python-doctr 0.8.1__py3-none-any.whl → 0.9.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (82) hide show
  1. doctr/__init__.py +1 -1
  2. doctr/contrib/__init__.py +0 -0
  3. doctr/contrib/artefacts.py +131 -0
  4. doctr/contrib/base.py +105 -0
  5. doctr/datasets/datasets/pytorch.py +2 -2
  6. doctr/datasets/generator/base.py +6 -5
  7. doctr/datasets/imgur5k.py +1 -1
  8. doctr/datasets/loader.py +1 -6
  9. doctr/datasets/utils.py +2 -1
  10. doctr/datasets/vocabs.py +9 -2
  11. doctr/file_utils.py +26 -12
  12. doctr/io/elements.py +40 -6
  13. doctr/io/html.py +2 -2
  14. doctr/io/image/pytorch.py +6 -8
  15. doctr/io/image/tensorflow.py +1 -1
  16. doctr/io/pdf.py +5 -2
  17. doctr/io/reader.py +6 -0
  18. doctr/models/__init__.py +0 -1
  19. doctr/models/_utils.py +57 -20
  20. doctr/models/builder.py +71 -13
  21. doctr/models/classification/mobilenet/pytorch.py +45 -9
  22. doctr/models/classification/mobilenet/tensorflow.py +38 -7
  23. doctr/models/classification/predictor/pytorch.py +18 -11
  24. doctr/models/classification/predictor/tensorflow.py +16 -10
  25. doctr/models/classification/textnet/pytorch.py +3 -3
  26. doctr/models/classification/textnet/tensorflow.py +3 -3
  27. doctr/models/classification/zoo.py +39 -15
  28. doctr/models/detection/_utils/__init__.py +1 -0
  29. doctr/models/detection/_utils/base.py +66 -0
  30. doctr/models/detection/differentiable_binarization/base.py +4 -3
  31. doctr/models/detection/differentiable_binarization/pytorch.py +2 -2
  32. doctr/models/detection/fast/base.py +6 -5
  33. doctr/models/detection/fast/pytorch.py +4 -4
  34. doctr/models/detection/fast/tensorflow.py +4 -4
  35. doctr/models/detection/linknet/base.py +4 -3
  36. doctr/models/detection/predictor/pytorch.py +15 -1
  37. doctr/models/detection/predictor/tensorflow.py +15 -1
  38. doctr/models/detection/zoo.py +7 -2
  39. doctr/models/factory/hub.py +3 -12
  40. doctr/models/kie_predictor/base.py +9 -3
  41. doctr/models/kie_predictor/pytorch.py +41 -20
  42. doctr/models/kie_predictor/tensorflow.py +36 -16
  43. doctr/models/modules/layers/pytorch.py +2 -3
  44. doctr/models/modules/layers/tensorflow.py +6 -8
  45. doctr/models/modules/transformer/pytorch.py +2 -2
  46. doctr/models/predictor/base.py +77 -50
  47. doctr/models/predictor/pytorch.py +31 -20
  48. doctr/models/predictor/tensorflow.py +27 -17
  49. doctr/models/preprocessor/pytorch.py +4 -4
  50. doctr/models/preprocessor/tensorflow.py +3 -2
  51. doctr/models/recognition/master/pytorch.py +2 -2
  52. doctr/models/recognition/parseq/pytorch.py +4 -3
  53. doctr/models/recognition/parseq/tensorflow.py +4 -3
  54. doctr/models/recognition/sar/pytorch.py +7 -6
  55. doctr/models/recognition/sar/tensorflow.py +3 -9
  56. doctr/models/recognition/vitstr/pytorch.py +1 -1
  57. doctr/models/recognition/zoo.py +1 -1
  58. doctr/models/zoo.py +2 -2
  59. doctr/py.typed +0 -0
  60. doctr/transforms/functional/base.py +1 -1
  61. doctr/transforms/functional/pytorch.py +4 -4
  62. doctr/transforms/modules/base.py +37 -15
  63. doctr/transforms/modules/pytorch.py +66 -8
  64. doctr/transforms/modules/tensorflow.py +63 -7
  65. doctr/utils/fonts.py +7 -5
  66. doctr/utils/geometry.py +35 -12
  67. doctr/utils/metrics.py +33 -174
  68. doctr/utils/reconstitution.py +126 -0
  69. doctr/utils/visualization.py +5 -118
  70. doctr/version.py +1 -1
  71. {python_doctr-0.8.1.dist-info → python_doctr-0.9.0.dist-info}/METADATA +84 -80
  72. {python_doctr-0.8.1.dist-info → python_doctr-0.9.0.dist-info}/RECORD +76 -76
  73. {python_doctr-0.8.1.dist-info → python_doctr-0.9.0.dist-info}/WHEEL +1 -1
  74. doctr/models/artefacts/__init__.py +0 -2
  75. doctr/models/artefacts/barcode.py +0 -74
  76. doctr/models/artefacts/face.py +0 -63
  77. doctr/models/obj_detection/__init__.py +0 -1
  78. doctr/models/obj_detection/faster_rcnn/__init__.py +0 -4
  79. doctr/models/obj_detection/faster_rcnn/pytorch.py +0 -81
  80. {python_doctr-0.8.1.dist-info → python_doctr-0.9.0.dist-info}/LICENSE +0 -0
  81. {python_doctr-0.8.1.dist-info → python_doctr-0.9.0.dist-info}/top_level.txt +0 -0
  82. {python_doctr-0.8.1.dist-info → python_doctr-0.9.0.dist-info}/zip-safe +0 -0
@@ -10,10 +10,10 @@ import torch
10
10
  from torch import nn
11
11
 
12
12
  from doctr.io.elements import Document
13
- from doctr.models._utils import estimate_orientation, get_language, invert_data_structure
13
+ from doctr.models._utils import get_language, invert_data_structure
14
14
  from doctr.models.detection.predictor import DetectionPredictor
15
15
  from doctr.models.recognition.predictor import RecognitionPredictor
16
- from doctr.utils.geometry import rotate_image
16
+ from doctr.utils.geometry import detach_scores
17
17
 
18
18
  from .base import _KIEPredictor
19
19
 
@@ -55,7 +55,13 @@ class KIEPredictor(nn.Module, _KIEPredictor):
55
55
  self.det_predictor = det_predictor.eval() # type: ignore[attr-defined]
56
56
  self.reco_predictor = reco_predictor.eval() # type: ignore[attr-defined]
57
57
  _KIEPredictor.__init__(
58
- self, assume_straight_pages, straighten_pages, preserve_aspect_ratio, symmetric_pad, **kwargs
58
+ self,
59
+ assume_straight_pages,
60
+ straighten_pages,
61
+ preserve_aspect_ratio,
62
+ symmetric_pad,
63
+ detect_orientation,
64
+ **kwargs,
59
65
  )
60
66
  self.detect_orientation = detect_orientation
61
67
  self.detect_language = detect_language
@@ -83,29 +89,31 @@ class KIEPredictor(nn.Module, _KIEPredictor):
83
89
  for out_map in out_maps
84
90
  ]
85
91
  if self.detect_orientation:
86
- origin_page_orientations = [estimate_orientation(seq_map) for seq_map in seg_maps]
92
+ general_pages_orientations, origin_pages_orientations = self._get_orientations(pages, seg_maps) # type: ignore[arg-type]
87
93
  orientations = [
88
- {"value": orientation_page, "confidence": None} for orientation_page in origin_page_orientations
94
+ {"value": orientation_page, "confidence": None} for orientation_page in origin_pages_orientations
89
95
  ]
90
96
  else:
91
97
  orientations = None
98
+ general_pages_orientations = None
99
+ origin_pages_orientations = None
92
100
  if self.straighten_pages:
93
- origin_page_orientations = (
94
- origin_page_orientations
95
- if self.detect_orientation
96
- else [estimate_orientation(seq_map) for seq_map in seg_maps]
97
- )
98
- pages = [rotate_image(page, -angle, expand=False) for page, angle in zip(pages, origin_page_orientations)]
101
+ pages = self._straighten_pages(pages, seg_maps, general_pages_orientations, origin_pages_orientations) # type: ignore
99
102
  # Forward again to get predictions on straight pages
100
103
  loc_preds = self.det_predictor(pages, **kwargs)
101
104
 
102
105
  dict_loc_preds: Dict[str, List[np.ndarray]] = invert_data_structure(loc_preds) # type: ignore[assignment]
106
+
107
+ # Detach objectness scores from loc_preds
108
+ objectness_scores = {}
109
+ for class_name, det_preds in dict_loc_preds.items():
110
+ _loc_preds, _scores = detach_scores(det_preds)
111
+ dict_loc_preds[class_name] = _loc_preds
112
+ objectness_scores[class_name] = _scores
113
+
103
114
  # Check whether crop mode should be switched to channels first
104
115
  channels_last = len(pages) == 0 or isinstance(pages[0], np.ndarray)
105
116
 
106
- # Rectify crops if aspect ratio
107
- dict_loc_preds = {k: self._remove_padding(pages, loc_pred) for k, loc_pred in dict_loc_preds.items()}
108
-
109
117
  # Apply hooks to loc_preds if any
110
118
  for hook in self.hooks:
111
119
  dict_loc_preds = hook(dict_loc_preds)
@@ -114,32 +122,43 @@ class KIEPredictor(nn.Module, _KIEPredictor):
114
122
  crops = {}
115
123
  for class_name in dict_loc_preds.keys():
116
124
  crops[class_name], dict_loc_preds[class_name] = self._prepare_crops(
117
- pages,
125
+ pages, # type: ignore[arg-type]
118
126
  dict_loc_preds[class_name],
119
127
  channels_last=channels_last,
120
128
  assume_straight_pages=self.assume_straight_pages,
121
129
  )
122
130
  # Rectify crop orientation
131
+ crop_orientations: Any = {}
123
132
  if not self.assume_straight_pages:
124
133
  for class_name in dict_loc_preds.keys():
125
- crops[class_name], dict_loc_preds[class_name] = self._rectify_crops(
134
+ crops[class_name], dict_loc_preds[class_name], word_orientations = self._rectify_crops(
126
135
  crops[class_name], dict_loc_preds[class_name]
127
136
  )
137
+ crop_orientations[class_name] = [
138
+ {"value": orientation[0], "confidence": orientation[1]} for orientation in word_orientations
139
+ ]
140
+
128
141
  # Identify character sequences
129
142
  word_preds = {
130
143
  k: self.reco_predictor([crop for page_crops in crop_value for crop in page_crops], **kwargs)
131
144
  for k, crop_value in crops.items()
132
145
  }
146
+ if not crop_orientations:
147
+ crop_orientations = {k: [{"value": 0, "confidence": None} for _ in word_preds[k]] for k in word_preds}
133
148
 
134
149
  boxes: Dict = {}
135
150
  text_preds: Dict = {}
151
+ word_crop_orientations: Dict = {}
136
152
  for class_name in dict_loc_preds.keys():
137
- boxes[class_name], text_preds[class_name] = self._process_predictions(
138
- dict_loc_preds[class_name], word_preds[class_name]
153
+ boxes[class_name], text_preds[class_name], word_crop_orientations[class_name] = self._process_predictions(
154
+ dict_loc_preds[class_name], word_preds[class_name], crop_orientations[class_name]
139
155
  )
140
156
 
141
157
  boxes_per_page: List[Dict] = invert_data_structure(boxes) # type: ignore[assignment]
158
+ objectness_scores_per_page: List[Dict] = invert_data_structure(objectness_scores) # type: ignore[assignment]
142
159
  text_preds_per_page: List[Dict] = invert_data_structure(text_preds) # type: ignore[assignment]
160
+ crop_orientations_per_page: List[Dict] = invert_data_structure(word_crop_orientations) # type: ignore[assignment]
161
+
143
162
  if self.detect_language:
144
163
  languages = [get_language(self.get_text(text_pred)) for text_pred in text_preds_per_page]
145
164
  languages_dict = [{"value": lang[0], "confidence": lang[1]} for lang in languages]
@@ -147,10 +166,12 @@ class KIEPredictor(nn.Module, _KIEPredictor):
147
166
  languages_dict = None
148
167
 
149
168
  out = self.doc_builder(
150
- pages,
169
+ pages, # type: ignore[arg-type]
151
170
  boxes_per_page,
171
+ objectness_scores_per_page,
152
172
  text_preds_per_page,
153
- origin_page_shapes,
173
+ origin_page_shapes, # type: ignore[arg-type]
174
+ crop_orientations_per_page,
154
175
  orientations,
155
176
  languages_dict,
156
177
  )
@@ -9,10 +9,10 @@ import numpy as np
9
9
  import tensorflow as tf
10
10
 
11
11
  from doctr.io.elements import Document
12
- from doctr.models._utils import estimate_orientation, get_language, invert_data_structure
12
+ from doctr.models._utils import get_language, invert_data_structure
13
13
  from doctr.models.detection.predictor import DetectionPredictor
14
14
  from doctr.models.recognition.predictor import RecognitionPredictor
15
- from doctr.utils.geometry import rotate_image
15
+ from doctr.utils.geometry import detach_scores
16
16
  from doctr.utils.repr import NestedObject
17
17
 
18
18
  from .base import _KIEPredictor
@@ -56,7 +56,13 @@ class KIEPredictor(NestedObject, _KIEPredictor):
56
56
  self.det_predictor = det_predictor
57
57
  self.reco_predictor = reco_predictor
58
58
  _KIEPredictor.__init__(
59
- self, assume_straight_pages, straighten_pages, preserve_aspect_ratio, symmetric_pad, **kwargs
59
+ self,
60
+ assume_straight_pages,
61
+ straighten_pages,
62
+ preserve_aspect_ratio,
63
+ symmetric_pad,
64
+ detect_orientation,
65
+ **kwargs,
60
66
  )
61
67
  self.detect_orientation = detect_orientation
62
68
  self.detect_language = detect_language
@@ -83,25 +89,27 @@ class KIEPredictor(NestedObject, _KIEPredictor):
83
89
  for out_map in out_maps
84
90
  ]
85
91
  if self.detect_orientation:
86
- origin_page_orientations = [estimate_orientation(seq_map) for seq_map in seg_maps]
92
+ general_pages_orientations, origin_pages_orientations = self._get_orientations(pages, seg_maps)
87
93
  orientations = [
88
- {"value": orientation_page, "confidence": None} for orientation_page in origin_page_orientations
94
+ {"value": orientation_page, "confidence": None} for orientation_page in origin_pages_orientations
89
95
  ]
90
96
  else:
91
97
  orientations = None
98
+ general_pages_orientations = None
99
+ origin_pages_orientations = None
92
100
  if self.straighten_pages:
93
- origin_page_orientations = (
94
- origin_page_orientations
95
- if self.detect_orientation
96
- else [estimate_orientation(seq_map) for seq_map in seg_maps]
97
- )
98
- pages = [rotate_image(page, -angle, expand=False) for page, angle in zip(pages, origin_page_orientations)]
101
+ pages = self._straighten_pages(pages, seg_maps, general_pages_orientations, origin_pages_orientations)
99
102
  # Forward again to get predictions on straight pages
100
103
  loc_preds = self.det_predictor(pages, **kwargs) # type: ignore[assignment]
101
104
 
102
105
  dict_loc_preds: Dict[str, List[np.ndarray]] = invert_data_structure(loc_preds) # type: ignore
103
- # Rectify crops if aspect ratio
104
- dict_loc_preds = {k: self._remove_padding(pages, loc_pred) for k, loc_pred in dict_loc_preds.items()}
106
+
107
+ # Detach objectness scores from loc_preds
108
+ objectness_scores = {}
109
+ for class_name, det_preds in dict_loc_preds.items():
110
+ _loc_preds, _scores = detach_scores(det_preds)
111
+ dict_loc_preds[class_name] = _loc_preds
112
+ objectness_scores[class_name] = _scores
105
113
 
106
114
  # Apply hooks to loc_preds if any
107
115
  for hook in self.hooks:
@@ -113,28 +121,38 @@ class KIEPredictor(NestedObject, _KIEPredictor):
113
121
  crops[class_name], dict_loc_preds[class_name] = self._prepare_crops(
114
122
  pages, dict_loc_preds[class_name], channels_last=True, assume_straight_pages=self.assume_straight_pages
115
123
  )
124
+
116
125
  # Rectify crop orientation
126
+ crop_orientations: Any = {}
117
127
  if not self.assume_straight_pages:
118
128
  for class_name in dict_loc_preds.keys():
119
- crops[class_name], dict_loc_preds[class_name] = self._rectify_crops(
129
+ crops[class_name], dict_loc_preds[class_name], word_orientations = self._rectify_crops(
120
130
  crops[class_name], dict_loc_preds[class_name]
121
131
  )
132
+ crop_orientations[class_name] = [
133
+ {"value": orientation[0], "confidence": orientation[1]} for orientation in word_orientations
134
+ ]
122
135
 
123
136
  # Identify character sequences
124
137
  word_preds = {
125
138
  k: self.reco_predictor([crop for page_crops in crop_value for crop in page_crops], **kwargs)
126
139
  for k, crop_value in crops.items()
127
140
  }
141
+ if not crop_orientations:
142
+ crop_orientations = {k: [{"value": 0, "confidence": None} for _ in word_preds[k]] for k in word_preds}
128
143
 
129
144
  boxes: Dict = {}
130
145
  text_preds: Dict = {}
146
+ word_crop_orientations: Dict = {}
131
147
  for class_name in dict_loc_preds.keys():
132
- boxes[class_name], text_preds[class_name] = self._process_predictions(
133
- dict_loc_preds[class_name], word_preds[class_name]
148
+ boxes[class_name], text_preds[class_name], word_crop_orientations[class_name] = self._process_predictions(
149
+ dict_loc_preds[class_name], word_preds[class_name], crop_orientations[class_name]
134
150
  )
135
151
 
136
152
  boxes_per_page: List[Dict] = invert_data_structure(boxes) # type: ignore[assignment]
153
+ objectness_scores_per_page: List[Dict] = invert_data_structure(objectness_scores) # type: ignore[assignment]
137
154
  text_preds_per_page: List[Dict] = invert_data_structure(text_preds) # type: ignore[assignment]
155
+ crop_orientations_per_page: List[Dict] = invert_data_structure(word_crop_orientations) # type: ignore[assignment]
138
156
 
139
157
  if self.detect_language:
140
158
  languages = [get_language(self.get_text(text_pred)) for text_pred in text_preds_per_page]
@@ -145,8 +163,10 @@ class KIEPredictor(NestedObject, _KIEPredictor):
145
163
  out = self.doc_builder(
146
164
  pages,
147
165
  boxes_per_page,
166
+ objectness_scores_per_page,
148
167
  text_preds_per_page,
149
168
  origin_page_shapes, # type: ignore[arg-type]
169
+ crop_orientations_per_page,
150
170
  orientations,
151
171
  languages_dict,
152
172
  )
@@ -87,7 +87,7 @@ class FASTConvLayer(nn.Module):
87
87
  horizontal_outputs = (
88
88
  self.hor_bn(self.hor_conv(x)) if self.hor_bn is not None and self.hor_conv is not None else 0
89
89
  )
90
- id_out = self.rbr_identity(x) if self.rbr_identity is not None and self.ver_bn is not None else 0
90
+ id_out = self.rbr_identity(x) if self.rbr_identity is not None else 0
91
91
 
92
92
  return self.activation(main_outputs + vertical_outputs + horizontal_outputs + id_out)
93
93
 
@@ -106,7 +106,7 @@ class FASTConvLayer(nn.Module):
106
106
  id_tensor = torch.from_numpy(kernel_value).to(identity.weight.device)
107
107
  self.id_tensor = self._pad_to_mxn_tensor(id_tensor)
108
108
  kernel = self.id_tensor
109
- std = (identity.running_var + identity.eps).sqrt() # type: ignore[attr-defined]
109
+ std = (identity.running_var + identity.eps).sqrt()
110
110
  t = (identity.weight / std).reshape(-1, 1, 1, 1)
111
111
  return kernel * t, identity.bias - identity.running_mean * identity.weight / std
112
112
 
@@ -155,7 +155,6 @@ class FASTConvLayer(nn.Module):
155
155
  )
156
156
  self.fused_conv.weight.data = kernel
157
157
  self.fused_conv.bias.data = bias # type: ignore[union-attr]
158
- self.deploy = True
159
158
  for para in self.parameters():
160
159
  para.detach_()
161
160
  for attr in ["conv", "bn", "ver_conv", "ver_bn", "hor_conv", "hor_bn"]:
@@ -97,7 +97,7 @@ class FASTConvLayer(layers.Layer, NestedObject):
97
97
  if self.hor_bn is not None and self.hor_conv is not None
98
98
  else 0
99
99
  )
100
- id_out = self.rbr_identity(x, **kwargs) if self.rbr_identity is not None and self.ver_bn is not None else 0
100
+ id_out = self.rbr_identity(x, **kwargs) if self.rbr_identity is not None else 0
101
101
 
102
102
  return self.activation(main_outputs + vertical_outputs + horizontal_outputs + id_out)
103
103
 
@@ -110,14 +110,14 @@ class FASTConvLayer(layers.Layer, NestedObject):
110
110
  return 0, 0
111
111
  if not hasattr(self, "id_tensor"):
112
112
  input_dim = self.in_channels // self.groups
113
- kernel_value = np.zeros((self.in_channels, input_dim, 1, 1), dtype=np.float32)
113
+ kernel_value = np.zeros((1, 1, input_dim, self.in_channels), dtype=np.float32)
114
114
  for i in range(self.in_channels):
115
- kernel_value[i, i % input_dim, 0, 0] = 1
115
+ kernel_value[0, 0, i % input_dim, i] = 1
116
116
  id_tensor = tf.constant(kernel_value, dtype=tf.float32)
117
117
  self.id_tensor = self._pad_to_mxn_tensor(id_tensor)
118
118
  kernel = self.id_tensor
119
119
  std = tf.sqrt(identity.moving_variance + identity.epsilon)
120
- t = tf.reshape(identity.gamma / std, (-1, 1, 1, 1))
120
+ t = tf.reshape(identity.gamma / std, (1, 1, 1, -1))
121
121
  return kernel * t, identity.beta - identity.moving_mean * identity.gamma / std
122
122
 
123
123
  def _fuse_bn_tensor(self, conv: layers.Conv2D, bn: layers.BatchNormalization) -> Tuple[tf.Tensor, tf.Tensor]:
@@ -138,18 +138,16 @@ class FASTConvLayer(layers.Layer, NestedObject):
138
138
  else:
139
139
  kernel_1xn, bias_1xn = 0, 0
140
140
  kernel_id, bias_id = self._identity_to_conv(self.rbr_identity)
141
- if not isinstance(kernel_id, int):
142
- kernel_id = tf.transpose(kernel_id, (2, 3, 0, 1))
143
141
  kernel_mxn = kernel_mxn + kernel_mx1 + kernel_1xn + kernel_id
144
142
  bias_mxn = bias_mxn + bias_mx1 + bias_1xn + bias_id
145
143
  return kernel_mxn, bias_mxn
146
144
 
147
145
  def _pad_to_mxn_tensor(self, kernel: tf.Tensor) -> tf.Tensor:
148
146
  kernel_height, kernel_width = self.converted_ks
149
- height, width = kernel.shape[2:]
147
+ height, width = kernel.shape[:2]
150
148
  pad_left_right = tf.maximum(0, (kernel_width - width) // 2)
151
149
  pad_top_down = tf.maximum(0, (kernel_height - height) // 2)
152
- return tf.pad(kernel, [[0, 0], [0, 0], [pad_top_down, pad_top_down], [pad_left_right, pad_left_right]])
150
+ return tf.pad(kernel, [[pad_top_down, pad_top_down], [pad_left_right, pad_left_right], [0, 0], [0, 0]])
153
151
 
154
152
  def reparameterize_layer(self):
155
153
  kernel, bias = self._get_equivalent_kernel_bias()
@@ -51,8 +51,8 @@ def scaled_dot_product_attention(
51
51
  scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(query.size(-1))
52
52
  if mask is not None:
53
53
  # NOTE: to ensure the ONNX compatibility, masked_fill works only with int equal condition
54
- scores = scores.masked_fill(mask == 0, float("-inf")) # type: ignore[attr-defined]
55
- p_attn = torch.softmax(scores, dim=-1) # type: ignore[call-overload]
54
+ scores = scores.masked_fill(mask == 0, float("-inf"))
55
+ p_attn = torch.softmax(scores, dim=-1)
56
56
  return torch.matmul(p_attn, value), p_attn
57
57
 
58
58
 
@@ -3,16 +3,16 @@
3
3
  # This program is licensed under the Apache License 2.0.
4
4
  # See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
5
5
 
6
- from typing import Any, Callable, List, Optional, Tuple
6
+ from typing import Any, Callable, Dict, List, Optional, Tuple
7
7
 
8
8
  import numpy as np
9
9
 
10
10
  from doctr.models.builder import DocumentBuilder
11
- from doctr.utils.geometry import extract_crops, extract_rcrops
11
+ from doctr.utils.geometry import extract_crops, extract_rcrops, rotate_image
12
12
 
13
- from .._utils import rectify_crops, rectify_loc_preds
14
- from ..classification import crop_orientation_predictor
15
- from ..classification.predictor import CropOrientationPredictor
13
+ from .._utils import estimate_orientation, rectify_crops, rectify_loc_preds
14
+ from ..classification import crop_orientation_predictor, page_orientation_predictor
15
+ from ..classification.predictor import OrientationPredictor
16
16
 
17
17
  __all__ = ["_OCRPredictor"]
18
18
 
@@ -29,10 +29,13 @@ class _OCRPredictor:
29
29
  accordingly. Doing so will improve performances for documents with page-uniform rotations.
30
30
  preserve_aspect_ratio: if True, resize preserving the aspect ratio (with padding)
31
31
  symmetric_pad: if True and preserve_aspect_ratio is True, pas the image symmetrically.
32
+ detect_orientation: if True, the estimated general page orientation will be added to the predictions for each
33
+ page. Doing so will slightly deteriorate the overall latency.
32
34
  **kwargs: keyword args of `DocumentBuilder`
33
35
  """
34
36
 
35
- crop_orientation_predictor: Optional[CropOrientationPredictor]
37
+ crop_orientation_predictor: Optional[OrientationPredictor]
38
+ page_orientation_predictor: Optional[OrientationPredictor]
36
39
 
37
40
  def __init__(
38
41
  self,
@@ -40,16 +43,69 @@ class _OCRPredictor:
40
43
  straighten_pages: bool = False,
41
44
  preserve_aspect_ratio: bool = True,
42
45
  symmetric_pad: bool = True,
46
+ detect_orientation: bool = False,
43
47
  **kwargs: Any,
44
48
  ) -> None:
45
49
  self.assume_straight_pages = assume_straight_pages
46
50
  self.straighten_pages = straighten_pages
47
51
  self.crop_orientation_predictor = None if assume_straight_pages else crop_orientation_predictor(pretrained=True)
52
+ self.page_orientation_predictor = (
53
+ page_orientation_predictor(pretrained=True)
54
+ if detect_orientation or straighten_pages or not assume_straight_pages
55
+ else None
56
+ )
48
57
  self.doc_builder = DocumentBuilder(**kwargs)
49
58
  self.preserve_aspect_ratio = preserve_aspect_ratio
50
59
  self.symmetric_pad = symmetric_pad
51
60
  self.hooks: List[Callable] = []
52
61
 
62
+ def _general_page_orientations(
63
+ self,
64
+ pages: List[np.ndarray],
65
+ ) -> List[Tuple[int, float]]:
66
+ _, classes, probs = zip(self.page_orientation_predictor(pages)) # type: ignore[misc]
67
+ # Flatten to list of tuples with (value, confidence)
68
+ page_orientations = [
69
+ (orientation, prob)
70
+ for page_classes, page_probs in zip(classes, probs)
71
+ for orientation, prob in zip(page_classes, page_probs)
72
+ ]
73
+ return page_orientations
74
+
75
+ def _get_orientations(
76
+ self, pages: List[np.ndarray], seg_maps: List[np.ndarray]
77
+ ) -> Tuple[List[Tuple[int, float]], List[int]]:
78
+ general_pages_orientations = self._general_page_orientations(pages)
79
+ origin_page_orientations = [
80
+ estimate_orientation(seq_map, general_orientation)
81
+ for seq_map, general_orientation in zip(seg_maps, general_pages_orientations)
82
+ ]
83
+ return general_pages_orientations, origin_page_orientations
84
+
85
+ def _straighten_pages(
86
+ self,
87
+ pages: List[np.ndarray],
88
+ seg_maps: List[np.ndarray],
89
+ general_pages_orientations: Optional[List[Tuple[int, float]]] = None,
90
+ origin_pages_orientations: Optional[List[int]] = None,
91
+ ) -> List[np.ndarray]:
92
+ general_pages_orientations = (
93
+ general_pages_orientations if general_pages_orientations else self._general_page_orientations(pages)
94
+ )
95
+ origin_pages_orientations = (
96
+ origin_pages_orientations
97
+ if origin_pages_orientations
98
+ else [
99
+ estimate_orientation(seq_map, general_orientation)
100
+ for seq_map, general_orientation in zip(seg_maps, general_pages_orientations)
101
+ ]
102
+ )
103
+ return [
104
+ # We exapnd if the page is wider than tall and the angle is 90 or -90
105
+ rotate_image(page, angle, expand=page.shape[1] > page.shape[0] and abs(angle) == 90)
106
+ for page, angle in zip(pages, origin_pages_orientations)
107
+ ]
108
+
53
109
  @staticmethod
54
110
  def _generate_crops(
55
111
  pages: List[np.ndarray],
@@ -88,68 +144,39 @@ class _OCRPredictor:
88
144
  self,
89
145
  crops: List[List[np.ndarray]],
90
146
  loc_preds: List[np.ndarray],
91
- ) -> Tuple[List[List[np.ndarray]], List[np.ndarray]]:
147
+ ) -> Tuple[List[List[np.ndarray]], List[np.ndarray], List[Tuple[int, float]]]:
92
148
  # Work at a page level
93
- orientations = [self.crop_orientation_predictor(page_crops) for page_crops in crops] # type: ignore[misc]
149
+ orientations, classes, probs = zip(*[self.crop_orientation_predictor(page_crops) for page_crops in crops]) # type: ignore[misc]
94
150
  rect_crops = [rectify_crops(page_crops, orientation) for page_crops, orientation in zip(crops, orientations)]
95
151
  rect_loc_preds = [
96
152
  rectify_loc_preds(page_loc_preds, orientation) if len(page_loc_preds) > 0 else page_loc_preds
97
153
  for page_loc_preds, orientation in zip(loc_preds, orientations)
98
154
  ]
99
- return rect_crops, rect_loc_preds # type: ignore[return-value]
100
-
101
- def _remove_padding(
102
- self,
103
- pages: List[np.ndarray],
104
- loc_preds: List[np.ndarray],
105
- ) -> List[np.ndarray]:
106
- if self.preserve_aspect_ratio:
107
- # Rectify loc_preds to remove padding
108
- rectified_preds = []
109
- for page, loc_pred in zip(pages, loc_preds):
110
- h, w = page.shape[0], page.shape[1]
111
- if h > w:
112
- # y unchanged, dilate x coord
113
- if self.symmetric_pad:
114
- if self.assume_straight_pages:
115
- loc_pred[:, [0, 2]] = np.clip((loc_pred[:, [0, 2]] - 0.5) * h / w + 0.5, 0, 1)
116
- else:
117
- loc_pred[:, :, 0] = np.clip((loc_pred[:, :, 0] - 0.5) * h / w + 0.5, 0, 1)
118
- else:
119
- if self.assume_straight_pages:
120
- loc_pred[:, [0, 2]] *= h / w
121
- else:
122
- loc_pred[:, :, 0] *= h / w
123
- elif w > h:
124
- # x unchanged, dilate y coord
125
- if self.symmetric_pad:
126
- if self.assume_straight_pages:
127
- loc_pred[:, [1, 3]] = np.clip((loc_pred[:, [1, 3]] - 0.5) * w / h + 0.5, 0, 1)
128
- else:
129
- loc_pred[:, :, 1] = np.clip((loc_pred[:, :, 1] - 0.5) * w / h + 0.5, 0, 1)
130
- else:
131
- if self.assume_straight_pages:
132
- loc_pred[:, [1, 3]] *= w / h
133
- else:
134
- loc_pred[:, :, 1] *= w / h
135
- rectified_preds.append(loc_pred)
136
- return rectified_preds
137
- return loc_preds
155
+ # Flatten to list of tuples with (value, confidence)
156
+ crop_orientations = [
157
+ (orientation, prob)
158
+ for page_classes, page_probs in zip(classes, probs)
159
+ for orientation, prob in zip(page_classes, page_probs)
160
+ ]
161
+ return rect_crops, rect_loc_preds, crop_orientations # type: ignore[return-value]
138
162
 
139
163
  @staticmethod
140
164
  def _process_predictions(
141
165
  loc_preds: List[np.ndarray],
142
166
  word_preds: List[Tuple[str, float]],
143
- ) -> Tuple[List[np.ndarray], List[List[Tuple[str, float]]]]:
167
+ crop_orientations: List[Dict[str, Any]],
168
+ ) -> Tuple[List[np.ndarray], List[List[Tuple[str, float]]], List[List[Dict[str, Any]]]]:
144
169
  text_preds = []
170
+ crop_orientation_preds = []
145
171
  if len(loc_preds) > 0:
146
- # Text
172
+ # Text & crop orientation predictions at page level
147
173
  _idx = 0
148
174
  for page_boxes in loc_preds:
149
175
  text_preds.append(word_preds[_idx : _idx + page_boxes.shape[0]])
176
+ crop_orientation_preds.append(crop_orientations[_idx : _idx + page_boxes.shape[0]])
150
177
  _idx += page_boxes.shape[0]
151
178
 
152
- return loc_preds, text_preds
179
+ return loc_preds, text_preds, crop_orientation_preds
153
180
 
154
181
  def add_hook(self, hook: Callable) -> None:
155
182
  """Add a hook to the predictor
@@ -10,10 +10,10 @@ import torch
10
10
  from torch import nn
11
11
 
12
12
  from doctr.io.elements import Document
13
- from doctr.models._utils import estimate_orientation, get_language
13
+ from doctr.models._utils import get_language
14
14
  from doctr.models.detection.predictor import DetectionPredictor
15
15
  from doctr.models.recognition.predictor import RecognitionPredictor
16
- from doctr.utils.geometry import rotate_image
16
+ from doctr.utils.geometry import detach_scores
17
17
 
18
18
  from .base import _OCRPredictor
19
19
 
@@ -55,7 +55,13 @@ class OCRPredictor(nn.Module, _OCRPredictor):
55
55
  self.det_predictor = det_predictor.eval() # type: ignore[attr-defined]
56
56
  self.reco_predictor = reco_predictor.eval() # type: ignore[attr-defined]
57
57
  _OCRPredictor.__init__(
58
- self, assume_straight_pages, straighten_pages, preserve_aspect_ratio, symmetric_pad, **kwargs
58
+ self,
59
+ assume_straight_pages,
60
+ straighten_pages,
61
+ preserve_aspect_ratio,
62
+ symmetric_pad,
63
+ detect_orientation,
64
+ **kwargs,
59
65
  )
60
66
  self.detect_orientation = detect_orientation
61
67
  self.detect_language = detect_language
@@ -81,19 +87,16 @@ class OCRPredictor(nn.Module, _OCRPredictor):
81
87
  for out_map in out_maps
82
88
  ]
83
89
  if self.detect_orientation:
84
- origin_page_orientations = [estimate_orientation(seq_map) for seq_map in seg_maps]
90
+ general_pages_orientations, origin_pages_orientations = self._get_orientations(pages, seg_maps) # type: ignore[arg-type]
85
91
  orientations = [
86
- {"value": orientation_page, "confidence": None} for orientation_page in origin_page_orientations
92
+ {"value": orientation_page, "confidence": None} for orientation_page in origin_pages_orientations
87
93
  ]
88
94
  else:
89
95
  orientations = None
96
+ general_pages_orientations = None
97
+ origin_pages_orientations = None
90
98
  if self.straighten_pages:
91
- origin_page_orientations = (
92
- origin_page_orientations
93
- if self.detect_orientation
94
- else [estimate_orientation(seq_map) for seq_map in seg_maps]
95
- )
96
- pages = [rotate_image(page, -angle, expand=False) for page, angle in zip(pages, origin_page_orientations)]
99
+ pages = self._straighten_pages(pages, seg_maps, general_pages_orientations, origin_pages_orientations) # type: ignore
97
100
  # Forward again to get predictions on straight pages
98
101
  loc_preds = self.det_predictor(pages, **kwargs)
99
102
 
@@ -102,30 +105,36 @@ class OCRPredictor(nn.Module, _OCRPredictor):
102
105
  ), "Detection Model in ocr_predictor should output only one class"
103
106
 
104
107
  loc_preds = [list(loc_pred.values())[0] for loc_pred in loc_preds]
108
+ # Detach objectness scores from loc_preds
109
+ loc_preds, objectness_scores = detach_scores(loc_preds)
105
110
  # Check whether crop mode should be switched to channels first
106
111
  channels_last = len(pages) == 0 or isinstance(pages[0], np.ndarray)
107
112
 
108
- # Rectify crops if aspect ratio
109
- loc_preds = self._remove_padding(pages, loc_preds)
110
-
111
113
  # Apply hooks to loc_preds if any
112
114
  for hook in self.hooks:
113
115
  loc_preds = hook(loc_preds)
114
116
 
115
117
  # Crop images
116
118
  crops, loc_preds = self._prepare_crops(
117
- pages,
119
+ pages, # type: ignore[arg-type]
118
120
  loc_preds,
119
121
  channels_last=channels_last,
120
122
  assume_straight_pages=self.assume_straight_pages,
121
123
  )
122
- # Rectify crop orientation
124
+ # Rectify crop orientation and get crop orientation predictions
125
+ crop_orientations: Any = []
123
126
  if not self.assume_straight_pages:
124
- crops, loc_preds = self._rectify_crops(crops, loc_preds)
127
+ crops, loc_preds, _crop_orientations = self._rectify_crops(crops, loc_preds)
128
+ crop_orientations = [
129
+ {"value": orientation[0], "confidence": orientation[1]} for orientation in _crop_orientations
130
+ ]
131
+
125
132
  # Identify character sequences
126
133
  word_preds = self.reco_predictor([crop for page_crops in crops for crop in page_crops], **kwargs)
134
+ if not crop_orientations:
135
+ crop_orientations = [{"value": 0, "confidence": None} for _ in word_preds]
127
136
 
128
- boxes, text_preds = self._process_predictions(loc_preds, word_preds)
137
+ boxes, text_preds, crop_orientations = self._process_predictions(loc_preds, word_preds, crop_orientations)
129
138
 
130
139
  if self.detect_language:
131
140
  languages = [get_language(" ".join([item[0] for item in text_pred])) for text_pred in text_preds]
@@ -134,10 +143,12 @@ class OCRPredictor(nn.Module, _OCRPredictor):
134
143
  languages_dict = None
135
144
 
136
145
  out = self.doc_builder(
137
- pages,
146
+ pages, # type: ignore[arg-type]
138
147
  boxes,
148
+ objectness_scores,
139
149
  text_preds,
140
- origin_page_shapes,
150
+ origin_page_shapes, # type: ignore[arg-type]
151
+ crop_orientations,
141
152
  orientations,
142
153
  languages_dict,
143
154
  )