_sim_data()
35
+
36
+ # %%
37
+ # This is then scaled to mm, as all lengths in Blender are to be set in mm.
38
+ # The `SimData` object is then converted into a `RenderMeshData` object, as
39
+ # this skins the mesh ready to be imported into Blender.
40
+ # The `disp_comps` are the expected direction of displacement. Since this is a
41
+ # 3D deformation test case, displacement is expected in the x, y and z directions.
42
+
43
+ disp_comps = ("disp_x","disp_y", "disp_z")
44
+ sim_data = sens.scale_length_units(scale=1000.0,
45
+ sim_data=sim_data,
46
+ disp_comps=disp_comps)
47
+
48
+ render_mesh = sens.create_render_mesh(sim_data,
49
+ ("disp_y","disp_x"),
50
+ sim_spat_dim=3,
51
+ field_disp_keys=disp_comps)
52
+
53
+ # %%
54
+ # Firstly, a save path must be set.
55
+ # In order to do this a base path must be set. Then all the generated files will
56
+ # be saved to a subfolder within this specified base directory
57
+ # (e.g. blenderimages).
58
+ # If no base directory is specified, it will be set as your home directory.
59
+
60
+ base_dir = Path.cwd()
61
+
62
+ # %%
63
+ # Creating the scene
64
+ # ^^^^^^^^^^^^^^^^^^
65
+ # In order to create a DIC setup in Blender, first a scene must be created.
66
+ # A scene is initialised using the `BlenderScene` class. All the subsequent
67
+ # objects and actions necessary are then methods of this class.
68
+
69
+ scene = blender.Scene()
70
+
71
+ # %%
72
+ # The next thing that can be added to the scene is a sample.
73
+ # This is done by passing in the `RenderMeshData` object.
74
+ # It should be noted that the mesh will be centred on the origin to allow for
75
+ # the cameras to be centred on the mesh.
76
+ # Once the part is added to the Blender scene, it can be both moved and rotated.
77
+
78
+
79
+ part = scene.add_part(render_mesh, sim_spat_dim=3)
80
+ # Set the part location
81
+ part_location = np.array([0, 0, 0])
82
+ blender.Tools.move_blender_obj(part=part, pos_world=part_location)
83
+ part_rotation = Rotation.from_euler("xyz", [0, 0, 0], degrees=True)
84
+ blender.Tools.rotate_blender_obj(part=part, rot_world=part_rotation)
85
+
86
+ # %%
87
+ # A camera can then be added to the scene.
88
+ # To initialise a camera, the camera parameters must be specified using the
89
+ # `CameraData` dataclass. Note that all lengths / distances inputted are in mm.
90
+ # This camera can then be added to the Blender scene.
91
+ # The camera can also be moved and rotated.
92
+
93
+ cam_data = sens.CameraData(pixels_num=np.array([1540, 1040]),
94
+ pixels_size=np.array([0.00345, 0.00345]),
95
+ pos_world=(0, 0, 400),
96
+ rot_world=Rotation.from_euler("xyz", [0, 0, 0]),
97
+ roi_cent_world=(0, 0, 0),
98
+ focal_length=15.0)
99
+ camera = scene.add_camera(cam_data)
100
+ camera.location = (0, 0, 410)
101
+ camera.rotation_euler = (0, 0, 0) # NOTE: The default is an XYZ Euler angle
102
+
103
+ # %%
104
+ # A light can the be added to the scene.
105
+ # Blender offers different light types: Point, Sun, Spot and Area.
106
+ # The light can also be moved and rotated like the camera.
107
+
108
+ light_data = blender.LightData(type=blender.LightType.POINT,
109
+ pos_world=(0, 0, 400),
110
+ rot_world=Rotation.from_euler("xyz",
111
+ [0, 0, 0]),
112
+ energy=1)
113
+ light = scene.add_light(light_data)
114
+ light.location = (0, 0, 410)
115
+ light.rotation_euler = (0, 0, 0)
116
+
117
+ # %%
118
+ # A speckle pattern can then be applied to the sample.
119
+ # Firstly, the material properties of the sample must be specified, but these
120
+ # will all be defaulted if no inputs are provided.
121
+ #The speckle pattern can then be specified by providing a path to an image file
122
+ # with the pattern.
123
+ # The mm/px resolution of the camera must also be specified in order to
124
+ # correctly scale the speckle pattern.
125
+ # It should be noted that for a bigger camera or sample you may need to generate
126
+ # a larger speckle pattern.
127
+
128
+ material_data = blender.MaterialData()
129
+ speckle_path = dataset.dic_pattern_5mpx_path()
130
+ mm_px_resolution = sens.CameraTools.calculate_mm_px_resolution(cam_data)
131
+ scene.add_speckle(part=part,
132
+ speckle_path=speckle_path,
133
+ mat_data=material_data,
134
+ mm_px_resolution=mm_px_resolution)
135
+
136
+ # %%
137
+ # Deforming the sample and rendering images
138
+ # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
139
+ # Once all the objects have been added to the scene, the sample can be deformed,
140
+ # and images can be rendered.
141
+ # Firstly, all the rendering parameters must be set, including parameters such as
142
+ # the number of threads to use.
143
+
144
+ render_data = blender.RenderData(cam_data=cam_data,
145
+ base_dir=base_dir,
146
+ threads=8)
147
+
148
+ # %%
149
+ # A series of deformed images can then be rendered.
150
+ # This is done by passing in rendering parameters, as well as the
151
+ # `RenderMeshData` object, the part(sample) and the spatial dimension of the
152
+ # simulation.
153
+ # This will automatically deform the sample, and render subsequent images at
154
+ # each deformation timestep.
155
+ # If `stage_image` is set to True, the image will be saved to disk, converted to
156
+ # an array, deleted and the image array will be returned. This is due to the
157
+ # fact that an image cannot be saved directly as an array through Blender.
158
+
159
+ scene.render_deformed_images(render_mesh,
160
+ sim_spat_dim=3,
161
+ render_data=render_data,
162
+ part=part,
163
+ stage_image=False)
164
+
165
+ # %%
166
+ # The rendered image will be saved to this filepath:
167
+
168
+ print("Save directory of the image:", (render_data.base_dir / "blenderimages"))
169
+
170
+ # %%
171
+ # There is also the option to save the scene as a Blender project file.
172
+ # This file can be opened with the Blender GUI to view the scene.
173
+
174
+ blender.Tools.save_blender_file(base_dir)
@@ -15,14 +15,17 @@ This example looks at the current core functionality of the Region of Interest
15
15
  """
16
16
 
17
17
  from pathlib import Path
18
- import pyvale
18
+
19
+ # pyvale modules
20
+ import pyvale.dataset as dataset
21
+ import pyvale.dic as dic
19
22
 
20
23
  # %%
21
24
  # We'll begin by selecting our Region of Interest (ROI) using the interactive selection tool.
22
25
  # First, we create an instance of the ROI class. We pass a reference image to it, which is
23
26
  # displayed as the underlay during ROI selection.
24
- ref_img = pyvale.DataSet.dic_plate_with_hole_ref()
25
- roi = pyvale.DICRegionOfInterest(ref_image=ref_img)
27
+ ref_img = dataset.dic_plate_with_hole_ref()
28
+ roi = dic.RegionOfInterest(ref_image=ref_img)
26
29
  roi.interactive_selection(subset_size=31)
27
30
 
28
31
  # create a directory for the the different outputs
@@ -16,7 +16,10 @@ allowing for comparison to analytically known values.
16
16
 
17
17
  import matplotlib.pyplot as plt
18
18
  from pathlib import Path
19
- import pyvale
19
+
20
+ # pyvale modules
21
+ import pyvale.dataset as dataset
22
+ import pyvale.dic as dic
20
23
 
21
24
  # %%
22
25
  # We'll start by defining some variables that will be reused throughout the example:
@@ -29,8 +32,8 @@ import pyvale
29
32
  # The images used here are included in the `data <https://github.com/Computer-Aided-Validation-Laboratory/pyvale/tree/main/src/pyvale/data>`_ folder.
30
33
  # We've provided helper functions to load them regardless of your installation path.
31
34
  subset_size = 31
32
- ref_img = pyvale.DataSet.dic_plate_with_hole_ref()
33
- def_img = pyvale.DataSet.dic_plate_with_hole_def()
35
+ ref_img = dataset.dic_plate_with_hole_ref()
36
+ def_img = dataset.dic_plate_with_hole_def()
34
37
 
35
38
  # create a directory for the the different outputs
36
39
  output_path = Path.cwd() / "pyvale-output"
@@ -42,7 +45,7 @@ if not output_path.is_dir():
42
45
  # Create an instance of the ROI class and pass the reference image
43
46
  # as input. This image will be shown as the underlay during any ROI selection or
44
47
  # visualization.
45
- roi = pyvale.DICRegionOfInterest(ref_img)
48
+ roi = dic.RegionOfInterest(ref_img)
46
49
  roi.interactive_selection(subset_size)
47
50
 
48
51
  # %%
@@ -77,22 +80,22 @@ roi.read_array(filename=roi_file, binary=False)
77
80
  # At present, the DIC engine doesn't return any results to the user, instead the results are saved to disk.
78
81
  # You can customize the filename, location, format, and delimiter using
79
82
  # the options options `output_basepath`, `output_prefix`, `output_delimiter`, and `output_binary`.
80
- # More info on these options can be found in the documentation for :func:`pyvale.dic_2d`.
83
+ # More info on these options can be found in the documentation for :func:`dic.two_dimensional`.
81
84
  # By default, the results will be saved with the prefix `dic_results_` followed
82
85
  # by the original filename. The file extension will be replaced will either ".csv" or "dic2d"
83
86
  # depending on whether the results are being saved in human-readable or binary format.
84
- pyvale.dic_2d(reference=ref_img,
85
- deformed=def_img,
86
- roi_mask=roi.mask,
87
- seed=roi.seed,
88
- subset_size=subset_size,
89
- subset_step=10,
90
- shape_function="AFFINE",
91
- max_displacement=10,
92
- correlation_criteria="ZNSSD",
93
- output_basepath=output_path,
94
- output_delimiter=",",
95
- output_prefix="dic_results_")
87
+ dic.two_dimensional(reference=ref_img,
88
+ deformed=def_img,
89
+ roi_mask=roi.mask,
90
+ seed=roi.seed,
91
+ subset_size=subset_size,
92
+ subset_step=10,
93
+ shape_function="AFFINE",
94
+ max_displacement=10,
95
+ correlation_criteria="ZNSSD",
96
+ output_basepath=output_path,
97
+ output_delimiter=",",
98
+ output_prefix="dic_results_")
96
99
 
97
100
  # %%
98
101
  # If you saved the results in a human-readable format, you can use any tool
@@ -104,7 +107,7 @@ pyvale.dic_2d(reference=ref_img,
104
107
  # The returned object is an instance of :class:`pyvale.DICResults`. If the results
105
108
  # were saved in binary format or with a custom delimiter, be sure to specify those parameters.
106
109
  dic_files = output_path / "dic_results_*.csv"
107
- dicdata = pyvale.dic_data_import(data=dic_files, delimiter=",", binary=False)
110
+ dicdata = dic.data_import(data=dic_files, delimiter=",", binary=False)
108
111
 
109
112
  # %%
110
113
  # As an example, here's a simple visualization of the displacement (u, v) and
@@ -17,7 +17,9 @@ be used for strain calculations.
17
17
 
18
18
  import matplotlib.pyplot as plt
19
19
  from pathlib import Path
20
- import pyvale
20
+
21
+ # pyvale modules
22
+ import pyvale.dic as dic
21
23
 
22
24
  # %%
23
25
  # We'll start by importing the DIC data from the previous example.
@@ -46,8 +48,8 @@ input_data = output_path / "dic_results_*.csv"
46
48
  # The output will always include the window coordinates and the full deformation
47
49
  # gradient tensor. If you also specify a `strain_formulation`, the corresponding
48
50
  # 2D strain tensor will be included in the output.
49
- pyvale.strain_2d(data=input_data, window_size=5, window_element=4,
50
- output_basepath=output_path)
51
+ dic.strain_two_dimensional(data=input_data, window_size=5, window_element=4,
52
+ output_basepath=output_path)
51
53
 
52
54
  # %%
53
55
  # Once the strain calculation is complete, you can import the results using
@@ -55,9 +57,9 @@ pyvale.strain_2d(data=input_data, window_size=5, window_element=4,
55
57
  #
56
58
  # Be sure to specify the delimiter, format (binary or not), and layout.
57
59
  strain_output = output_path / "strain_dic_results_*.csv"
58
- straindata = pyvale.strain_data_import(data=strain_output,
59
- binary=False, delimiter=",",
60
- layout="matrix")
60
+ straindata = dic.strain_data_import(data=strain_output,
61
+ binary=False, delimiter=",",
62
+ layout="matrix")
61
63
 
62
64
  # %%
63
65
  # Here's a simple example of how to visualize the deformation gradient components