pytme 0.2.3__cp311-cp311-macosx_14_0_arm64.whl → 0.2.5__cp311-cp311-macosx_14_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (76) hide show
  1. {pytme-0.2.3.data → pytme-0.2.5.data}/scripts/match_template.py +8 -8
  2. {pytme-0.2.3.data → pytme-0.2.5.data}/scripts/preprocess.py +22 -6
  3. {pytme-0.2.3.data → pytme-0.2.5.data}/scripts/preprocessor_gui.py +9 -14
  4. {pytme-0.2.3.dist-info → pytme-0.2.5.dist-info}/METADATA +1 -1
  5. pytme-0.2.5.dist-info/RECORD +119 -0
  6. {pytme-0.2.3.dist-info → pytme-0.2.5.dist-info}/WHEEL +1 -1
  7. {pytme-0.2.3.dist-info → pytme-0.2.5.dist-info}/top_level.txt +1 -0
  8. scripts/match_template.py +8 -8
  9. scripts/preprocess.py +22 -6
  10. scripts/preprocessor_gui.py +9 -14
  11. tests/__init__.py +0 -0
  12. tests/data/.DS_Store +0 -0
  13. tests/data/Blurring/.DS_Store +0 -0
  14. tests/data/Blurring/blob_width18.npy +0 -0
  15. tests/data/Blurring/edgegaussian_sigma3.npy +0 -0
  16. tests/data/Blurring/gaussian_sigma2.npy +0 -0
  17. tests/data/Blurring/hamming_width6.npy +0 -0
  18. tests/data/Blurring/kaiserb_width18.npy +0 -0
  19. tests/data/Blurring/localgaussian_sigma0510.npy +0 -0
  20. tests/data/Blurring/mean_size5.npy +0 -0
  21. tests/data/Blurring/ntree_sigma0510.npy +0 -0
  22. tests/data/Blurring/rank_rank3.npy +0 -0
  23. tests/data/Maps/.DS_Store +0 -0
  24. tests/data/Maps/emd_8621.mrc.gz +0 -0
  25. tests/data/README.md +2 -0
  26. tests/data/Raw/.DS_Store +0 -0
  27. tests/data/Raw/em_map.map +0 -0
  28. tests/data/Structures/.DS_Store +0 -0
  29. tests/data/Structures/1pdj.cif +3339 -0
  30. tests/data/Structures/1pdj.pdb +1429 -0
  31. tests/data/Structures/5khe.cif +3685 -0
  32. tests/data/Structures/5khe.ent +2210 -0
  33. tests/data/Structures/5khe.pdb +2210 -0
  34. tests/data/Structures/5uz4.cif +70548 -0
  35. tests/preprocessing/__init__.py +0 -0
  36. tests/preprocessing/test_compose.py +76 -0
  37. tests/preprocessing/test_frequency_filters.py +178 -0
  38. tests/preprocessing/test_preprocessor.py +136 -0
  39. tests/preprocessing/test_utils.py +79 -0
  40. tests/test_analyzer.py +310 -0
  41. tests/test_backends.py +375 -0
  42. tests/test_density.py +508 -0
  43. tests/test_extensions.py +130 -0
  44. tests/test_matching_cli.py +283 -0
  45. tests/test_matching_data.py +162 -0
  46. tests/test_matching_exhaustive.py +162 -0
  47. tests/test_matching_memory.py +30 -0
  48. tests/test_matching_optimization.py +226 -0
  49. tests/test_matching_utils.py +326 -0
  50. tests/test_orientations.py +173 -0
  51. tests/test_packaging.py +95 -0
  52. tests/test_parser.py +33 -0
  53. tests/test_structure.py +243 -0
  54. tme/__init__.py +0 -1
  55. tme/__version__.py +1 -1
  56. tme/backends/jax_backend.py +3 -9
  57. tme/data/scattering_factors.pickle +0 -0
  58. tme/density.py +14 -10
  59. tme/external/bindings.cpp +332 -0
  60. tme/matching_data.py +14 -12
  61. tme/matching_exhaustive.py +17 -15
  62. tme/matching_optimization.py +215 -208
  63. tme/matching_utils.py +1 -0
  64. tme/preprocessing/_utils.py +14 -14
  65. tme/preprocessing/composable_filter.py +0 -2
  66. tme/preprocessing/compose.py +4 -4
  67. tme/preprocessing/frequency_filters.py +32 -35
  68. tme/preprocessing/tilt_series.py +198 -117
  69. tme/preprocessor.py +24 -246
  70. tme/structure.py +22 -22
  71. pytme-0.2.3.dist-info/RECORD +0 -75
  72. tme/matching_memory.py +0 -383
  73. {pytme-0.2.3.data → pytme-0.2.5.data}/scripts/estimate_ram_usage.py +0 -0
  74. {pytme-0.2.3.data → pytme-0.2.5.data}/scripts/postprocess.py +0 -0
  75. {pytme-0.2.3.dist-info → pytme-0.2.5.dist-info}/LICENSE +0 -0
  76. {pytme-0.2.3.dist-info → pytme-0.2.5.dist-info}/entry_points.txt +0 -0
@@ -0,0 +1,332 @@
1
+ /* Pybind extensions for template matching score space analyzers.
2
+
3
+ Copyright (c) 2023 European Molecular Biology Laboratory
4
+
5
+ Author: Valentin Maurer <valentin.maurer@embl-hamburg.de>
6
+ */
7
+
8
+ #include <vector>
9
+ #include <iostream>
10
+ #include <limits>
11
+
12
+ #include <pybind11/stl.h>
13
+ #include <pybind11/numpy.h>
14
+ #include <pybind11/pybind11.h>
15
+
16
+ namespace py = pybind11;
17
+
18
+ template <typename T>
19
+ void absolute_minimum_deviation(
20
+ py::array_t<T, py::array::c_style> coordinates,
21
+ py::array_t<T, py::array::c_style> output) {
22
+ auto coordinates_data = coordinates.data();
23
+ auto output_data = output.mutable_data();
24
+ int n = coordinates.shape(0);
25
+ int k = coordinates.shape(1);
26
+ int ik, jk, in, jn;
27
+
28
+ for (int i = 0; i < n; ++i) {
29
+ ik = i * k;
30
+ in = i * n;
31
+ for (int j = i + 1; j < n; ++j) {
32
+ jk = j * k;
33
+ jn = j * n;
34
+ T min_distance = std::abs(coordinates_data[ik] - coordinates_data[jk]);
35
+ for (int p = 1; p < k; ++p) {
36
+ min_distance = std::min(min_distance,
37
+ std::abs(coordinates_data[ik + p] - coordinates_data[jk + p]));
38
+ }
39
+ output_data[in + j] = min_distance;
40
+ output_data[jn + i] = min_distance;
41
+ }
42
+ output_data[in + i] = 0;
43
+ }
44
+ }
45
+
46
+ template <typename T>
47
+ std::pair<double, std::pair<int, int>> max_euclidean_distance(
48
+ py::array_t<T, py::array::c_style> coordinates) {
49
+ auto coordinates_data = coordinates.data();
50
+ int n = coordinates.shape(0);
51
+ int k = coordinates.shape(1);
52
+
53
+ double distance = 0.0;
54
+ double difference = 0.0;
55
+ double max_distance = -1;
56
+ double squared_distances = 0.0;
57
+
58
+ int ik, jk;
59
+ int max_i = -1, max_j = -1;
60
+
61
+ for (int i = 0; i < n; ++i) {
62
+ ik = i * k;
63
+ for (int j = i + 1; j < n; ++j) {
64
+ jk = j * k;
65
+ squared_distances = 0.0;
66
+ for (int p = 0; p < k; ++p) {
67
+ difference = static_cast<double>(
68
+ coordinates_data[ik + p] - coordinates_data[jk + p]
69
+ );
70
+ squared_distances += (difference * difference);
71
+ }
72
+ distance = std::sqrt(squared_distances);
73
+ if (distance > max_distance) {
74
+ max_distance = distance;
75
+ max_i = i;
76
+ max_j = j;
77
+ }
78
+ }
79
+ }
80
+
81
+ return std::make_pair(max_distance, std::make_pair(max_i, max_j));
82
+ }
83
+
84
+
85
+ template <typename T>
86
+ inline py::array_t<int, py::array::c_style> find_candidate_indices(
87
+ py::array_t<T, py::array::c_style> coordinates,
88
+ T min_distance) {
89
+ auto coordinates_data = coordinates.data();
90
+ int n = coordinates.shape(0);
91
+ int k = coordinates.shape(1);
92
+ int ik, jk;
93
+
94
+ std::vector<int> candidate_indices;
95
+ candidate_indices.reserve(n / 2);
96
+ candidate_indices.push_back(0);
97
+
98
+ for (int i = 1; i < n; ++i) {
99
+ bool is_candidate = true;
100
+ ik = i * k;
101
+ for (int candidate_index : candidate_indices) {
102
+ jk = candidate_index * k;
103
+ T distance = std::pow(coordinates_data[ik] - coordinates_data[jk], 2);
104
+ for (int p = 1; p < k; ++p) {
105
+ distance += std::pow(coordinates_data[ik + p] - coordinates_data[jk + p], 2);
106
+ }
107
+ distance = std::sqrt(distance);
108
+ if (distance <= min_distance) {
109
+ is_candidate = false;
110
+ break;
111
+ }
112
+ }
113
+ if (is_candidate) {
114
+ candidate_indices.push_back(i);
115
+ }
116
+ }
117
+
118
+ py::array_t<int, py::array::c_style> output({(int)candidate_indices.size()});
119
+ auto output_data = output.mutable_data();
120
+
121
+ for (size_t i = 0; i < candidate_indices.size(); ++i) {
122
+ output_data[i] = candidate_indices[i];
123
+ }
124
+
125
+ return output;
126
+ }
127
+
128
+ template <typename T>
129
+ py::array_t<T, py::array::c_style> find_candidate_coordinates(
130
+ py::array_t<T, py::array::c_style> coordinates,
131
+ T min_distance) {
132
+
133
+ py::array_t<int, py::array::c_style> candidate_indices_array = find_candidate_indices(
134
+ coordinates, min_distance);
135
+ auto candidate_indices_data = candidate_indices_array.data();
136
+ int num_candidates = candidate_indices_array.shape(0);
137
+ int k = coordinates.shape(1);
138
+ auto coordinates_data = coordinates.data();
139
+
140
+ py::array_t<T, py::array::c_style> output({num_candidates, k});
141
+ auto output_data = output.mutable_data();
142
+
143
+ for (int i = 0; i < num_candidates; ++i) {
144
+ int candidate_index = candidate_indices_data[i] * k;
145
+ std::copy(
146
+ coordinates_data + candidate_index,
147
+ coordinates_data + candidate_index + k,
148
+ output_data + i * k
149
+ );
150
+ }
151
+
152
+ return output;
153
+ }
154
+
155
+ template <typename U, typename T>
156
+ py::dict max_index_by_label(
157
+ py::array_t<U, py::array::c_style> labels,
158
+ py::array_t<T, py::array::c_style> scores
159
+ ) {
160
+
161
+ const U* labels_ptr = labels.data();
162
+ const T* scores_ptr = scores.data();
163
+
164
+ std::unordered_map<U, std::pair<T, ssize_t>> max_scores;
165
+
166
+ U label;
167
+ T score;
168
+ for (ssize_t i = 0; i < labels.size(); ++i) {
169
+ label = labels_ptr[i];
170
+ score = scores_ptr[i];
171
+
172
+ auto it = max_scores.insert({label, {score, i}});
173
+
174
+ if (score > it.first->second.first) {
175
+ it.first->second = {score, i};
176
+ }
177
+ }
178
+
179
+ py::dict ret;
180
+ for (auto& item: max_scores) {
181
+ ret[py::cast(item.first)] = py::cast(item.second.second);
182
+ }
183
+
184
+ return ret;
185
+ }
186
+
187
+
188
+ template <typename T>
189
+ py::tuple online_statistics(
190
+ py::array_t<T, py::array::c_style> arr,
191
+ unsigned long long int n = 0,
192
+ double rmean = 0,
193
+ double ssqd = 0,
194
+ T reference = 0) {
195
+
196
+ auto in = arr.data();
197
+ int size = arr.size();
198
+
199
+ T max_value = std::numeric_limits<T>::lowest();
200
+ T min_value = std::numeric_limits<T>::max();
201
+ double delta, delta_prime;
202
+
203
+ unsigned long long int nbetter_or_equal = 0;
204
+
205
+ for(int i = 0; i < size; i++){
206
+ n++;
207
+ delta = in[i] - rmean;
208
+ rmean += delta / n;
209
+ delta_prime = in[i] - rmean;
210
+ ssqd += delta * delta_prime;
211
+
212
+ max_value = std::max(in[i], max_value);
213
+ min_value = std::min(in[i], min_value);
214
+ if (in[i] >= reference)
215
+ nbetter_or_equal++;
216
+ }
217
+
218
+ return py::make_tuple(n, rmean, ssqd, nbetter_or_equal, max_value, min_value);
219
+ }
220
+
221
+ PYBIND11_MODULE(extensions, m) {
222
+
223
+ m.def("absolute_minimum_deviation", absolute_minimum_deviation<double>,
224
+ "Compute pairwise absolute minimum deviation for a set of coordinates (float64).",
225
+ py::arg("coordinates"), py::arg("output"));
226
+ m.def("absolute_minimum_deviation", absolute_minimum_deviation<float>,
227
+ "Compute pairwise absolute minimum deviation for a set of coordinates (float32).",
228
+ py::arg("coordinates"), py::arg("output"));
229
+ m.def("absolute_minimum_deviation", absolute_minimum_deviation<int64_t>,
230
+ "Compute pairwise absolute minimum deviation for a set of coordinates (int64).",
231
+ py::arg("coordinates"), py::arg("output"));
232
+ m.def("absolute_minimum_deviation", absolute_minimum_deviation<int32_t>,
233
+ "Compute pairwise absolute minimum deviation for a set of coordinates (int32).",
234
+ py::arg("coordinates"), py::arg("output"));
235
+
236
+
237
+ m.def("max_euclidean_distance", max_euclidean_distance<double>,
238
+ "Identify pair of points with maximal euclidean distance (float64).",
239
+ py::arg("coordinates"));
240
+ m.def("max_euclidean_distance", max_euclidean_distance<float>,
241
+ "Identify pair of points with maximal euclidean distance (float32).",
242
+ py::arg("coordinates"));
243
+ m.def("max_euclidean_distance", max_euclidean_distance<int64_t>,
244
+ "Identify pair of points with maximal euclidean distance (int64).",
245
+ py::arg("coordinates"));
246
+ m.def("max_euclidean_distance", max_euclidean_distance<int32_t>,
247
+ "Identify pair of points with maximal euclidean distance (int32).",
248
+ py::arg("coordinates"));
249
+
250
+
251
+ m.def("find_candidate_indices", &find_candidate_indices<double>,
252
+ "Finds candidate indices with minimum distance (float64).",
253
+ py::arg("coordinates"), py::arg("min_distance"));
254
+ m.def("find_candidate_indices", &find_candidate_indices<float>,
255
+ "Finds candidate indices with minimum distance (float32).",
256
+ py::arg("coordinates"), py::arg("min_distance"));
257
+ m.def("find_candidate_indices", &find_candidate_indices<int64_t>,
258
+ "Finds candidate indices with minimum distance (int64).",
259
+ py::arg("coordinates"), py::arg("min_distance"));
260
+ m.def("find_candidate_indices", &find_candidate_indices<int32_t>,
261
+ "Finds candidate indices with minimum distance (int32).",
262
+ py::arg("coordinates"), py::arg("min_distance"));
263
+
264
+
265
+ m.def("find_candidate_coordinates", &find_candidate_coordinates<double>,
266
+ "Finds candidate coordinates with minimum distance (float64).",
267
+ py::arg("coordinates"), py::arg("min_distance"));
268
+ m.def("find_candidate_coordinates", &find_candidate_coordinates<float>,
269
+ "Finds candidate coordinates with minimum distance (float32).",
270
+ py::arg("coordinates"), py::arg("min_distance"));
271
+ m.def("find_candidate_coordinates", &find_candidate_coordinates<int64_t>,
272
+ "Finds candidate coordinates with minimum distance (int64).",
273
+ py::arg("coordinates"), py::arg("min_distance"));
274
+ m.def("find_candidate_coordinates", &find_candidate_coordinates<int32_t>,
275
+ "Finds candidate coordinates with minimum distance (int32).",
276
+ py::arg("coordinates"), py::arg("min_distance"));
277
+
278
+
279
+ m.def("max_index_by_label", &max_index_by_label<double, double>,
280
+ "Maximum value by label", py::arg("labels"), py::arg("scores"));
281
+ m.def("max_index_by_label", &max_index_by_label<double, float>,
282
+ "Maximum value by label", py::arg("labels"), py::arg("scores"));
283
+ m.def("max_index_by_label", &max_index_by_label<double, int64_t>,
284
+ "Maximum value by label", py::arg("labels"), py::arg("scores"));
285
+ m.def("max_index_by_label", &max_index_by_label<double, int32_t>,
286
+ "Maximum value by label", py::arg("labels"), py::arg("scores"));
287
+
288
+ m.def("max_index_by_label", &max_index_by_label<float, double>,
289
+ "Maximum value by label", py::arg("labels"), py::arg("scores"));
290
+ m.def("max_index_by_label", &max_index_by_label<float, float>,
291
+ "Maximum value by label", py::arg("labels"), py::arg("scores"));
292
+ m.def("max_index_by_label", &max_index_by_label<float, int64_t>,
293
+ "Maximum value by label", py::arg("labels"), py::arg("scores"));
294
+ m.def("max_index_by_label", &max_index_by_label<float, int32_t>,
295
+ "Maximum value by label", py::arg("labels"), py::arg("scores"));
296
+
297
+ m.def("max_index_by_label", &max_index_by_label<int64_t, double>,
298
+ "Maximum value by label", py::arg("labels"), py::arg("scores"));
299
+ m.def("max_index_by_label", &max_index_by_label<int64_t, float>,
300
+ "Maximum value by label", py::arg("labels"), py::arg("scores"));
301
+ m.def("max_index_by_label", &max_index_by_label<int64_t, int64_t>,
302
+ "Maximum value by label", py::arg("labels"), py::arg("scores"));
303
+ m.def("max_index_by_label", &max_index_by_label<int64_t, int32_t>,
304
+ "Maximum value by label", py::arg("labels"), py::arg("scores"));
305
+
306
+ m.def("max_index_by_label", &max_index_by_label<int32_t, double>,
307
+ "Maximum value by label", py::arg("labels"), py::arg("scores"));
308
+ m.def("max_index_by_label", &max_index_by_label<int32_t, float>,
309
+ "Maximum value by label", py::arg("labels"), py::arg("scores"));
310
+ m.def("max_index_by_label", &max_index_by_label<int32_t, int64_t>,
311
+ "Maximum value by label", py::arg("labels"), py::arg("scores"));
312
+ m.def("max_index_by_label", &max_index_by_label<int32_t, int32_t>,
313
+ "Maximum value by label", py::arg("labels"), py::arg("scores"));
314
+
315
+
316
+ m.def("online_statistics", &online_statistics<double>, py::arg("arr"),
317
+ py::arg("n") = 0, py::arg("rmean") = 0,
318
+ py::arg("ssqd") = 0, py::arg("reference") = 0,
319
+ "Compute running online statistics on a numpy array.");
320
+ m.def("online_statistics", &online_statistics<float>, py::arg("arr"),
321
+ py::arg("n") = 0, py::arg("rmean") = 0,
322
+ py::arg("ssqd") = 0, py::arg("reference") = 0,
323
+ "Compute running online statistics on a numpy array.");
324
+ m.def("online_statistics", &online_statistics<int64_t>, py::arg("arr"),
325
+ py::arg("n") = 0, py::arg("rmean") = 0,
326
+ py::arg("ssqd") = 0, py::arg("reference") = 0,
327
+ "Compute running online statistics on a numpy array.");
328
+ m.def("online_statistics", &online_statistics<int32_t>, py::arg("arr"),
329
+ py::arg("n") = 0, py::arg("rmean") = 0,
330
+ py::arg("ssqd") = 0, py::arg("reference") = 0,
331
+ "Compute running online statistics on a numpy array.");
332
+ }
tme/matching_data.py CHANGED
@@ -450,7 +450,7 @@ class MatchingData:
450
450
  template_shape: NDArray,
451
451
  batch_mask: NDArray = None,
452
452
  pad_fourier: bool = False,
453
- ) -> Tuple[Tuple, Tuple, Tuple]:
453
+ ) -> Tuple[Tuple, Tuple, Tuple, Tuple]:
454
454
  """
455
455
  Determines an efficient shape for Fourier transforms considering zero-padding.
456
456
  """
@@ -478,12 +478,8 @@ class MatchingData:
478
478
  shape_diff = np.multiply(
479
479
  np.subtract(target_shape, template_shape), 1 - batch_mask
480
480
  )
481
- if np.sum(shape_diff < 0):
482
- warnings.warn(
483
- "Template is larger than target and padding is turned off. Consider "
484
- "swapping them or activate padding. Correcting the shift for now."
485
- )
486
-
481
+ shape_mask = shape_diff < 0
482
+ if np.sum(shape_mask):
487
483
  shape_shift = np.divide(shape_diff, 2)
488
484
  offset = np.mod(shape_diff, 2)
489
485
  if pad_fourier:
@@ -491,14 +487,20 @@ class MatchingData:
491
487
  offset,
492
488
  np.logical_and(np.mod(target_shape, 2) == 0, template_mod == 1),
493
489
  )
494
-
495
- shape_shift = np.add(shape_shift, offset)
490
+ else:
491
+ warnings.warn(
492
+ "Template is larger than target and padding is turned off. Consider "
493
+ "swapping them or activate padding. Correcting the shift for now."
494
+ )
495
+ shape_shift = np.multiply(np.add(shape_shift, offset), shape_mask)
496
496
  fourier_shift = np.subtract(fourier_shift, shape_shift).astype(int)
497
497
 
498
498
  fourier_shift = tuple(fourier_shift.astype(int))
499
499
  return tuple(conv_shape), tuple(fast_shape), tuple(fast_ft_shape), fourier_shift
500
500
 
501
- def fourier_padding(self, pad_fourier: bool = False) -> Tuple[Tuple, Tuple, Tuple]:
501
+ def fourier_padding(
502
+ self, pad_fourier: bool = False
503
+ ) -> Tuple[Tuple, Tuple, Tuple, Tuple]:
502
504
  """
503
505
  Computes efficient shape four Fourier transforms and potential associated shifts.
504
506
 
@@ -510,8 +512,8 @@ class MatchingData:
510
512
 
511
513
  Returns
512
514
  -------
513
- Tuple[tuple of int, tuple of int, tuple of int]
514
- Tuple with real and complex Fourier transform shape, and corresponding shift.
515
+ Tuple[tuple of int, tuple of int, tuple of int, tuple of int]
516
+ Tuple with convolution, forward FT, inverse FT shape and corresponding shift.
515
517
  """
516
518
  return self._fourier_padding(
517
519
  target_shape=be.to_numpy_array(self._output_target_shape),
@@ -82,19 +82,20 @@ def _setup_template_filter_apply_target_filter(
82
82
  fastt_shape, fastt_ft_shape = fast_shape, filter_shape
83
83
  if filter_template and not pad_template_filter:
84
84
  # FFT shape acrobatics for faster filter application
85
- _, fastt_shape, _, _ = matching_data._fourier_padding(
86
- target_shape=be.to_numpy_array(matching_data._template.shape),
87
- template_shape=be.to_numpy_array(
88
- [1 for _ in matching_data._template.shape]
89
- ),
90
- pad_fourier=False,
91
- )
92
- matching_data.template = be.reverse(
93
- be.topleft_pad(matching_data.template, fastt_shape)
94
- )
95
- matching_data.template_mask = be.reverse(
96
- be.topleft_pad(matching_data.template_mask, fastt_shape)
97
- )
85
+ # _, fastt_shape, _, _ = matching_data._fourier_padding(
86
+ # target_shape=be.to_numpy_array(matching_data._template.shape),
87
+ # template_shape=be.to_numpy_array(
88
+ # [1 for _ in matching_data._template.shape]
89
+ # ),
90
+ # pad_fourier=False,
91
+ # )
92
+ fastt_shape = matching_data._template.shape
93
+ # matching_data.template = be.reverse(
94
+ # be.topleft_pad(matching_data.template, fastt_shape)
95
+ # )
96
+ # matching_data.template_mask = be.reverse(
97
+ # be.topleft_pad(matching_data.template_mask, fastt_shape)
98
+ # )
98
99
  matching_data._set_matching_dimension(
99
100
  target_dims=matching_data._target_dims,
100
101
  template_dims=matching_data._template_dims,
@@ -207,7 +208,7 @@ def scan(
207
208
 
208
209
  Examples
209
210
  --------
210
- Schematically, using :py:meth:`scan` is similar to :py:meth:`scan_subsets`,
211
+ Schematically, :py:meth:`scan` is identical to :py:meth:`scan_subsets`,
211
212
  with the distinction that the objects contained in ``matching_data`` are not
212
213
  split and the search is only parallelized over angles.
213
214
  Assuming you have followed the example in :py:meth:`scan_subsets`, :py:meth:`scan`
@@ -399,7 +400,8 @@ def scan_subsets(
399
400
  The template matching procedure is determined by ``matching_setup`` and
400
401
  ``matching_score``, which are unique to each score. In the following,
401
402
  we will be using the `FLCSphericalMask` score, which is composed of
402
- :py:meth:`flcSphericalMask_setup` and :py:meth:`corr_scoring`
403
+ :py:meth:`tme.matching_scores.flcSphericalMask_setup` and
404
+ :py:meth:`tme.matching_scores.corr_scoring`
403
405
 
404
406
  >>> from tme.matching_exhaustive import MATCHING_EXHAUSTIVE_REGISTER
405
407
  >>> funcs = MATCHING_EXHAUSTIVE_REGISTER.get("FLCSphericalMask")