pyvale 2025.5.3__cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of pyvale might be problematic. Click here for more details.
- pyvale/__init__.py +89 -0
- pyvale/analyticmeshgen.py +102 -0
- pyvale/analyticsimdatafactory.py +91 -0
- pyvale/analyticsimdatagenerator.py +323 -0
- pyvale/blendercalibrationdata.py +15 -0
- pyvale/blenderlightdata.py +26 -0
- pyvale/blendermaterialdata.py +15 -0
- pyvale/blenderrenderdata.py +30 -0
- pyvale/blenderscene.py +488 -0
- pyvale/blendertools.py +420 -0
- pyvale/camera.py +146 -0
- pyvale/cameradata.py +69 -0
- pyvale/cameradata2d.py +84 -0
- pyvale/camerastereo.py +217 -0
- pyvale/cameratools.py +522 -0
- pyvale/cython/rastercyth.c +32211 -0
- pyvale/cython/rastercyth.cpython-311-aarch64-linux-gnu.so +0 -0
- pyvale/cython/rastercyth.py +640 -0
- pyvale/data/__init__.py +5 -0
- pyvale/data/cal_target.tiff +0 -0
- pyvale/data/case00_HEX20_out.e +0 -0
- pyvale/data/case00_HEX27_out.e +0 -0
- pyvale/data/case00_HEX8_out.e +0 -0
- pyvale/data/case00_TET10_out.e +0 -0
- pyvale/data/case00_TET14_out.e +0 -0
- pyvale/data/case00_TET4_out.e +0 -0
- pyvale/data/case13_out.e +0 -0
- pyvale/data/case16_out.e +0 -0
- pyvale/data/case17_out.e +0 -0
- pyvale/data/case18_1_out.e +0 -0
- pyvale/data/case18_2_out.e +0 -0
- pyvale/data/case18_3_out.e +0 -0
- pyvale/data/case25_out.e +0 -0
- pyvale/data/case26_out.e +0 -0
- pyvale/data/optspeckle_2464x2056px_spec5px_8bit_gblur1px.tiff +0 -0
- pyvale/dataset.py +325 -0
- pyvale/errorcalculator.py +109 -0
- pyvale/errordriftcalc.py +146 -0
- pyvale/errorintegrator.py +336 -0
- pyvale/errorrand.py +607 -0
- pyvale/errorsyscalib.py +134 -0
- pyvale/errorsysdep.py +327 -0
- pyvale/errorsysfield.py +414 -0
- pyvale/errorsysindep.py +808 -0
- pyvale/examples/__init__.py +5 -0
- pyvale/examples/basics/ex1_1_basicscalars_therm2d.py +131 -0
- pyvale/examples/basics/ex1_2_sensormodel_therm2d.py +158 -0
- pyvale/examples/basics/ex1_3_customsens_therm3d.py +216 -0
- pyvale/examples/basics/ex1_4_basicerrors_therm3d.py +153 -0
- pyvale/examples/basics/ex1_5_fielderrs_therm3d.py +168 -0
- pyvale/examples/basics/ex1_6_caliberrs_therm2d.py +133 -0
- pyvale/examples/basics/ex1_7_spatavg_therm2d.py +123 -0
- pyvale/examples/basics/ex2_1_basicvectors_disp2d.py +112 -0
- pyvale/examples/basics/ex2_2_vectorsens_disp2d.py +111 -0
- pyvale/examples/basics/ex2_3_sensangle_disp2d.py +139 -0
- pyvale/examples/basics/ex2_4_chainfielderrs_disp2d.py +196 -0
- pyvale/examples/basics/ex2_5_vectorfields3d_disp3d.py +109 -0
- pyvale/examples/basics/ex3_1_basictensors_strain2d.py +114 -0
- pyvale/examples/basics/ex3_2_tensorsens2d_strain2d.py +111 -0
- pyvale/examples/basics/ex3_3_tensorsens3d_strain3d.py +182 -0
- pyvale/examples/basics/ex4_1_expsim2d_thermmech2d.py +171 -0
- pyvale/examples/basics/ex4_2_expsim3d_thermmech3d.py +252 -0
- pyvale/examples/genanalyticdata/ex1_1_scalarvisualisation.py +35 -0
- pyvale/examples/genanalyticdata/ex1_2_scalarcasebuild.py +43 -0
- pyvale/examples/genanalyticdata/ex2_1_analyticsensors.py +80 -0
- pyvale/examples/imagedef2d/ex_imagedef2d_todisk.py +79 -0
- pyvale/examples/renderblender/ex1_1_blenderscene.py +121 -0
- pyvale/examples/renderblender/ex1_2_blenderdeformed.py +119 -0
- pyvale/examples/renderblender/ex2_1_stereoscene.py +128 -0
- pyvale/examples/renderblender/ex2_2_stereodeformed.py +131 -0
- pyvale/examples/renderblender/ex3_1_blendercalibration.py +120 -0
- pyvale/examples/renderrasterisation/ex_rastenp.py +153 -0
- pyvale/examples/renderrasterisation/ex_rastercyth_oneframe.py +218 -0
- pyvale/examples/renderrasterisation/ex_rastercyth_static_cypara.py +187 -0
- pyvale/examples/renderrasterisation/ex_rastercyth_static_pypara.py +190 -0
- pyvale/examples/visualisation/ex1_1_plot_traces.py +102 -0
- pyvale/examples/visualisation/ex2_1_animate_sim.py +89 -0
- pyvale/experimentsimulator.py +175 -0
- pyvale/field.py +128 -0
- pyvale/fieldconverter.py +351 -0
- pyvale/fieldsampler.py +111 -0
- pyvale/fieldscalar.py +166 -0
- pyvale/fieldtensor.py +218 -0
- pyvale/fieldtransform.py +388 -0
- pyvale/fieldvector.py +213 -0
- pyvale/generatorsrandom.py +505 -0
- pyvale/imagedef2d.py +569 -0
- pyvale/integratorfactory.py +240 -0
- pyvale/integratorquadrature.py +217 -0
- pyvale/integratorrectangle.py +165 -0
- pyvale/integratorspatial.py +89 -0
- pyvale/integratortype.py +43 -0
- pyvale/output.py +17 -0
- pyvale/pyvaleexceptions.py +11 -0
- pyvale/raster.py +31 -0
- pyvale/rastercy.py +77 -0
- pyvale/rasternp.py +603 -0
- pyvale/rendermesh.py +147 -0
- pyvale/sensorarray.py +178 -0
- pyvale/sensorarrayfactory.py +196 -0
- pyvale/sensorarraypoint.py +278 -0
- pyvale/sensordata.py +71 -0
- pyvale/sensordescriptor.py +213 -0
- pyvale/sensortools.py +142 -0
- pyvale/simcases/case00_HEX20.i +242 -0
- pyvale/simcases/case00_HEX27.i +242 -0
- pyvale/simcases/case00_HEX8.i +242 -0
- pyvale/simcases/case00_TET10.i +242 -0
- pyvale/simcases/case00_TET14.i +242 -0
- pyvale/simcases/case00_TET4.i +242 -0
- pyvale/simcases/case01.i +101 -0
- pyvale/simcases/case02.i +156 -0
- pyvale/simcases/case03.i +136 -0
- pyvale/simcases/case04.i +181 -0
- pyvale/simcases/case05.i +234 -0
- pyvale/simcases/case06.i +305 -0
- pyvale/simcases/case07.geo +135 -0
- pyvale/simcases/case07.i +87 -0
- pyvale/simcases/case08.geo +144 -0
- pyvale/simcases/case08.i +153 -0
- pyvale/simcases/case09.geo +204 -0
- pyvale/simcases/case09.i +87 -0
- pyvale/simcases/case10.geo +204 -0
- pyvale/simcases/case10.i +257 -0
- pyvale/simcases/case11.geo +337 -0
- pyvale/simcases/case11.i +147 -0
- pyvale/simcases/case12.geo +388 -0
- pyvale/simcases/case12.i +329 -0
- pyvale/simcases/case13.i +140 -0
- pyvale/simcases/case14.i +159 -0
- pyvale/simcases/case15.geo +337 -0
- pyvale/simcases/case15.i +150 -0
- pyvale/simcases/case16.geo +391 -0
- pyvale/simcases/case16.i +357 -0
- pyvale/simcases/case17.geo +135 -0
- pyvale/simcases/case17.i +144 -0
- pyvale/simcases/case18.i +254 -0
- pyvale/simcases/case18_1.i +254 -0
- pyvale/simcases/case18_2.i +254 -0
- pyvale/simcases/case18_3.i +254 -0
- pyvale/simcases/case19.geo +252 -0
- pyvale/simcases/case19.i +99 -0
- pyvale/simcases/case20.geo +252 -0
- pyvale/simcases/case20.i +250 -0
- pyvale/simcases/case21.geo +74 -0
- pyvale/simcases/case21.i +155 -0
- pyvale/simcases/case22.geo +82 -0
- pyvale/simcases/case22.i +140 -0
- pyvale/simcases/case23.geo +164 -0
- pyvale/simcases/case23.i +140 -0
- pyvale/simcases/case24.geo +79 -0
- pyvale/simcases/case24.i +123 -0
- pyvale/simcases/case25.geo +82 -0
- pyvale/simcases/case25.i +140 -0
- pyvale/simcases/case26.geo +166 -0
- pyvale/simcases/case26.i +140 -0
- pyvale/simcases/run_1case.py +61 -0
- pyvale/simcases/run_all_cases.py +69 -0
- pyvale/simcases/run_build_case.py +64 -0
- pyvale/simcases/run_example_cases.py +69 -0
- pyvale/simtools.py +67 -0
- pyvale/visualexpplotter.py +191 -0
- pyvale/visualimagedef.py +74 -0
- pyvale/visualimages.py +76 -0
- pyvale/visualopts.py +493 -0
- pyvale/visualsimanimator.py +111 -0
- pyvale/visualsimsensors.py +318 -0
- pyvale/visualtools.py +136 -0
- pyvale/visualtraceplotter.py +142 -0
- pyvale-2025.5.3.dist-info/METADATA +144 -0
- pyvale-2025.5.3.dist-info/RECORD +175 -0
- pyvale-2025.5.3.dist-info/WHEEL +6 -0
- pyvale-2025.5.3.dist-info/licenses/LICENSE +21 -0
- pyvale-2025.5.3.dist-info/top_level.txt +1 -0
- pyvale.libs/libgomp-d22c30c5.so.1.0.0 +0 -0
|
@@ -0,0 +1,139 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# pyvale: the python validation engine
|
|
3
|
+
# License: MIT
|
|
4
|
+
# Copyright (C) 2025 The Computer Aided Validation Team
|
|
5
|
+
# ==============================================================================
|
|
6
|
+
|
|
7
|
+
"""
|
|
8
|
+
Pyvale example: Sensor angles for vector fields
|
|
9
|
+
--------------------------------------------------------------------------------
|
|
10
|
+
In this example we demonstrate how to setup vector field sensors at custom
|
|
11
|
+
orientations with respect to the simulation coordinate system. We first build a
|
|
12
|
+
sensor array aligned with the simulation coords in the same way as the previous
|
|
13
|
+
example. We then build a sensor array with the sensors rotated and compare this
|
|
14
|
+
to the case with no rotation.
|
|
15
|
+
|
|
16
|
+
Note that this tutorial assumes you are familiar with the use of pyvale for
|
|
17
|
+
scalar fields as described in the first set of examples.
|
|
18
|
+
|
|
19
|
+
Test case: point displacement sensors on a 2D plate with hole loaded in tension
|
|
20
|
+
"""
|
|
21
|
+
|
|
22
|
+
import numpy as np
|
|
23
|
+
import matplotlib.pyplot as plt
|
|
24
|
+
from scipy.spatial.transform import Rotation
|
|
25
|
+
import mooseherder as mh
|
|
26
|
+
import pyvale as pyv
|
|
27
|
+
|
|
28
|
+
def main() -> None:
|
|
29
|
+
# First we are going to setup the same displacement sensor array on the 2D
|
|
30
|
+
# solid mechanics test case we have used previously. This will serve as a
|
|
31
|
+
# baseline with no sensor rotation.
|
|
32
|
+
|
|
33
|
+
data_path = pyv.DataSet.mechanical_2d_path()
|
|
34
|
+
sim_data = mh.ExodusReader(data_path).read_all_sim_data()
|
|
35
|
+
|
|
36
|
+
field_name = "disp"
|
|
37
|
+
field_comps = ("disp_x","disp_y")
|
|
38
|
+
sim_data = pyv.scale_length_units(scale=1000.0,
|
|
39
|
+
sim_data=sim_data,
|
|
40
|
+
disp_comps=field_comps)
|
|
41
|
+
|
|
42
|
+
descriptor = pyv.SensorDescriptorFactory.displacement_descriptor()
|
|
43
|
+
|
|
44
|
+
disp_field = pyv.FieldVector(sim_data,field_name,field_comps,elem_dims=2)
|
|
45
|
+
|
|
46
|
+
n_sens = (2,3,1)
|
|
47
|
+
x_lims = (0.0,100.0)
|
|
48
|
+
y_lims = (0.0,150.0)
|
|
49
|
+
z_lims = (0.0,0.0)
|
|
50
|
+
sens_pos = pyv.create_sensor_pos_array(n_sens,x_lims,y_lims,z_lims)
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
sample_times = np.linspace(0.0,np.max(sim_data.time),50)
|
|
54
|
+
|
|
55
|
+
sens_data_norot = pyv.SensorData(positions=sens_pos,
|
|
56
|
+
sample_times=sample_times)
|
|
57
|
+
|
|
58
|
+
disp_sens_norot = pyv.SensorArrayPoint(sens_data_norot,
|
|
59
|
+
disp_field,
|
|
60
|
+
descriptor)
|
|
61
|
+
|
|
62
|
+
disp_sens_norot.calc_measurements()
|
|
63
|
+
|
|
64
|
+
# To create our sensor array with rotated sensors we need to add a tuple of
|
|
65
|
+
# scipy rotation objects to our sensor data class. This tuple must be the
|
|
66
|
+
# same length as the number of sensors in the sensor array. Note that it is
|
|
67
|
+
# also possible to specify a single rotation in the tuple in this case all
|
|
68
|
+
# sensors are assumed to have the same rotation and they are batch processed
|
|
69
|
+
# to increase speed. Here we will define our rotations to all be the same
|
|
70
|
+
# rotation in degrees about the z axis which is the out of plane axis for
|
|
71
|
+
# our current test case.
|
|
72
|
+
sens_angles = sens_pos.shape[0] * \
|
|
73
|
+
(Rotation.from_euler("zyx", [45, 0, 0], degrees=True),)
|
|
74
|
+
|
|
75
|
+
# We could have also use a single element tuple to have all sensors have the
|
|
76
|
+
# angle and batch process them:
|
|
77
|
+
sens_angles = (Rotation.from_euler("zyx", [45, 0, 0], degrees=True),)
|
|
78
|
+
|
|
79
|
+
|
|
80
|
+
sens_data_rot = pyv.SensorData(positions=sens_pos,
|
|
81
|
+
sample_times=sample_times,
|
|
82
|
+
angles=sens_angles)
|
|
83
|
+
|
|
84
|
+
disp_sens_rot = pyv.SensorArrayPoint(sens_data_rot,
|
|
85
|
+
disp_field,
|
|
86
|
+
descriptor)
|
|
87
|
+
|
|
88
|
+
# We can also use a field error to add uncertainty to the sensors angle.
|
|
89
|
+
# We can apply a specific offset to each sensor or provide a random
|
|
90
|
+
# generator to perturb the sensors orientation. Note that the offset and
|
|
91
|
+
# the random generator should provide the perturbation in degrees.
|
|
92
|
+
angle_offset = np.zeros_like(sens_pos)
|
|
93
|
+
angle_offset[:,0] = 2.0 # only rotate about z in 2D
|
|
94
|
+
angle_rand = (pyv.GenNormal(std=2.0),None,None)
|
|
95
|
+
angle_error_data = pyv.ErrFieldData(ang_offset_zyx=angle_offset,
|
|
96
|
+
ang_rand_zyx=angle_rand)
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
sys_err_rot = pyv.ErrSysField(disp_field,angle_error_data)
|
|
100
|
+
sys_err_int = pyv.ErrIntegrator([sys_err_rot],
|
|
101
|
+
sens_data_rot,
|
|
102
|
+
disp_sens_rot.get_measurement_shape())
|
|
103
|
+
disp_sens_rot.set_error_integrator(sys_err_int)
|
|
104
|
+
|
|
105
|
+
measurements = disp_sens_rot.calc_measurements()
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
# We print some of the results for one of the sensors so we can see the
|
|
109
|
+
# effect of the field errors.
|
|
110
|
+
print(80*"-")
|
|
111
|
+
|
|
112
|
+
sens_print: int = 0
|
|
113
|
+
time_print: int = 5
|
|
114
|
+
comp_print: int = 0
|
|
115
|
+
|
|
116
|
+
print("ROTATED SENSORS WITH ANGLE ERRORS:")
|
|
117
|
+
print(f"These are the last {time_print} virtual measurements of sensor "
|
|
118
|
+
+ f"{sens_print} for {field_comps[comp_print]}:")
|
|
119
|
+
|
|
120
|
+
pyv.print_measurements(sens_array=disp_sens_rot,
|
|
121
|
+
sensors=(sens_print,sens_print+1),
|
|
122
|
+
components=(comp_print,comp_print+1),
|
|
123
|
+
time_steps=(measurements.shape[2]-time_print,
|
|
124
|
+
measurements.shape[2]))
|
|
125
|
+
print(80*"-")
|
|
126
|
+
|
|
127
|
+
# We can now plot the traces for the non-rotated and rotated sensors to
|
|
128
|
+
# compare them:
|
|
129
|
+
for ff in field_comps:
|
|
130
|
+
(_,ax) = pyv.plot_time_traces(disp_sens_norot,ff)
|
|
131
|
+
ax.set_title("No Rotation")
|
|
132
|
+
(_,ax) = pyv.plot_time_traces(disp_sens_rot,ff)
|
|
133
|
+
ax.set_title("Rotated with Errors")
|
|
134
|
+
|
|
135
|
+
plt.show()
|
|
136
|
+
|
|
137
|
+
|
|
138
|
+
if __name__ == "__main__":
|
|
139
|
+
main()
|
|
@@ -0,0 +1,196 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# pyvale: the python validation engine
|
|
3
|
+
# License: MIT
|
|
4
|
+
# Copyright (C) 2025 The Computer Aided Validation Team
|
|
5
|
+
# ==============================================================================
|
|
6
|
+
|
|
7
|
+
"""
|
|
8
|
+
Pyvale example: Chaining field errors
|
|
9
|
+
----------------------------------------------------------------------------
|
|
10
|
+
In this example we show how field errors can be chained together and accumulated
|
|
11
|
+
allowing for successive perturbations in postion, sampling time and orientation.
|
|
12
|
+
It is more computationally efficient to provide a single field error object as
|
|
13
|
+
this will perform all perturbations in a single step allowing for a single new
|
|
14
|
+
interpolation of the underlying physical field. However, in some cases it can
|
|
15
|
+
be useful to separate the sensor parameter perturbations to determine which is
|
|
16
|
+
contributing most to the total error.
|
|
17
|
+
|
|
18
|
+
Note that this tutorial assumes you are familiar with the use of pyvale for
|
|
19
|
+
scalar fields as described in the first set of examples.
|
|
20
|
+
|
|
21
|
+
Test case: point displacement sensors on a 2D plate with hole loaded in tension
|
|
22
|
+
"""
|
|
23
|
+
|
|
24
|
+
import numpy as np
|
|
25
|
+
import matplotlib.pyplot as plt
|
|
26
|
+
import mooseherder as mh
|
|
27
|
+
import pyvale as pyv
|
|
28
|
+
|
|
29
|
+
def main() -> None:
|
|
30
|
+
# We start by building the same displacement sensor array applied to a 2D
|
|
31
|
+
# solid mechanics simulation that we have analysed previously.
|
|
32
|
+
data_path = pyv.DataSet.mechanical_2d_path()
|
|
33
|
+
sim_data = mh.ExodusReader(data_path).read_all_sim_data()
|
|
34
|
+
field_name = "disp"
|
|
35
|
+
field_comps = ("disp_x","disp_y")
|
|
36
|
+
sim_data = pyv.scale_length_units(scale=1000.0,
|
|
37
|
+
sim_data=sim_data,
|
|
38
|
+
disp_comps=field_comps)
|
|
39
|
+
|
|
40
|
+
descriptor = pyv.SensorDescriptorFactory.displacement_descriptor()
|
|
41
|
+
|
|
42
|
+
disp_field = pyv.FieldVector(sim_data,field_name,field_comps,elem_dims=2)
|
|
43
|
+
|
|
44
|
+
n_sens = (2,3,1)
|
|
45
|
+
x_lims = (0.0,100.0)
|
|
46
|
+
y_lims = (0.0,150.0)
|
|
47
|
+
z_lims = (0.0,0.0)
|
|
48
|
+
sensor_positions = pyv.create_sensor_pos_array(n_sens,x_lims,y_lims,z_lims)
|
|
49
|
+
|
|
50
|
+
sample_times = np.linspace(0.0,np.max(sim_data.time),50)
|
|
51
|
+
|
|
52
|
+
sensor_data = pyv.SensorData(positions=sensor_positions,
|
|
53
|
+
sample_times=sample_times)
|
|
54
|
+
|
|
55
|
+
disp_sens_array = pyv.SensorArrayPoint(sensor_data,
|
|
56
|
+
disp_field,
|
|
57
|
+
descriptor)
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
# Now we will build a series of field errors that cause succesive offsets in
|
|
61
|
+
# sensor sampling time, sensor position and sensor orientation. That way
|
|
62
|
+
# we should be able to analyse the sensor data object at each point in the
|
|
63
|
+
# error chain to see how the sensor parameters have accumulated.
|
|
64
|
+
|
|
65
|
+
# We will apply a position offset of -1.0mm in the x and y axes.
|
|
66
|
+
pos_offset = -1.0*np.ones_like(sensor_positions)
|
|
67
|
+
pos_offset[:,2] = 0.0 # in 2d we only have offset in x and y so zero z
|
|
68
|
+
pos_error_data = pyv.ErrFieldData(pos_offset_xyz=pos_offset)
|
|
69
|
+
|
|
70
|
+
# We will apply a rotation offset about the z axis of 1 degree
|
|
71
|
+
angle_offset = np.zeros_like(sensor_positions)
|
|
72
|
+
angle_offset[:,0] = 1.0 # only rotate about z in 2D
|
|
73
|
+
angle_error_data = pyv.ErrFieldData(ang_offset_zyx=angle_offset)
|
|
74
|
+
|
|
75
|
+
time_offset = 2.0*np.ones_like(disp_sens_array.get_sample_times())
|
|
76
|
+
time_error_data = pyv.ErrFieldData(time_offset=time_offset)
|
|
77
|
+
|
|
78
|
+
# Now we add all our field errors to our error chain. We add each error
|
|
79
|
+
# twice to see how they accumulate with each other. We also need to set the
|
|
80
|
+
# error dependence to `DEPENDENT` so that the sensor state is accumulated
|
|
81
|
+
# over the error chain as field errors are `INDEPENDENT` by default.
|
|
82
|
+
err_chain = []
|
|
83
|
+
err_chain.append(pyv.ErrSysField(disp_field,
|
|
84
|
+
time_error_data,
|
|
85
|
+
pyv.EErrDep.DEPENDENT))
|
|
86
|
+
err_chain.append(pyv.ErrSysField(disp_field,
|
|
87
|
+
time_error_data,
|
|
88
|
+
pyv.EErrDep.DEPENDENT))
|
|
89
|
+
|
|
90
|
+
err_chain.append(pyv.ErrSysField(disp_field,
|
|
91
|
+
pos_error_data,
|
|
92
|
+
pyv.EErrDep.DEPENDENT))
|
|
93
|
+
err_chain.append(pyv.ErrSysField(disp_field,
|
|
94
|
+
pos_error_data,
|
|
95
|
+
pyv.EErrDep.DEPENDENT))
|
|
96
|
+
|
|
97
|
+
err_chain.append(pyv.ErrSysField(disp_field,
|
|
98
|
+
angle_error_data,
|
|
99
|
+
pyv.EErrDep.DEPENDENT))
|
|
100
|
+
err_chain.append(pyv.ErrSysField(disp_field,
|
|
101
|
+
angle_error_data,
|
|
102
|
+
pyv.EErrDep.DEPENDENT))
|
|
103
|
+
|
|
104
|
+
# Instead of setting the dependence for each individual error above we could
|
|
105
|
+
# also just use our error integration options to force all errors to be
|
|
106
|
+
# `DEPENDENT`. We also set the error integration options to store the errors
|
|
107
|
+
# for each step in the error chain so we can analyse the sensor data at each
|
|
108
|
+
# step of chain. This option also allows us to separate the contribution of
|
|
109
|
+
# each error in the chain to the total error rather than just being able to
|
|
110
|
+
# analyse the total systematic and total random error which is the default.
|
|
111
|
+
# Note that this option will use more memory.
|
|
112
|
+
err_int_opts = pyv.ErrIntOpts(force_dependence=pyv.EErrDep.DEPENDENT,
|
|
113
|
+
store_all_errs=True)
|
|
114
|
+
|
|
115
|
+
# Now we build our error integrator, add it to our sensor array and then run
|
|
116
|
+
# our sensor simulation to obtain some virtual measurements.
|
|
117
|
+
error_int = pyv.ErrIntegrator(err_chain,
|
|
118
|
+
sensor_data,
|
|
119
|
+
disp_sens_array.get_measurement_shape(),
|
|
120
|
+
err_int_opts)
|
|
121
|
+
disp_sens_array.set_error_integrator(error_int)
|
|
122
|
+
|
|
123
|
+
measurements = disp_sens_array.calc_measurements()
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
# Here we will print to the console the time, position and angle of from the
|
|
127
|
+
# sensor data objects at each point in the error chain. We should see each
|
|
128
|
+
# sensor parameter perturbed and accumulated throughout the chain:
|
|
129
|
+
sens_data_by_chain = error_int.get_sens_data_by_chain()
|
|
130
|
+
if sens_data_by_chain is not None:
|
|
131
|
+
for ii,ss in enumerate(sens_data_by_chain):
|
|
132
|
+
print(80*"-")
|
|
133
|
+
if ss is not None:
|
|
134
|
+
print(f"SensorData @ [{ii}]")
|
|
135
|
+
print("TIME")
|
|
136
|
+
print(ss.sample_times)
|
|
137
|
+
print()
|
|
138
|
+
print("POSITIONS")
|
|
139
|
+
print(ss.positions)
|
|
140
|
+
print()
|
|
141
|
+
print("ANGLES")
|
|
142
|
+
for aa in ss.angles:
|
|
143
|
+
print(aa.as_euler("zyx",degrees=True))
|
|
144
|
+
print()
|
|
145
|
+
print(80*"-")
|
|
146
|
+
|
|
147
|
+
# Try setting all the field errors to be `INDEPENDENT` using the error
|
|
148
|
+
# integration options above. You should see that the sensor parameters are
|
|
149
|
+
# not accumulated throughout the error chain.
|
|
150
|
+
|
|
151
|
+
# Here we print the final sampling time, sensor positions and sensor angles
|
|
152
|
+
# at the end of error chain.
|
|
153
|
+
print()
|
|
154
|
+
print(80*"=")
|
|
155
|
+
sens_data_accumulated = error_int.get_sens_data_accumulated()
|
|
156
|
+
print("TIME")
|
|
157
|
+
print(sens_data_accumulated.sample_times)
|
|
158
|
+
print()
|
|
159
|
+
print("POSITIONS")
|
|
160
|
+
print(sens_data_accumulated.positions)
|
|
161
|
+
print()
|
|
162
|
+
print("ANGLES")
|
|
163
|
+
for aa in sens_data_accumulated.angles:
|
|
164
|
+
print(aa.as_euler("zyx",degrees=True))
|
|
165
|
+
print()
|
|
166
|
+
print(80*"=")
|
|
167
|
+
|
|
168
|
+
# We print the results for one of the sensors so we can see what the errors
|
|
169
|
+
# are for the last few sampling times.
|
|
170
|
+
print(80*"-")
|
|
171
|
+
|
|
172
|
+
sens_print: int = 0
|
|
173
|
+
time_print: int = 5
|
|
174
|
+
comp_print: int = 0
|
|
175
|
+
|
|
176
|
+
print("ROTATED SENSORS WITH ANGLE ERRORS:")
|
|
177
|
+
print(f"These are the last {time_print} virtual measurements of sensor "
|
|
178
|
+
+ f"{sens_print} for {field_comps[comp_print]}:")
|
|
179
|
+
|
|
180
|
+
pyv.print_measurements(sens_array=disp_sens_array,
|
|
181
|
+
sensors=(sens_print,sens_print+1),
|
|
182
|
+
components=(comp_print,comp_print+1),
|
|
183
|
+
time_steps=(measurements.shape[2]-time_print,
|
|
184
|
+
measurements.shape[2]))
|
|
185
|
+
print(80*"-")
|
|
186
|
+
|
|
187
|
+
|
|
188
|
+
# Finally, we plot the time traces for all field components.
|
|
189
|
+
for ff in field_comps:
|
|
190
|
+
pyv.plot_time_traces(disp_sens_array,ff)
|
|
191
|
+
|
|
192
|
+
plt.show()
|
|
193
|
+
|
|
194
|
+
|
|
195
|
+
if __name__ == "__main__":
|
|
196
|
+
main()
|
|
@@ -0,0 +1,109 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# pyvale: the python validation engine
|
|
3
|
+
# License: MIT
|
|
4
|
+
# Copyright (C) 2025 The Computer Aided Validation Team
|
|
5
|
+
# ==============================================================================
|
|
6
|
+
|
|
7
|
+
"""
|
|
8
|
+
Pyvale example: 3D vector field sensors
|
|
9
|
+
--------------------------------------------------------------------------------
|
|
10
|
+
In all our previous examples we have looked at a 2D solid mechanics simulation
|
|
11
|
+
and applied displacement sensors to the vector field. Here we will build a
|
|
12
|
+
custom vector field sensor array on a 3D simulation of a small linear elastic
|
|
13
|
+
cube loaded in tension with the addition of an applied thermal gradient.
|
|
14
|
+
|
|
15
|
+
Note that this tutorial assumes you are familiar with the use of pyvale for
|
|
16
|
+
scalar fields as described in the first set of examples.
|
|
17
|
+
|
|
18
|
+
Test case: Simple 3D cube thermo-mechanical in tension with temp gradient.
|
|
19
|
+
"""
|
|
20
|
+
|
|
21
|
+
import numpy as np
|
|
22
|
+
import matplotlib.pyplot as plt
|
|
23
|
+
import mooseherder as mh
|
|
24
|
+
import pyvale as pyv
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def main() -> None:
|
|
28
|
+
# Frist we load our simulation as a `SimData` object. In this case we are
|
|
29
|
+
# loading a 10mm cube loaded in tension in the y direction with the addition
|
|
30
|
+
# of a thermal gradient in the y direction.
|
|
31
|
+
data_path = pyv.DataSet.element_case_path(pyv.EElemTest.HEX20)
|
|
32
|
+
sim_data = mh.ExodusReader(data_path).read_all_sim_data()
|
|
33
|
+
|
|
34
|
+
# As we are creating a 3D vector field sensor we now have a third
|
|
35
|
+
# displacement field component here.
|
|
36
|
+
field_name = "disp"
|
|
37
|
+
field_comps = ("disp_x","disp_y","disp_z")
|
|
38
|
+
sim_data = pyv.scale_length_units(scale=1000.0,
|
|
39
|
+
sim_data=sim_data,
|
|
40
|
+
disp_comps=field_comps)
|
|
41
|
+
|
|
42
|
+
# We use a helper function to print the extent of the dimensions in our
|
|
43
|
+
# `SimData` object to help us locate our sensors on the cube.
|
|
44
|
+
pyv.print_dimensions(sim_data)
|
|
45
|
+
|
|
46
|
+
descriptor = pyv.SensorDescriptorFactory.displacement_descriptor()
|
|
47
|
+
|
|
48
|
+
# We pass in the string keys for the three vector field components as they
|
|
49
|
+
# appear in our `SimData` object as well as specifying that our elements are
|
|
50
|
+
# 3 dimensional.
|
|
51
|
+
disp_field = pyv.FieldVector(sim_data,field_name,field_comps,elem_dims=3)
|
|
52
|
+
|
|
53
|
+
# Here we manually define our sensor positions to place a sensor on the
|
|
54
|
+
# centre of each face of our 10mm cube. From here everything is the same as
|
|
55
|
+
# for our 2D vector field sensor arrays.
|
|
56
|
+
sensor_positions = np.array(((5.0,0.0,5.0),
|
|
57
|
+
(5.0,10.0,5.0),
|
|
58
|
+
(5.0,5.0,0.0),
|
|
59
|
+
(5.0,5.0,10.0),
|
|
60
|
+
(0.0,5.0,5.0),
|
|
61
|
+
(10.0,5.0,5.0),))
|
|
62
|
+
|
|
63
|
+
sample_times = np.linspace(0.0,np.max(sim_data.time),50)
|
|
64
|
+
|
|
65
|
+
sensor_data = pyv.SensorData(positions=sensor_positions,
|
|
66
|
+
sample_times=sample_times)
|
|
67
|
+
|
|
68
|
+
disp_sens_array = pyv.SensorArrayPoint(sensor_data,
|
|
69
|
+
disp_field,
|
|
70
|
+
descriptor)
|
|
71
|
+
|
|
72
|
+
measurements = disp_sens_array.calc_measurements()
|
|
73
|
+
|
|
74
|
+
# Let's have a look at the y displacement field in relation to the location
|
|
75
|
+
# of our displacement sensors.
|
|
76
|
+
pv_plot = pyv.plot_point_sensors_on_sim(disp_sens_array,"disp_y")
|
|
77
|
+
pv_plot.show()
|
|
78
|
+
|
|
79
|
+
# We print the results for one of the sensors so we can see what the errors
|
|
80
|
+
# are for the last few sampling times.
|
|
81
|
+
print(80*"-")
|
|
82
|
+
|
|
83
|
+
sens_print: int = 0
|
|
84
|
+
time_print: int = 5
|
|
85
|
+
comp_print: int = 0
|
|
86
|
+
|
|
87
|
+
print(f"These are the last {time_print} virtual measurements of sensor "
|
|
88
|
+
+ f"{sens_print} for {field_comps[comp_print]}:")
|
|
89
|
+
|
|
90
|
+
pyv.print_measurements(sens_array=disp_sens_array,
|
|
91
|
+
sensors=(sens_print,sens_print+1),
|
|
92
|
+
components=(comp_print,comp_print+1),
|
|
93
|
+
time_steps=(measurements.shape[2]-time_print,
|
|
94
|
+
measurements.shape[2]))
|
|
95
|
+
print(80*"-")
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
# Finally, we plot the time traces for all field components noting that we
|
|
99
|
+
# expect the bottom of the cube to be fixed, the top of the cube to have the
|
|
100
|
+
# maximum y displacement, and that all sensors on the sides of the cube
|
|
101
|
+
# should give the same results.
|
|
102
|
+
for ff in field_comps:
|
|
103
|
+
pyv.plot_time_traces(disp_sens_array,ff)
|
|
104
|
+
|
|
105
|
+
plt.show()
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
if __name__ == "__main__":
|
|
109
|
+
main()
|
|
@@ -0,0 +1,114 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# pyvale: the python validation engine
|
|
3
|
+
# License: MIT
|
|
4
|
+
# Copyright (C) 2025 The Computer Aided Validation Team
|
|
5
|
+
# ==============================================================================
|
|
6
|
+
|
|
7
|
+
"""
|
|
8
|
+
Pyvale example: Basic tensor field sensors (strain gauges)
|
|
9
|
+
--------------------------------------------------------------------------------
|
|
10
|
+
In this example we use the sensor array factory to build a set of strain
|
|
11
|
+
sensors that can sample the strain tensor field from a solid mechanics
|
|
12
|
+
simulation. In the next example we will examine how we can build custom tensor
|
|
13
|
+
field sensors as we did for scalar field in the first set of examples.
|
|
14
|
+
|
|
15
|
+
Note that this tutorial assumes you are familiar with the use of pyvale for
|
|
16
|
+
scalar fields as described in the first set of examples.
|
|
17
|
+
|
|
18
|
+
Test case: point strain sensors on a 2D plate with hole loaded in tension
|
|
19
|
+
"""
|
|
20
|
+
|
|
21
|
+
from pathlib import Path
|
|
22
|
+
import numpy as np
|
|
23
|
+
import matplotlib.pyplot as plt
|
|
24
|
+
import mooseherder as mh
|
|
25
|
+
from mooseherder import SimData
|
|
26
|
+
import pyvale as pyv
|
|
27
|
+
|
|
28
|
+
def main() -> None:
|
|
29
|
+
# First we load the same 2D solid mechanics simulation we used previously
|
|
30
|
+
# for vector displacement fields. Most of this setup code is similar to our
|
|
31
|
+
# vector field examples except we will need to specify the string keys for
|
|
32
|
+
# the normal a deviatoric components of our tensor field (as they appear in
|
|
33
|
+
# our `SimData` object).
|
|
34
|
+
data_path: Path = pyv.DataSet.mechanical_2d_path()
|
|
35
|
+
sim_data: SimData = mh.ExodusReader(data_path).read_all_sim_data()
|
|
36
|
+
sim_data: SimData = pyv.scale_length_units(scale=1000.0,
|
|
37
|
+
sim_data=sim_data,
|
|
38
|
+
disp_comps=("disp_x","disp_y"))
|
|
39
|
+
|
|
40
|
+
n_sens = (2,3,1)
|
|
41
|
+
x_lims = (0.0,100.0)
|
|
42
|
+
y_lims = (0.0,150.0)
|
|
43
|
+
z_lims = (0.0,0.0)
|
|
44
|
+
sens_pos = pyv.create_sensor_pos_array(n_sens,x_lims,y_lims,z_lims)
|
|
45
|
+
|
|
46
|
+
sample_times = np.linspace(0.0,np.max(sim_data.time),50)
|
|
47
|
+
|
|
48
|
+
sens_data = pyv.SensorData(positions=sens_pos,
|
|
49
|
+
sample_times=sample_times)
|
|
50
|
+
|
|
51
|
+
# This is where we need to specify the string keys for the normal and
|
|
52
|
+
# deviatoric components of our strain field. In 2D we have two normal
|
|
53
|
+
# normal components and one deviatoric. In 3D we will have 3 of each as we
|
|
54
|
+
# will see in a later example. Otherwise this is very similar to what we
|
|
55
|
+
# have seen previously for scalar and vector fields.
|
|
56
|
+
norm_comps = ("strain_xx","strain_yy")
|
|
57
|
+
dev_comps = ("strain_xy",)
|
|
58
|
+
straingauge_array = pyv.SensorArrayFactory \
|
|
59
|
+
.strain_gauges_basic_errs(sim_data,
|
|
60
|
+
sens_data,
|
|
61
|
+
elem_dims=2,
|
|
62
|
+
field_name="strain",
|
|
63
|
+
norm_comps=norm_comps,
|
|
64
|
+
dev_comps=dev_comps,
|
|
65
|
+
errs_pc=5.0)
|
|
66
|
+
|
|
67
|
+
# We run our virtual sensor simulation as normal. The only thing to note is
|
|
68
|
+
# that the second dimension of our measurement array will contain our tensor
|
|
69
|
+
# components in the order they are specified in the tuples with the normal
|
|
70
|
+
# components first followed by the deviatoric. In our case this will be
|
|
71
|
+
# (strain_xx,strain_yy,strain_xy).
|
|
72
|
+
measurements = straingauge_array.calc_measurements()
|
|
73
|
+
|
|
74
|
+
# Here we print the shape of the measurement array so we can see that the
|
|
75
|
+
# second dimension contains both our tensor components. We also print some
|
|
76
|
+
# of the sensor measurements for the first tensor component.
|
|
77
|
+
print("\n"+80*"-")
|
|
78
|
+
print("For a virtual sensor: measurement = truth + sysematic error + random error")
|
|
79
|
+
print(f"measurements.shape = {measurements.shape} = "+
|
|
80
|
+
"(n_sensors,n_field_components,n_timesteps)\n")
|
|
81
|
+
print("The truth, systematic error and random error arrays have the same "+
|
|
82
|
+
"shape.")
|
|
83
|
+
|
|
84
|
+
print(80*"-")
|
|
85
|
+
|
|
86
|
+
sens_print: int = 0
|
|
87
|
+
time_print: int = 5
|
|
88
|
+
comp_print: int = 0
|
|
89
|
+
|
|
90
|
+
print(f"These are the last {time_print} virtual measurements of sensor "
|
|
91
|
+
+ f"{sens_print}:")
|
|
92
|
+
|
|
93
|
+
pyv.print_measurements(sens_array=straingauge_array,
|
|
94
|
+
sensors=(sens_print,sens_print+1),
|
|
95
|
+
components=(comp_print,comp_print+1),
|
|
96
|
+
time_steps=(measurements.shape[2]-time_print,
|
|
97
|
+
measurements.shape[2]))
|
|
98
|
+
print(80*"-")
|
|
99
|
+
|
|
100
|
+
# We can plot a given component of our tensor field and display our sensor
|
|
101
|
+
# locations with respect to the field.
|
|
102
|
+
plot_field = "strain_yy"
|
|
103
|
+
pv_plot = pyv.plot_point_sensors_on_sim(straingauge_array,plot_field)
|
|
104
|
+
pv_plot.show(cpos="xy")
|
|
105
|
+
|
|
106
|
+
# We can also plot time traces for all components of the tensor field.
|
|
107
|
+
for cc in (norm_comps+dev_comps):
|
|
108
|
+
pyv.plot_time_traces(straingauge_array,cc)
|
|
109
|
+
|
|
110
|
+
plt.show()
|
|
111
|
+
|
|
112
|
+
|
|
113
|
+
if __name__ == "__main__":
|
|
114
|
+
main()
|
|
@@ -0,0 +1,111 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# pyvale: the python validation engine
|
|
3
|
+
# License: MIT
|
|
4
|
+
# Copyright (C) 2025 The Computer Aided Validation Team
|
|
5
|
+
# ==============================================================================
|
|
6
|
+
|
|
7
|
+
"""
|
|
8
|
+
Pyvale example: Custom tensor field sensors (strain gauges) in 2D
|
|
9
|
+
--------------------------------------------------------------------------------
|
|
10
|
+
In this example we build a custom tensor field sensor array (i.e. a strain gauge
|
|
11
|
+
array) in 2D.
|
|
12
|
+
|
|
13
|
+
Note that this tutorial assumes you are familiar with the use of pyvale for
|
|
14
|
+
scalar fields as described in the first set of examples.
|
|
15
|
+
|
|
16
|
+
Test case: point strain sensors on a 2D plate with hole loaded in tension
|
|
17
|
+
"""
|
|
18
|
+
|
|
19
|
+
import numpy as np
|
|
20
|
+
import matplotlib.pyplot as plt
|
|
21
|
+
import mooseherder as mh
|
|
22
|
+
import pyvale as pyv
|
|
23
|
+
|
|
24
|
+
def main() -> None:
|
|
25
|
+
# First we load the same 2D solid mechanics simulation of a plate with a
|
|
26
|
+
# hole loaded in tension as a `SimData` object. We scale the units to mm
|
|
27
|
+
# from SI including the coordinates and displacement. Strain is unitless so
|
|
28
|
+
# we leave it alone.
|
|
29
|
+
data_path = pyv.DataSet.mechanical_2d_path()
|
|
30
|
+
sim_data = mh.ExodusReader(data_path).read_all_sim_data()
|
|
31
|
+
sim_data = pyv.scale_length_units(scale=1000.0,
|
|
32
|
+
sim_data=sim_data,
|
|
33
|
+
disp_comps=("disp_x","disp_y"))
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
# Here is the main difference when creating a tensor field sensor array. We
|
|
37
|
+
# create a tensor field where we need to specify the normal and deviatoric
|
|
38
|
+
# component string keys as they appear in our `SimData` object. We have a 2d
|
|
39
|
+
# simulation here so we have 2 normal components and 1 deviatoric (shear).
|
|
40
|
+
field_name = "strain"
|
|
41
|
+
norm_comps = ("strain_xx","strain_yy")
|
|
42
|
+
dev_comps = ("strain_xy",)
|
|
43
|
+
strain_field = pyv.FieldTensor(sim_data,
|
|
44
|
+
field_name=field_name,
|
|
45
|
+
norm_comps=norm_comps,
|
|
46
|
+
dev_comps=dev_comps,
|
|
47
|
+
elem_dims=2)
|
|
48
|
+
|
|
49
|
+
# The setup of our sensor data object is exactly the same as for any other
|
|
50
|
+
# point sensor array. We could optionally specify the sample time to be None
|
|
51
|
+
# in which case the sensor will sample at the simulation time steps.
|
|
52
|
+
n_sens = (2,3,1)
|
|
53
|
+
x_lims = (0.0,100.0)
|
|
54
|
+
y_lims = (0.0,150.0)
|
|
55
|
+
z_lims = (0.0,0.0)
|
|
56
|
+
sens_pos = pyv.create_sensor_pos_array(n_sens,x_lims,y_lims,z_lims)
|
|
57
|
+
|
|
58
|
+
sample_times = np.linspace(0.0,np.max(sim_data.time),50)
|
|
59
|
+
|
|
60
|
+
sens_data = pyv.SensorData(positions=sens_pos,
|
|
61
|
+
sample_times=sample_times)
|
|
62
|
+
|
|
63
|
+
# Here we create a descriptor that will be used to label visualisations of
|
|
64
|
+
# the sensor locations and time traces for our sensors. For the strain
|
|
65
|
+
# gauges we are modelling here we could also use the descriptor factory to
|
|
66
|
+
# get these defaults.
|
|
67
|
+
descriptor = pyv.SensorDescriptor(name="Strain",
|
|
68
|
+
symbol=r"\varepsilon",
|
|
69
|
+
units=r"-",
|
|
70
|
+
tag="SG",
|
|
71
|
+
components=("xx","yy","xy"))
|
|
72
|
+
|
|
73
|
+
# We build our point sensor array as normal.
|
|
74
|
+
straingauge_array = pyv.SensorArrayPoint(sens_data,
|
|
75
|
+
strain_field,
|
|
76
|
+
descriptor)
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
# We can add any errors we like to our error chain. Here we add some basic
|
|
80
|
+
# percentage errors.
|
|
81
|
+
error_chain = []
|
|
82
|
+
error_chain.append(pyv.ErrSysUnifPercent(low_percent=-2.0,high_percent=2.0))
|
|
83
|
+
error_chain.append(pyv.ErrRandNormPercent(std_percent=2.0))
|
|
84
|
+
error_int = pyv.ErrIntegrator(error_chain,
|
|
85
|
+
sens_data,
|
|
86
|
+
straingauge_array.get_measurement_shape())
|
|
87
|
+
straingauge_array.set_error_integrator(error_int)
|
|
88
|
+
|
|
89
|
+
# We run our virtual sensor simulation as normal. The only thing to note is
|
|
90
|
+
# that the second dimension of our measurement array will contain our tensor
|
|
91
|
+
# components in the order they are specified in the tuples with the normal
|
|
92
|
+
# components first followed by the deviatoric. In our case this will be
|
|
93
|
+
# (strain_xx,strain_yy,strain_xy).
|
|
94
|
+
measurements = straingauge_array.calc_measurements()
|
|
95
|
+
|
|
96
|
+
# We can plot a given component of our tensor field and display our sensor
|
|
97
|
+
# locations with respect to the field.
|
|
98
|
+
plot_field = "strain_yy"
|
|
99
|
+
pv_plot = pyv.plot_point_sensors_on_sim(straingauge_array,plot_field)
|
|
100
|
+
pv_plot.show(cpos="xy")
|
|
101
|
+
|
|
102
|
+
# We can also plot time traces for all components of the tensor field.
|
|
103
|
+
for cc in (norm_comps+dev_comps):
|
|
104
|
+
pyv.plot_time_traces(straingauge_array,cc)
|
|
105
|
+
|
|
106
|
+
plt.show()
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
if __name__ == "__main__":
|
|
111
|
+
main()
|