pyvale 2025.4.1__py3-none-any.whl → 2025.5.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of pyvale might be problematic. Click here for more details.

Files changed (126) hide show
  1. pyvale/__init__.py +18 -3
  2. pyvale/analyticmeshgen.py +1 -0
  3. pyvale/analyticsimdatafactory.py +18 -13
  4. pyvale/analyticsimdatagenerator.py +105 -72
  5. pyvale/blendercalibrationdata.py +15 -0
  6. pyvale/blenderlightdata.py +26 -0
  7. pyvale/blendermaterialdata.py +15 -0
  8. pyvale/blenderrenderdata.py +30 -0
  9. pyvale/blenderscene.py +488 -0
  10. pyvale/blendertools.py +420 -0
  11. pyvale/camera.py +6 -5
  12. pyvale/cameradata.py +25 -7
  13. pyvale/cameradata2d.py +6 -4
  14. pyvale/camerastereo.py +217 -0
  15. pyvale/cameratools.py +206 -11
  16. pyvale/cython/rastercyth.py +6 -2
  17. pyvale/data/cal_target.tiff +0 -0
  18. pyvale/dataset.py +73 -14
  19. pyvale/errorcalculator.py +8 -10
  20. pyvale/errordriftcalc.py +10 -9
  21. pyvale/errorintegrator.py +19 -21
  22. pyvale/errorrand.py +33 -39
  23. pyvale/errorsyscalib.py +134 -0
  24. pyvale/errorsysdep.py +19 -22
  25. pyvale/errorsysfield.py +49 -41
  26. pyvale/errorsysindep.py +79 -175
  27. pyvale/examples/basics/ex1_1_basicscalars_therm2d.py +131 -0
  28. pyvale/examples/basics/ex1_2_sensormodel_therm2d.py +158 -0
  29. pyvale/examples/basics/ex1_3_customsens_therm3d.py +216 -0
  30. pyvale/examples/basics/ex1_4_basicerrors_therm3d.py +153 -0
  31. pyvale/examples/basics/ex1_5_fielderrs_therm3d.py +168 -0
  32. pyvale/examples/basics/ex1_6_caliberrs_therm2d.py +133 -0
  33. pyvale/examples/basics/ex1_7_spatavg_therm2d.py +123 -0
  34. pyvale/examples/basics/ex2_1_basicvectors_disp2d.py +112 -0
  35. pyvale/examples/basics/ex2_2_vectorsens_disp2d.py +111 -0
  36. pyvale/examples/basics/ex2_3_sensangle_disp2d.py +139 -0
  37. pyvale/examples/basics/ex2_4_chainfielderrs_disp2d.py +196 -0
  38. pyvale/examples/basics/ex2_5_vectorfields3d_disp3d.py +109 -0
  39. pyvale/examples/basics/ex3_1_basictensors_strain2d.py +114 -0
  40. pyvale/examples/basics/ex3_2_tensorsens2d_strain2d.py +111 -0
  41. pyvale/examples/basics/ex3_3_tensorsens3d_strain3d.py +182 -0
  42. pyvale/examples/basics/ex4_1_expsim2d_thermmech2d.py +171 -0
  43. pyvale/examples/basics/ex4_2_expsim3d_thermmech3d.py +252 -0
  44. pyvale/examples/{analyticdatagen → genanalyticdata}/ex1_1_scalarvisualisation.py +6 -9
  45. pyvale/examples/{analyticdatagen → genanalyticdata}/ex1_2_scalarcasebuild.py +8 -11
  46. pyvale/examples/{analyticdatagen → genanalyticdata}/ex2_1_analyticsensors.py +9 -12
  47. pyvale/examples/imagedef2d/ex_imagedef2d_todisk.py +8 -15
  48. pyvale/examples/renderblender/ex1_1_blenderscene.py +121 -0
  49. pyvale/examples/renderblender/ex1_2_blenderdeformed.py +119 -0
  50. pyvale/examples/renderblender/ex2_1_stereoscene.py +128 -0
  51. pyvale/examples/renderblender/ex2_2_stereodeformed.py +131 -0
  52. pyvale/examples/renderblender/ex3_1_blendercalibration.py +120 -0
  53. pyvale/examples/{rasterisation → renderrasterisation}/ex_rastenp.py +3 -2
  54. pyvale/examples/{rasterisation → renderrasterisation}/ex_rastercyth_oneframe.py +2 -2
  55. pyvale/examples/{rasterisation → renderrasterisation}/ex_rastercyth_static_cypara.py +3 -8
  56. pyvale/examples/{rasterisation → renderrasterisation}/ex_rastercyth_static_pypara.py +6 -7
  57. pyvale/examples/{ex1_4_thermal2d.py → visualisation/ex1_1_plot_traces.py} +32 -16
  58. pyvale/examples/{features/ex_animation_tools_3dmonoblock.py → visualisation/ex2_1_animate_sim.py} +37 -31
  59. pyvale/experimentsimulator.py +107 -30
  60. pyvale/field.py +2 -9
  61. pyvale/fieldconverter.py +98 -22
  62. pyvale/fieldsampler.py +2 -2
  63. pyvale/fieldscalar.py +10 -10
  64. pyvale/fieldtensor.py +15 -17
  65. pyvale/fieldtransform.py +7 -2
  66. pyvale/fieldvector.py +6 -7
  67. pyvale/generatorsrandom.py +25 -47
  68. pyvale/imagedef2d.py +6 -2
  69. pyvale/integratorfactory.py +2 -2
  70. pyvale/integratorquadrature.py +50 -24
  71. pyvale/integratorrectangle.py +85 -7
  72. pyvale/integratorspatial.py +4 -4
  73. pyvale/integratortype.py +3 -3
  74. pyvale/output.py +17 -0
  75. pyvale/pyvaleexceptions.py +11 -0
  76. pyvale/raster.py +6 -5
  77. pyvale/rastercy.py +6 -4
  78. pyvale/rasternp.py +6 -4
  79. pyvale/rendermesh.py +6 -2
  80. pyvale/sensorarray.py +2 -2
  81. pyvale/sensorarrayfactory.py +52 -65
  82. pyvale/sensorarraypoint.py +29 -30
  83. pyvale/sensordata.py +2 -2
  84. pyvale/sensordescriptor.py +138 -25
  85. pyvale/sensortools.py +3 -3
  86. pyvale/simtools.py +67 -0
  87. pyvale/visualexpplotter.py +99 -57
  88. pyvale/visualimagedef.py +11 -7
  89. pyvale/visualimages.py +6 -4
  90. pyvale/visualopts.py +372 -58
  91. pyvale/visualsimanimator.py +42 -13
  92. pyvale/visualsimsensors.py +318 -0
  93. pyvale/visualtools.py +69 -13
  94. pyvale/visualtraceplotter.py +52 -165
  95. {pyvale-2025.4.1.dist-info → pyvale-2025.5.2.dist-info}/METADATA +17 -14
  96. pyvale-2025.5.2.dist-info/RECORD +172 -0
  97. {pyvale-2025.4.1.dist-info → pyvale-2025.5.2.dist-info}/WHEEL +1 -1
  98. pyvale/examples/analyticdatagen/__init__.py +0 -5
  99. pyvale/examples/ex1_1_thermal2d.py +0 -86
  100. pyvale/examples/ex1_2_thermal2d.py +0 -108
  101. pyvale/examples/ex1_3_thermal2d.py +0 -110
  102. pyvale/examples/ex1_5_thermal2d.py +0 -102
  103. pyvale/examples/ex2_1_thermal3d .py +0 -84
  104. pyvale/examples/ex2_2_thermal3d.py +0 -51
  105. pyvale/examples/ex2_3_thermal3d.py +0 -106
  106. pyvale/examples/ex3_1_displacement2d.py +0 -44
  107. pyvale/examples/ex3_2_displacement2d.py +0 -76
  108. pyvale/examples/ex3_3_displacement2d.py +0 -101
  109. pyvale/examples/ex3_4_displacement2d.py +0 -102
  110. pyvale/examples/ex4_1_strain2d.py +0 -54
  111. pyvale/examples/ex4_2_strain2d.py +0 -76
  112. pyvale/examples/ex4_3_strain2d.py +0 -97
  113. pyvale/examples/ex5_1_multiphysics2d.py +0 -75
  114. pyvale/examples/ex6_1_multiphysics2d_expsim.py +0 -115
  115. pyvale/examples/ex6_2_multiphysics3d_expsim.py +0 -160
  116. pyvale/examples/features/__init__.py +0 -5
  117. pyvale/examples/features/ex_area_avg.py +0 -89
  118. pyvale/examples/features/ex_calibration_error.py +0 -108
  119. pyvale/examples/features/ex_chain_field_errs.py +0 -141
  120. pyvale/examples/features/ex_field_errs.py +0 -78
  121. pyvale/examples/features/ex_sensor_single_angle_batch.py +0 -110
  122. pyvale/optimcheckfuncs.py +0 -153
  123. pyvale/visualsimplotter.py +0 -182
  124. pyvale-2025.4.1.dist-info/RECORD +0 -163
  125. {pyvale-2025.4.1.dist-info → pyvale-2025.5.2.dist-info}/licenses/LICENSE +0 -0
  126. {pyvale-2025.4.1.dist-info → pyvale-2025.5.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,182 @@
1
+ # ==============================================================================
2
+ # pyvale: the python validation engine
3
+ # License: MIT
4
+ # Copyright (C) 2025 The Computer Aided Validation Team
5
+ # ==============================================================================
6
+
7
+ """
8
+ Pyvale example: Custom tensor field sensors (strain gauges) in 3D
9
+ --------------------------------------------------------------------------------
10
+ In this example we build a custom tensor field sensor array (i.e. a strain gauge
11
+ array) in 3D. We will also demonstrate how to specify sensor angles and field
12
+ errors based on sensor angles.
13
+
14
+ Note that this tutorial assumes you are familiar with the use of pyvale for
15
+ scalar fields as described in the first set of examples.
16
+
17
+ Test case: point strain sensors on a 2D plate with hole loaded in tension
18
+ """
19
+
20
+ import numpy as np
21
+ import matplotlib.pyplot as plt
22
+ from scipy.spatial.transform import Rotation
23
+ import mooseherder as mh
24
+ import pyvale as pyv
25
+
26
+ def main() -> None:
27
+
28
+ # Frist we load our simulation as a `SimData` object. In this case we are
29
+ # loading a 10mm cube loaded in tension in the y direction with the addition
30
+ # of a thermal gradient in the y direction.
31
+ data_path = pyv.DataSet.element_case_path(pyv.EElemTest.HEX20)
32
+ sim_data = mh.ExodusReader(data_path).read_all_sim_data()
33
+
34
+ # As we are creating a 3D tensor field sensor we now have a third
35
+ # displacement field component here for scaling. Note that you don't need to
36
+ # scale the displacements here if you only want to analyse strains.
37
+ disp_comps = ("disp_x","disp_y","disp_z")
38
+ sim_data = pyv.scale_length_units(scale=1000.0,
39
+ sim_data=sim_data,
40
+ disp_comps=disp_comps)
41
+
42
+ # Here is the main difference when creating a tensor field sensor array. We
43
+ # create a tensor field where we need to specify the normal and deviatoric
44
+ # component string keys as they appear in our `SimData` object. We have a 3D
45
+ # simulation here so we have 3 normal components and 3 deviatoric (shear).
46
+ field_name = "strain"
47
+ norm_comps = ("strain_xx","strain_yy","strain_zz")
48
+ dev_comps = ("strain_xy","strain_yz","strain_xz")
49
+ strain_field = pyv.FieldTensor(sim_data,
50
+ field_name=field_name,
51
+ norm_comps=norm_comps,
52
+ dev_comps=dev_comps,
53
+ elem_dims=3)
54
+
55
+ # Here we manually define our sensor positions to place a sensor on the
56
+ # centre of each face of our 10mm cube. From here everything is the same as
57
+ # for our 2D vector field sensor arrays.
58
+ sensor_positions = np.array(((5.0,0.0,5.0), # bottom
59
+ (5.0,10.0,5.0), # top
60
+ (5.0,5.0,0.0), # xy face
61
+ (5.0,5.0,10.0), # xy face
62
+ (0.0,5.0,5.0), # yz face
63
+ (10.0,5.0,5.0),)) # yz face
64
+
65
+ # We set custom sensor sampling times here but we could also set this to
66
+ # None to have the sensors sample at the simulation time steps.
67
+ sample_times = np.linspace(0.0,np.max(sim_data.time),50)
68
+
69
+ # We are going to manually specify the sensor angles for all our sensors.
70
+ sens_angles = (Rotation.from_euler("zyx", [0, 0, 0], degrees=True),
71
+ Rotation.from_euler("zyx", [0, 0, 0], degrees=True),
72
+ Rotation.from_euler("zyx", [45, 0, 0], degrees=True),
73
+ Rotation.from_euler("zyx", [45, 0, 0], degrees=True),
74
+ Rotation.from_euler("zyx", [0, 0, 45], degrees=True),
75
+ Rotation.from_euler("zyx", [0, 0, 45], degrees=True),)
76
+
77
+
78
+ sens_data = pyv.SensorData(positions=sensor_positions,
79
+ sample_times=sample_times,
80
+ angles=sens_angles)
81
+
82
+ # Here we create a descriptor that will be used to label visualisations of
83
+ # the sensor locations and time traces for our sensors. For the strain
84
+ # gauges we are modelling here we could also use the descriptor factory to
85
+ # get these defaults.
86
+ descriptor = pyv.SensorDescriptor(name="Strain",
87
+ symbol=r"\varepsilon",
88
+ units=r"-",
89
+ tag="SG",
90
+ components=('xx','yy','zz','xy','yz','xz'))
91
+
92
+
93
+ straingauge_array = pyv.SensorArrayPoint(sens_data,
94
+ strain_field,
95
+ descriptor)
96
+
97
+ # We can add any errors we like to our error chain. Here we add some basic
98
+ # percentage errors.
99
+ error_chain = []
100
+ error_chain.append(pyv.ErrSysUnif(low=-0.1e-3,high=0.1e-3))
101
+ error_chain.append(pyv.ErrRandNormPercent(std_percent=1.0))
102
+
103
+ # Now we add a field error to perturb the positions of each sensor on its
104
+ # relevant face and then add a +/- 2deg angle error.
105
+
106
+ pos_uncert = 0.1 # units = mm
107
+ pos_rand_xyz = (pyv.GenNormal(std=pos_uncert),
108
+ pyv.GenNormal(std=pos_uncert),
109
+ pyv.GenNormal(std=pos_uncert))
110
+
111
+ angle_uncert = 2.0
112
+ angle_rand_zyx = (pyv.GenUniform(low=-angle_uncert,high=angle_uncert), # units = deg
113
+ pyv.GenUniform(low=-angle_uncert,high=angle_uncert),
114
+ pyv.GenUniform(low=-angle_uncert,high=angle_uncert))
115
+
116
+ # We are going to lock position perturbation so that the sensors stay on the
117
+ # faces of the cube they are positioned on.
118
+ pos_lock = np.full(sensor_positions.shape,False,dtype=bool)
119
+ pos_lock[0:2,1] = True # Block translation in y
120
+ pos_lock[2:4,2] = True # Block translation in z
121
+ pos_lock[4:6,0] = True # Block translation in x
122
+
123
+ # We are also going to lock angular perturbation so that each sensor is only
124
+ # allowed to rotate on the plane it is on.
125
+ angle_lock = np.full(sensor_positions.shape,True,dtype=bool)
126
+ angle_lock[0:2,1] = False # Allow rotation about y
127
+ angle_lock[2:4,0] = False # Allow rotation about z
128
+ angle_lock[4:6,2] = False # Alloq rotation about x
129
+
130
+ field_error_data = pyv.ErrFieldData(pos_rand_xyz=pos_rand_xyz,
131
+ pos_lock_xyz=pos_lock,
132
+ ang_rand_zyx=angle_rand_zyx,
133
+ ang_lock_zyx=angle_lock)
134
+ sys_err_field = pyv.ErrSysField(strain_field,field_error_data)
135
+ error_chain.append(sys_err_field)
136
+
137
+
138
+ error_int = pyv.ErrIntegrator(error_chain,
139
+ sens_data,
140
+ straingauge_array.get_measurement_shape())
141
+ straingauge_array.set_error_integrator(error_int)
142
+
143
+ # We run our virtual sensor simulation as normal. The only thing to note is
144
+ # that the second dimension of our measurement array will contain our tensor
145
+ # components in the order they are specified in the tuples with the normal
146
+ # components first followed by the deviatoric.
147
+ measurements = straingauge_array.calc_measurements()
148
+
149
+ # We print some of the results for one of the sensors so we can see the
150
+ # effect of the field errors.
151
+ print(80*"-")
152
+
153
+ sens_print: int = 0
154
+ time_print: int = 5
155
+ comp_print: int = 1 # strain_yy based on order in tuple
156
+
157
+ print("ROTATED SENSORS WITH ANGLE ERRORS:")
158
+ print(f"These are the last {time_print} virtual measurements of sensor "
159
+ + f"{sens_print} for {norm_comps[comp_print]}:")
160
+
161
+ pyv.print_measurements(sens_array=straingauge_array,
162
+ sensors=(sens_print,sens_print+1),
163
+ components=(comp_print,comp_print+1),
164
+ time_steps=(measurements.shape[2]-time_print,
165
+ measurements.shape[2]))
166
+ print(80*"-")
167
+
168
+ # We can plot a given component of our tensor field and display our sensor
169
+ # locations with respect to the field.
170
+ plot_field = "strain_yy"
171
+ pv_plot = pyv.plot_point_sensors_on_sim(straingauge_array,plot_field)
172
+ pv_plot.show(cpos="xy")
173
+
174
+ # We can also plot time traces for all components of the tensor field.
175
+ for cc in (norm_comps+dev_comps):
176
+ pyv.plot_time_traces(straingauge_array,cc)
177
+
178
+ plt.show()
179
+
180
+
181
+ if __name__ == "__main__":
182
+ main()
@@ -0,0 +1,171 @@
1
+ # ==============================================================================
2
+ # pyvale: the python validation engine
3
+ # License: MIT
4
+ # Copyright (C) 2025 The Computer Aided Validation Team
5
+ # ==============================================================================
6
+
7
+ """Pyvale example: Multi-physics experiment simulation in 2D
8
+ --------------------------------------------------------------------------------
9
+ In previous examples we have built our virtual sensor array and used this to
10
+ run a single simulated experiment. However, we will generally want to run many
11
+ simulated experiments and perform statistical analysis on the results. In this
12
+ example we demonstrate how pyvale can be used to run a set of simulated
13
+ experiments with a series of sensor arrays one measuring temperature and the
14
+ other measuring strain. We also show how this analysis can be performed over a
15
+ set of input physics simulations.
16
+
17
+ Note that this tutorial assumes you are familiar with the use of pyvale for
18
+ scalar and tensor fields as described in the previous examples.
19
+
20
+ Test case: thermo-mechanical analysis of a 2D plate with a temperature gradient.
21
+ """
22
+
23
+ import numpy as np
24
+ import matplotlib.pyplot as plt
25
+ import mooseherder as mh
26
+ import pyvale as pyv
27
+
28
+
29
+ def main() -> None:
30
+ # Here we get a list of paths to a set of 3 simulations in this case the
31
+ # simulation is a 2D plate with a heat flux on one edge and a heat transfer
32
+ # coefficient on the other. The mechanical deformation is a result of
33
+ # thermal expansion. The 3 simulation cases cover a nominal thermal
34
+ # and a perturbation of +/-10%.
35
+ data_paths = pyv.DataSet.thermomechanical_2d_experiment_paths()
36
+ elem_dims: int = 2
37
+
38
+ # We now loop over the paths and load each into a `SimData` object. We then
39
+ # scale our length units to mm and append the simulation to a list which we
40
+ # will use to perform our simulated experiments.
41
+ disp_comps = ("disp_x","disp_y")
42
+ sim_list = []
43
+ for pp in data_paths:
44
+ sim_data = mh.ExodusReader(pp).read_all_sim_data()
45
+ sim_data = pyv.scale_length_units(scale=1000.0,
46
+ sim_data=sim_data,
47
+ disp_comps=disp_comps)
48
+ sim_list.append(sim_data)
49
+
50
+
51
+ # We will use the same sampling times for both the thermal and strain
52
+ # sensor arrays as well as the same positions.
53
+ sample_times = np.linspace(0.0,np.max(sim_data.time),50)
54
+
55
+
56
+ # We place 4 thermal sensors along the mid line of the plate in the
57
+ # direction of the temperature gradient.
58
+ n_sens = (4,1,1)
59
+ x_lims = (0.0,100.0)
60
+ y_lims = (0.0,50.0)
61
+ z_lims = (0.0,0.0)
62
+ tc_sens_pos = pyv.create_sensor_pos_array(n_sens,x_lims,y_lims,z_lims)
63
+
64
+ tc_sens_data = pyv.SensorData(positions=tc_sens_pos,
65
+ sample_times=sample_times)
66
+
67
+ # We use the sensor array factory to give use thermocouples with basic 2%
68
+ # errors with uniform systematic error and normal random error. Note that
69
+ # we need to provide a `SimData` object to create our sensor array but when
70
+ # we run our experiment the field object that relies on this will switch the
71
+ # sim data for the required simulation in our list.
72
+ tc_field_name = "temperature"
73
+ tc_array = pyv.SensorArrayFactory \
74
+ .thermocouples_basic_errs(sim_list[0],
75
+ tc_sens_data,
76
+ elem_dims=elem_dims,
77
+ field_name=tc_field_name,
78
+ errs_pc=2.0)
79
+
80
+ # We place 3 strain gauges along the direction of the temperature gradient.
81
+ n_sens = (3,1,1)
82
+ sg_sens_pos = pyv.create_sensor_pos_array(n_sens,x_lims,y_lims,z_lims)
83
+ sg_sens_data = pyv.SensorData(positions=sg_sens_pos,
84
+ sample_times=sample_times)
85
+
86
+ # We use the factory to give us a basic strain gauge array as well.
87
+ sg_field_name = "strain"
88
+ sg_norm_comps = ("strain_xx","strain_yy")
89
+ sg_dev_comps = ("strain_xy",)
90
+ sg_array = pyv.SensorArrayFactory \
91
+ .strain_gauges_basic_errs(sim_list[0],
92
+ sg_sens_data,
93
+ elem_dims=elem_dims,
94
+ field_name=sg_field_name,
95
+ norm_comps=sg_norm_comps,
96
+ dev_comps=sg_dev_comps,
97
+ errs_pc=2.0)
98
+
99
+
100
+ # Now we have our list of simulation and the two sensor arrays we want to
101
+ # apply to the simulations. We create a list of our two sensor arrays and
102
+ # use this to create an experiment simulator while specifying how many
103
+ # simulate experiments we want to run per simulation and sensor array.
104
+ sensor_arrays = [tc_array,sg_array]
105
+ exp_sim = pyv.ExperimentSimulator(sim_list,
106
+ sensor_arrays,
107
+ num_exp_per_sim=1000)
108
+
109
+ # We can now run our experiments for all our sensor arrays. We are returned
110
+ # a list of numpy arrays. The index in the list corresponds to the position
111
+ # of the sensor array in the list. So if we want our thermocouple results we
112
+ # want exp_data[0] and for our strain gauges exp_data[1]. The numpy array
113
+ # has the following shape:
114
+ # (n_sims,n_exps,n_sensors,n_field_comps,n_time_steps)
115
+ exp_data = exp_sim.run_experiments()
116
+
117
+ # We can also calculate summary statistics for each sensor array which is
118
+ # returned as a list where the position corresponds to the sensor array as
119
+ # in our experimental data. The experiment stats object contains numpy
120
+ # arrays for each statistic that is collapsed over the number of
121
+ # experiments. The statistics we can acces include: mean, standard deviation
122
+ # minimum, maximum, median, median absolute deviation and the 25% and 75%
123
+ # quartiles. See the `ExperimentStats` data class for details.
124
+ exp_stats = exp_sim.calc_stats()
125
+
126
+ # We will index into and print the shape of our exp_data and exp_stats
127
+ # lists to demonstrate how this works in practice:
128
+ print(80*"=")
129
+ print("exp_data and exp_stats are lists where the index is the sensor array")
130
+ print("position in the list as field components are not consistent dims.\n")
131
+
132
+ print(80*"-")
133
+ print("Thermal sensor array @ exp_data[0]")
134
+ print(80*"-")
135
+ print("shape=(n_sims,n_exps,n_sensors,n_field_comps,n_time_steps)")
136
+ print(f"{exp_data[0].shape=}")
137
+ print()
138
+ print("Stats are calculated over all experiments (axis=1)")
139
+ print("shape=(n_sims,n_sensors,n_field_comps,n_time_steps)")
140
+ print(f"{exp_stats[0].max.shape=}")
141
+ print()
142
+ print(80*"-")
143
+ print("Mechanical sensor array @ exp_data[1]")
144
+ print(80*"-")
145
+ print("shape=(n_sims,n_exps,n_sensors,n_field_comps,n_time_steps)")
146
+ print(f"{exp_data[1].shape=}")
147
+ print()
148
+ print("shape=(n_sims,n_sensors,n_field_comps,n_time_steps)")
149
+ print(f"{exp_stats[1].max.shape=}")
150
+ print(80*"=")
151
+
152
+ # We also have specific plotting tools which allow us to visualise the
153
+ # uncertainty bounds for our sensor traces. The defaults plot options show
154
+ # the mean sensor trace and uncertainty bounds of 3 times the stanard
155
+ # deviation. In the next example we will see how to control these plots.
156
+ # For now we will plot the temperature traces for the first simulation and
157
+ # the strain traces for the third simulation in our list of SimData objects.
158
+ (fig,ax) = pyv.plot_exp_traces(exp_sim,
159
+ component="temperature",
160
+ sens_array_num=0,
161
+ sim_num=0)
162
+
163
+ (fig,ax) = pyv.plot_exp_traces(exp_sim,
164
+ component="strain_yy",
165
+ sens_array_num=1,
166
+ sim_num=2)
167
+ plt.show()
168
+
169
+
170
+ if __name__ == "__main__":
171
+ main()
@@ -0,0 +1,252 @@
1
+ # ==============================================================================
2
+ # pyvale: the python validation engine
3
+ # License: MIT
4
+ # Copyright (C) 2025 The Computer Aided Validation Team
5
+ # ==============================================================================
6
+
7
+ """Pyvale example: Multi-physics experiment simulation in 3D
8
+ --------------------------------------------------------------------------------
9
+ In the previous example we performed a series of simulated experiments on a set
10
+ of 2D multi-physics simulations. Here we use a 3D thermo-mechanical analysis of
11
+ a divertor armour heatsink to show how we can run simulated experiments in 3D.
12
+
13
+ Note that this tutorial assumes you are familiar with the use of pyvale for
14
+ scalar and tensor fields as described in the previous examples.
15
+
16
+ Test case: thermo-mechanical analysis of a divertor heatsink in 3D
17
+ """
18
+
19
+ from pathlib import Path
20
+ import numpy as np
21
+ import matplotlib.pyplot as plt
22
+ import mooseherder as mh
23
+ import pyvale as pyv
24
+
25
+ def main() -> None:
26
+ # First we get the path to simulation output file and then read the
27
+ # simulation into a `SimData` object. In this case our simulation is a
28
+ # thermomechanical model of a divertor heatsink.
29
+ sim_path = pyv.DataSet.thermomechanical_3d_path()
30
+ sim_data = mh.ExodusReader(sim_path).read_all_sim_data()
31
+ elem_dims: int = 3
32
+ # We scale our length and displacement units to mm to help with
33
+ # visualisation.
34
+ disp_comps = ("disp_x","disp_y","disp_z")
35
+ sim_data = pyv.scale_length_units(scale=1000.0,
36
+ sim_data=sim_data,
37
+ disp_comps=disp_comps)
38
+
39
+ # If we are going to save figures showing where our sensors are and their
40
+ # simulated traces we need to create a directory. Set the flag below to
41
+ # save the figures when you run the script
42
+ save_figs = False
43
+ save_tag = "thermomech3d"
44
+ fig_save_path = Path.cwd()/"images"
45
+ if not fig_save_path.is_dir():
46
+ fig_save_path.mkdir(parents=True, exist_ok=True)
47
+
48
+ # We specify manual sensor sampling times but we could also set this to None
49
+ # for the sensors to sample at the simulation time steps.
50
+ sample_times = np.linspace(0.0,np.max(sim_data.time),50)
51
+
52
+
53
+ x_lims = (12.5,12.5)
54
+ y_lims = (0.0,33.0)
55
+ z_lims = (0.0,12.0)
56
+ n_sens = (1,4,1)
57
+ tc_sens_pos = pyv.create_sensor_pos_array(n_sens,x_lims,y_lims,z_lims)
58
+
59
+ tc_sens_data = pyv.SensorData(positions=tc_sens_pos,
60
+ sample_times=sample_times)
61
+
62
+ # We use the sensor array factory to create our thermocouple array with no
63
+ # errors.
64
+ tc_field_name = "temperature"
65
+ tc_array = pyv.SensorArrayFactory \
66
+ .thermocouples_no_errs(sim_data,
67
+ tc_sens_data,
68
+ elem_dims=elem_dims,
69
+ field_name=tc_field_name)
70
+
71
+ # Now we build our error chain starting with some basic errors on the order
72
+ # of 1 degree.
73
+ tc_err_chain = []
74
+ tc_err_chain.append(pyv.ErrSysUnif(low=1.0,high=1.0))
75
+ tc_err_chain.append(pyv.ErrRandNorm(std=1.0))
76
+
77
+ # Now we add positioning error for our thermocouples.
78
+ tc_pos_uncert = 0.1 # units = mm
79
+ tc_pos_rand = (pyv.GenNormal(std=tc_pos_uncert),
80
+ pyv.GenNormal(std=tc_pos_uncert),
81
+ pyv.GenNormal(std=tc_pos_uncert))
82
+
83
+ # We block translation in x so the thermocouples stay attached.
84
+ tc_pos_lock = np.full(tc_sens_pos.shape,False,dtype=bool)
85
+ tc_pos_lock[:,0] = True
86
+
87
+ tc_field_err_data = pyv.ErrFieldData(pos_rand_xyz=tc_pos_rand,
88
+ pos_lock_xyz=tc_pos_lock)
89
+ tc_err_chain.append(pyv.ErrSysField(tc_array.get_field(),
90
+ tc_field_err_data))
91
+ # We have finished our error chain so we can build our error integrator and
92
+ # attach it to our thermocouple array.
93
+ tc_error_int = pyv.ErrIntegrator(tc_err_chain,
94
+ tc_sens_data,
95
+ tc_array.get_measurement_shape())
96
+ tc_array.set_error_integrator(tc_error_int)
97
+
98
+ # We visualise our thermcouple locations on our mesh to make sure they are
99
+ # in the correct positions.
100
+ pv_plot = pyv.plot_point_sensors_on_sim(tc_array,"temperature")
101
+ pv_plot.camera_position = [(59.354, 43.428, 69.946),
102
+ (-2.858, 13.189, 4.523),
103
+ (-0.215, 0.948, -0.233)]
104
+ if save_figs:
105
+ pv_plot.save_graphic(fig_save_path/(save_tag+"_tc_vis.svg"))
106
+ pv_plot.screenshot(fig_save_path/(save_tag+"_tc_vis.png"))
107
+
108
+ pv_plot.show()
109
+
110
+ # Now we have finished with our thermocouple array we can move on to our
111
+ # strain gauge array.
112
+
113
+ # We use the same sampling time but we are going to place the strain gauges
114
+ # down the side of the monoblock where the pipe passes through.
115
+ x_lims = (9.4,9.4)
116
+ y_lims = (0.0,33.0)
117
+ z_lims = (12.0,12.0)
118
+ n_sens = (1,4,1)
119
+ sg_sens_pos = pyv.create_sensor_pos_array(n_sens,x_lims,y_lims,z_lims)
120
+
121
+ sg_sens_data = pyv.SensorData(positions=sg_sens_pos,
122
+ sample_times=sample_times)
123
+
124
+ # We use the sensor array factory to give us a strain gauge array with no
125
+ # errors.
126
+ sg_field_name = "strain"
127
+ sg_norm_comps = ("strain_xx","strain_yy","strain_zz")
128
+ sg_dev_comps = ("strain_xy","strain_yz","strain_xz")
129
+ sg_array = pyv.SensorArrayFactory \
130
+ .strain_gauges_no_errs(sim_data,
131
+ sg_sens_data,
132
+ elem_dims=elem_dims,
133
+ field_name=sg_field_name,
134
+ norm_comps=sg_norm_comps,
135
+ dev_comps=sg_dev_comps)
136
+
137
+ # Now we build our error chain starting with some basic errors on the order
138
+ # of 1 percent.
139
+ sg_err_chain = []
140
+ sg_err_chain.append(pyv.ErrSysUnifPercent(low_percent=1.0,high_percent=1.0))
141
+ sg_err_chain.append(pyv.ErrRandNormPercent(std_percent=1.0))
142
+
143
+ # We are going to add +/-2 degree rotation uncertainty to our strain gauges.
144
+ angle_uncert = 2.0
145
+ angle_rand_zyx = (pyv.GenUniform(low=-angle_uncert,high=angle_uncert), # units = deg
146
+ pyv.GenUniform(low=-angle_uncert,high=angle_uncert),
147
+ pyv.GenUniform(low=-angle_uncert,high=angle_uncert))
148
+
149
+ # We only allow rotation on the face the strain gauges are on
150
+ angle_lock = np.full(sg_sens_pos.shape,True,dtype=bool)
151
+ angle_lock[:,0] = False # Allow rotation about z
152
+
153
+ sg_field_err_data = pyv.ErrFieldData(ang_rand_zyx=angle_rand_zyx,
154
+ ang_lock_zyx=angle_lock)
155
+ sg_err_chain.append(pyv.ErrSysField(sg_array.get_field(),
156
+ sg_field_err_data))
157
+
158
+ # We have finished our error chain so we can build our error integrator and
159
+ # attach it to our thermocouple array.
160
+ sg_error_int = pyv.ErrIntegrator(sg_err_chain,
161
+ sg_sens_data,
162
+ sg_array.get_measurement_shape())
163
+ sg_array.set_error_integrator(sg_error_int)
164
+
165
+ # Now we visualise the strain gauge locations to make sure they are where
166
+ # we expect them to be.
167
+ pv_plot = pyv.plot_point_sensors_on_sim(sg_array,"strain_yy")
168
+ pv_plot.camera_position = [(59.354, 43.428, 69.946),
169
+ (-2.858, 13.189, 4.523),
170
+ (-0.215, 0.948, -0.233)]
171
+ if save_figs:
172
+ pv_plot.save_graphic(fig_save_path/(save_tag+"_sg_vis.svg"))
173
+ pv_plot.screenshot(fig_save_path/(save_tag+"_sg_vis.png"))
174
+
175
+ pv_plot.show()
176
+
177
+ # We have both our sensor arrays so we will create and run our experiment.
178
+ # Here we only have a single input simulation in our list and we only run
179
+ # 100 simulated experiments as we are going to plot all simulated data
180
+ # points on our traces. Note that if you are running more than 100
181
+ # experiments here you will need to set the trace plots below to not show
182
+ # all points on the graph.
183
+ sim_list = [sim_data,]
184
+ sensor_arrays = [tc_array,sg_array]
185
+ exp_sim = pyv.ExperimentSimulator(sim_list,
186
+ sensor_arrays,
187
+ num_exp_per_sim=100)
188
+
189
+ # We run our experiments and calculate summary statistics as in the previous
190
+ # example
191
+ exp_data = exp_sim.run_experiments()
192
+ exp_stats = exp_sim.calc_stats()
193
+
194
+ # We print the lengths of our exp_data and exp_stats lists along with the
195
+ # shape of the numpy arrays they contain so we can index into them easily.
196
+ print(80*"=")
197
+ print("exp_data and exp_stats are lists where the index is the sensor array")
198
+ print("position in the list as field components are not consistent dims:")
199
+ print(f"{len(exp_data)=}")
200
+ print(f"{len(exp_stats)=}")
201
+ print()
202
+ print(80*"-")
203
+ print("Thermal sensor array @ exp_data[0]")
204
+ print(80*"-")
205
+ print("shape=(n_sims,n_exps,n_sensors,n_field_comps,n_time_steps)")
206
+ print(f"{exp_data[0].shape=}")
207
+ print()
208
+ print("Stats are calculated over all experiments (axis=1)")
209
+ print("shape=(n_sims,n_sensors,n_field_comps,n_time_steps)")
210
+ print(f"{exp_stats[0].max.shape=}")
211
+ print()
212
+ print(80*"-")
213
+ print("Mechanical sensor array @ exp_data[1]")
214
+ print(80*"-")
215
+ print("shape=(n_sims,n_exps,n_sensors,n_field_comps,n_time_steps)")
216
+ print(f"{exp_data[1].shape=}")
217
+ print()
218
+ print("shape=(n_sims,n_sensors,n_field_comps,n_time_steps)")
219
+ print(f"{exp_stats[1].max.shape=}")
220
+ print(80*"=")
221
+
222
+ # Finally, we are going to plot the simulated sensor traces but we are going
223
+ # to control some of the plotting options using the options data class here.
224
+ # We set the plot to show all simulated experiment data points and to plot
225
+ # the median as the centre line and to fill between the min and max values.
226
+ # Note that the default here is to plot the mean and fill between 3 times
227
+ # the standard deviation.
228
+ trace_opts = pyv.TraceOptsExperiment(plot_all_exp_points=True,
229
+ centre=pyv.EExpVisCentre.MEDIAN,
230
+ fill_between=pyv.EExpVisBounds.MINMAX)
231
+
232
+ (fig,ax) = pyv.plot_exp_traces(exp_sim,
233
+ component="temperature",
234
+ sens_array_num=0,
235
+ sim_num=0,
236
+ trace_opts=trace_opts)
237
+ if save_figs:
238
+ fig.savefig(fig_save_path/(save_tag+"_tc_traces.png"),
239
+ dpi=300, format='png', bbox_inches='tight')
240
+
241
+ (fig,ax) = pyv.plot_exp_traces(exp_sim,
242
+ component="strain_yy",
243
+ sens_array_num=1,
244
+ sim_num=0,
245
+ trace_opts=trace_opts)
246
+ if save_figs:
247
+ fig.savefig(fig_save_path/(save_tag+"_sg_traces.png"),
248
+ dpi=300, format='png', bbox_inches='tight')
249
+ plt.show()
250
+
251
+ if __name__ == "__main__":
252
+ main()
@@ -1,12 +1,9 @@
1
- '''
2
- ================================================================================
3
- Analytic test case data - linear
4
-
5
- pyvale: the python validation engine
6
- License: MIT
7
- Copyright (C) 2025 The Computer Aided Validation Team
8
- ================================================================================
9
- '''
1
+ # ==============================================================================
2
+ # pyvale: the python validation engine
3
+ # License: MIT
4
+ # Copyright (C) 2025 The Computer Aided Validation Team
5
+ # ==============================================================================
6
+
10
7
  import matplotlib.pyplot as plt
11
8
  import pyvale
12
9
 
@@ -1,12 +1,9 @@
1
- '''
2
- ================================================================================
3
- Analytic test case data - linear
4
-
5
- pyvale: the python validation engine
6
- License: MIT
7
- Copyright (C) 2025 The Computer Aided Validation Team
8
- ================================================================================
9
- '''
1
+ # ==============================================================================
2
+ # pyvale: the python validation engine
3
+ # License: MIT
4
+ # Copyright (C) 2025 The Computer Aided Validation Team
5
+ # ==============================================================================
6
+
10
7
  import numpy as np
11
8
  import matplotlib.pyplot as plt
12
9
  import sympy
@@ -14,7 +11,7 @@ import pyvale
14
11
 
15
12
  def main() -> None:
16
13
 
17
- case_data = pyvale.AnalyticCaseData2D()
14
+ case_data = pyvale.AnalyticData2D()
18
15
  case_data.length_x = 10.0
19
16
  case_data.length_y = 7.5
20
17
  n_elem_mult = 10
@@ -30,7 +27,7 @@ def main() -> None:
30
27
  case_data.offsets_time = (0.0,)
31
28
 
32
29
 
33
- data_gen = pyvale.AnalyticSimDataGenerator(case_data)
30
+ data_gen = pyvale.AnalyticSimDataGen(case_data)
34
31
  sim_data = data_gen.generate_sim_data()
35
32
 
36
33
  (grid_x,grid_y,grid_field) = data_gen.get_visualisation_grid()