python-doctr 0.8.1__py3-none-any.whl → 0.9.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- doctr/__init__.py +1 -1
- doctr/contrib/__init__.py +0 -0
- doctr/contrib/artefacts.py +131 -0
- doctr/contrib/base.py +105 -0
- doctr/datasets/datasets/pytorch.py +2 -2
- doctr/datasets/generator/base.py +6 -5
- doctr/datasets/imgur5k.py +1 -1
- doctr/datasets/loader.py +1 -6
- doctr/datasets/utils.py +2 -1
- doctr/datasets/vocabs.py +9 -2
- doctr/file_utils.py +26 -12
- doctr/io/elements.py +40 -6
- doctr/io/html.py +2 -2
- doctr/io/image/pytorch.py +6 -8
- doctr/io/image/tensorflow.py +1 -1
- doctr/io/pdf.py +5 -2
- doctr/io/reader.py +6 -0
- doctr/models/__init__.py +0 -1
- doctr/models/_utils.py +57 -20
- doctr/models/builder.py +71 -13
- doctr/models/classification/mobilenet/pytorch.py +45 -9
- doctr/models/classification/mobilenet/tensorflow.py +38 -7
- doctr/models/classification/predictor/pytorch.py +18 -11
- doctr/models/classification/predictor/tensorflow.py +16 -10
- doctr/models/classification/textnet/pytorch.py +3 -3
- doctr/models/classification/textnet/tensorflow.py +3 -3
- doctr/models/classification/zoo.py +39 -15
- doctr/models/detection/_utils/__init__.py +1 -0
- doctr/models/detection/_utils/base.py +66 -0
- doctr/models/detection/differentiable_binarization/base.py +4 -3
- doctr/models/detection/differentiable_binarization/pytorch.py +2 -2
- doctr/models/detection/fast/base.py +6 -5
- doctr/models/detection/fast/pytorch.py +4 -4
- doctr/models/detection/fast/tensorflow.py +4 -4
- doctr/models/detection/linknet/base.py +4 -3
- doctr/models/detection/predictor/pytorch.py +15 -1
- doctr/models/detection/predictor/tensorflow.py +15 -1
- doctr/models/detection/zoo.py +7 -2
- doctr/models/factory/hub.py +3 -12
- doctr/models/kie_predictor/base.py +9 -3
- doctr/models/kie_predictor/pytorch.py +41 -20
- doctr/models/kie_predictor/tensorflow.py +36 -16
- doctr/models/modules/layers/pytorch.py +2 -3
- doctr/models/modules/layers/tensorflow.py +6 -8
- doctr/models/modules/transformer/pytorch.py +2 -2
- doctr/models/predictor/base.py +77 -50
- doctr/models/predictor/pytorch.py +31 -20
- doctr/models/predictor/tensorflow.py +27 -17
- doctr/models/preprocessor/pytorch.py +4 -4
- doctr/models/preprocessor/tensorflow.py +3 -2
- doctr/models/recognition/master/pytorch.py +2 -2
- doctr/models/recognition/parseq/pytorch.py +4 -3
- doctr/models/recognition/parseq/tensorflow.py +4 -3
- doctr/models/recognition/sar/pytorch.py +7 -6
- doctr/models/recognition/sar/tensorflow.py +3 -9
- doctr/models/recognition/vitstr/pytorch.py +1 -1
- doctr/models/recognition/zoo.py +1 -1
- doctr/models/zoo.py +2 -2
- doctr/py.typed +0 -0
- doctr/transforms/functional/base.py +1 -1
- doctr/transforms/functional/pytorch.py +4 -4
- doctr/transforms/modules/base.py +37 -15
- doctr/transforms/modules/pytorch.py +66 -8
- doctr/transforms/modules/tensorflow.py +63 -7
- doctr/utils/fonts.py +7 -5
- doctr/utils/geometry.py +35 -12
- doctr/utils/metrics.py +33 -174
- doctr/utils/reconstitution.py +126 -0
- doctr/utils/visualization.py +5 -118
- doctr/version.py +1 -1
- {python_doctr-0.8.1.dist-info → python_doctr-0.9.0.dist-info}/METADATA +84 -80
- {python_doctr-0.8.1.dist-info → python_doctr-0.9.0.dist-info}/RECORD +76 -76
- {python_doctr-0.8.1.dist-info → python_doctr-0.9.0.dist-info}/WHEEL +1 -1
- doctr/models/artefacts/__init__.py +0 -2
- doctr/models/artefacts/barcode.py +0 -74
- doctr/models/artefacts/face.py +0 -63
- doctr/models/obj_detection/__init__.py +0 -1
- doctr/models/obj_detection/faster_rcnn/__init__.py +0 -4
- doctr/models/obj_detection/faster_rcnn/pytorch.py +0 -81
- {python_doctr-0.8.1.dist-info → python_doctr-0.9.0.dist-info}/LICENSE +0 -0
- {python_doctr-0.8.1.dist-info → python_doctr-0.9.0.dist-info}/top_level.txt +0 -0
- {python_doctr-0.8.1.dist-info → python_doctr-0.9.0.dist-info}/zip-safe +0 -0
|
@@ -22,21 +22,21 @@ default_cfgs: Dict[str, Dict[str, Any]] = {
|
|
|
22
22
|
"std": (0.299, 0.296, 0.301),
|
|
23
23
|
"input_shape": (32, 32, 3),
|
|
24
24
|
"classes": list(VOCABS["french"]),
|
|
25
|
-
"url": "https://doctr-static.mindee.com/models?id=v0.
|
|
25
|
+
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/textnet_tiny-fe9cc245.zip&src=0",
|
|
26
26
|
},
|
|
27
27
|
"textnet_small": {
|
|
28
28
|
"mean": (0.694, 0.695, 0.693),
|
|
29
29
|
"std": (0.299, 0.296, 0.301),
|
|
30
30
|
"input_shape": (32, 32, 3),
|
|
31
31
|
"classes": list(VOCABS["french"]),
|
|
32
|
-
"url": "https://doctr-static.mindee.com/models?id=v0.
|
|
32
|
+
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/textnet_small-29c39c82.zip&src=0",
|
|
33
33
|
},
|
|
34
34
|
"textnet_base": {
|
|
35
35
|
"mean": (0.694, 0.695, 0.693),
|
|
36
36
|
"std": (0.299, 0.296, 0.301),
|
|
37
37
|
"input_shape": (32, 32, 3),
|
|
38
38
|
"classes": list(VOCABS["french"]),
|
|
39
|
-
"url": "https://doctr-static.mindee.com/models?id=v0.
|
|
39
|
+
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/textnet_base-168aa82c.zip&src=0",
|
|
40
40
|
},
|
|
41
41
|
}
|
|
42
42
|
|
|
@@ -9,9 +9,9 @@ from doctr.file_utils import is_tf_available
|
|
|
9
9
|
|
|
10
10
|
from .. import classification
|
|
11
11
|
from ..preprocessor import PreProcessor
|
|
12
|
-
from .predictor import
|
|
12
|
+
from .predictor import OrientationPredictor
|
|
13
13
|
|
|
14
|
-
__all__ = ["crop_orientation_predictor"]
|
|
14
|
+
__all__ = ["crop_orientation_predictor", "page_orientation_predictor"]
|
|
15
15
|
|
|
16
16
|
ARCHS: List[str] = [
|
|
17
17
|
"magc_resnet31",
|
|
@@ -31,10 +31,10 @@ ARCHS: List[str] = [
|
|
|
31
31
|
"vit_s",
|
|
32
32
|
"vit_b",
|
|
33
33
|
]
|
|
34
|
-
ORIENTATION_ARCHS: List[str] = ["
|
|
34
|
+
ORIENTATION_ARCHS: List[str] = ["mobilenet_v3_small_crop_orientation", "mobilenet_v3_small_page_orientation"]
|
|
35
35
|
|
|
36
36
|
|
|
37
|
-
def
|
|
37
|
+
def _orientation_predictor(arch: str, pretrained: bool, **kwargs: Any) -> OrientationPredictor:
|
|
38
38
|
if arch not in ORIENTATION_ARCHS:
|
|
39
39
|
raise ValueError(f"unknown architecture '{arch}'")
|
|
40
40
|
|
|
@@ -42,33 +42,57 @@ def _crop_orientation_predictor(arch: str, pretrained: bool, **kwargs: Any) -> C
|
|
|
42
42
|
_model = classification.__dict__[arch](pretrained=pretrained)
|
|
43
43
|
kwargs["mean"] = kwargs.get("mean", _model.cfg["mean"])
|
|
44
44
|
kwargs["std"] = kwargs.get("std", _model.cfg["std"])
|
|
45
|
-
kwargs["batch_size"] = kwargs.get("batch_size",
|
|
45
|
+
kwargs["batch_size"] = kwargs.get("batch_size", 128 if "crop" in arch else 4)
|
|
46
46
|
input_shape = _model.cfg["input_shape"][:-1] if is_tf_available() else _model.cfg["input_shape"][1:]
|
|
47
|
-
predictor =
|
|
47
|
+
predictor = OrientationPredictor(
|
|
48
48
|
PreProcessor(input_shape, preserve_aspect_ratio=True, symmetric_pad=True, **kwargs), _model
|
|
49
49
|
)
|
|
50
50
|
return predictor
|
|
51
51
|
|
|
52
52
|
|
|
53
53
|
def crop_orientation_predictor(
|
|
54
|
-
arch: str = "
|
|
55
|
-
) ->
|
|
56
|
-
"""
|
|
54
|
+
arch: str = "mobilenet_v3_small_crop_orientation", pretrained: bool = False, **kwargs: Any
|
|
55
|
+
) -> OrientationPredictor:
|
|
56
|
+
"""Crop orientation classification architecture.
|
|
57
57
|
|
|
58
58
|
>>> import numpy as np
|
|
59
59
|
>>> from doctr.models import crop_orientation_predictor
|
|
60
|
-
>>> model = crop_orientation_predictor(arch='
|
|
61
|
-
>>> input_crop = (255 * np.random.rand(
|
|
60
|
+
>>> model = crop_orientation_predictor(arch='mobilenet_v3_small_crop_orientation', pretrained=True)
|
|
61
|
+
>>> input_crop = (255 * np.random.rand(256, 256, 3)).astype(np.uint8)
|
|
62
62
|
>>> out = model([input_crop])
|
|
63
63
|
|
|
64
64
|
Args:
|
|
65
65
|
----
|
|
66
|
-
arch: name of the architecture to use (e.g. '
|
|
66
|
+
arch: name of the architecture to use (e.g. 'mobilenet_v3_small_crop_orientation')
|
|
67
67
|
pretrained: If True, returns a model pre-trained on our recognition crops dataset
|
|
68
|
-
**kwargs: keyword arguments to be passed to the
|
|
68
|
+
**kwargs: keyword arguments to be passed to the OrientationPredictor
|
|
69
69
|
|
|
70
70
|
Returns:
|
|
71
71
|
-------
|
|
72
|
-
|
|
72
|
+
OrientationPredictor
|
|
73
73
|
"""
|
|
74
|
-
return
|
|
74
|
+
return _orientation_predictor(arch, pretrained, **kwargs)
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
def page_orientation_predictor(
|
|
78
|
+
arch: str = "mobilenet_v3_small_page_orientation", pretrained: bool = False, **kwargs: Any
|
|
79
|
+
) -> OrientationPredictor:
|
|
80
|
+
"""Page orientation classification architecture.
|
|
81
|
+
|
|
82
|
+
>>> import numpy as np
|
|
83
|
+
>>> from doctr.models import page_orientation_predictor
|
|
84
|
+
>>> model = page_orientation_predictor(arch='mobilenet_v3_small_page_orientation', pretrained=True)
|
|
85
|
+
>>> input_page = (255 * np.random.rand(512, 512, 3)).astype(np.uint8)
|
|
86
|
+
>>> out = model([input_page])
|
|
87
|
+
|
|
88
|
+
Args:
|
|
89
|
+
----
|
|
90
|
+
arch: name of the architecture to use (e.g. 'mobilenet_v3_small_page_orientation')
|
|
91
|
+
pretrained: If True, returns a model pre-trained on our recognition crops dataset
|
|
92
|
+
**kwargs: keyword arguments to be passed to the OrientationPredictor
|
|
93
|
+
|
|
94
|
+
Returns:
|
|
95
|
+
-------
|
|
96
|
+
OrientationPredictor
|
|
97
|
+
"""
|
|
98
|
+
return _orientation_predictor(arch, pretrained, **kwargs)
|
|
@@ -0,0 +1,66 @@
|
|
|
1
|
+
# Copyright (C) 2021-2024, Mindee.
|
|
2
|
+
|
|
3
|
+
# This program is licensed under the Apache License 2.0.
|
|
4
|
+
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
|
|
5
|
+
|
|
6
|
+
from typing import Dict, List
|
|
7
|
+
|
|
8
|
+
import numpy as np
|
|
9
|
+
|
|
10
|
+
__all__ = ["_remove_padding"]
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
def _remove_padding(
|
|
14
|
+
pages: List[np.ndarray],
|
|
15
|
+
loc_preds: List[Dict[str, np.ndarray]],
|
|
16
|
+
preserve_aspect_ratio: bool,
|
|
17
|
+
symmetric_pad: bool,
|
|
18
|
+
assume_straight_pages: bool,
|
|
19
|
+
) -> List[Dict[str, np.ndarray]]:
|
|
20
|
+
"""Remove padding from the localization predictions
|
|
21
|
+
|
|
22
|
+
Args:
|
|
23
|
+
----
|
|
24
|
+
pages: list of pages
|
|
25
|
+
loc_preds: list of localization predictions
|
|
26
|
+
preserve_aspect_ratio: whether the aspect ratio was preserved during padding
|
|
27
|
+
symmetric_pad: whether the padding was symmetric
|
|
28
|
+
assume_straight_pages: whether the pages are assumed to be straight
|
|
29
|
+
|
|
30
|
+
Returns:
|
|
31
|
+
-------
|
|
32
|
+
list of unpaded localization predictions
|
|
33
|
+
"""
|
|
34
|
+
if preserve_aspect_ratio:
|
|
35
|
+
# Rectify loc_preds to remove padding
|
|
36
|
+
rectified_preds = []
|
|
37
|
+
for page, dict_loc_preds in zip(pages, loc_preds):
|
|
38
|
+
for k, loc_pred in dict_loc_preds.items():
|
|
39
|
+
h, w = page.shape[0], page.shape[1]
|
|
40
|
+
if h > w:
|
|
41
|
+
# y unchanged, dilate x coord
|
|
42
|
+
if symmetric_pad:
|
|
43
|
+
if assume_straight_pages:
|
|
44
|
+
loc_pred[:, [0, 2]] = (loc_pred[:, [0, 2]] - 0.5) * h / w + 0.5
|
|
45
|
+
else:
|
|
46
|
+
loc_pred[:, :, 0] = (loc_pred[:, :, 0] - 0.5) * h / w + 0.5
|
|
47
|
+
else:
|
|
48
|
+
if assume_straight_pages:
|
|
49
|
+
loc_pred[:, [0, 2]] *= h / w
|
|
50
|
+
else:
|
|
51
|
+
loc_pred[:, :, 0] *= h / w
|
|
52
|
+
elif w > h:
|
|
53
|
+
# x unchanged, dilate y coord
|
|
54
|
+
if symmetric_pad:
|
|
55
|
+
if assume_straight_pages:
|
|
56
|
+
loc_pred[:, [1, 3]] = (loc_pred[:, [1, 3]] - 0.5) * w / h + 0.5
|
|
57
|
+
else:
|
|
58
|
+
loc_pred[:, :, 1] = (loc_pred[:, :, 1] - 0.5) * w / h + 0.5
|
|
59
|
+
else:
|
|
60
|
+
if assume_straight_pages:
|
|
61
|
+
loc_pred[:, [1, 3]] *= w / h
|
|
62
|
+
else:
|
|
63
|
+
loc_pred[:, :, 1] *= w / h
|
|
64
|
+
rectified_preds.append({k: np.clip(loc_pred, 0, 1)})
|
|
65
|
+
return rectified_preds
|
|
66
|
+
return loc_preds
|
|
@@ -114,7 +114,7 @@ class DBPostProcessor(DetectionPostProcessor):
|
|
|
114
114
|
contours, _ = cv2.findContours(bitmap.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
115
115
|
for contour in contours:
|
|
116
116
|
# Check whether smallest enclosing bounding box is not too small
|
|
117
|
-
if np.any(contour[:, 0].max(axis=0) - contour[:, 0].min(axis=0) < min_size_box):
|
|
117
|
+
if np.any(contour[:, 0].max(axis=0) - contour[:, 0].min(axis=0) < min_size_box): # type: ignore[index]
|
|
118
118
|
continue
|
|
119
119
|
# Compute objectness
|
|
120
120
|
if self.assume_straight_pages:
|
|
@@ -150,10 +150,11 @@ class DBPostProcessor(DetectionPostProcessor):
|
|
|
150
150
|
raise AssertionError("When assume straight pages is false a box is a (4, 2) array (polygon)")
|
|
151
151
|
_box[:, 0] /= width
|
|
152
152
|
_box[:, 1] /= height
|
|
153
|
-
|
|
153
|
+
# Add score to box as (0, score)
|
|
154
|
+
boxes.append(np.vstack([_box, np.array([0.0, score])]))
|
|
154
155
|
|
|
155
156
|
if not self.assume_straight_pages:
|
|
156
|
-
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0,
|
|
157
|
+
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 5, 2), dtype=pred.dtype)
|
|
157
158
|
else:
|
|
158
159
|
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 5), dtype=pred.dtype)
|
|
159
160
|
|
|
@@ -39,7 +39,7 @@ default_cfgs: Dict[str, Dict[str, Any]] = {
|
|
|
39
39
|
"input_shape": (3, 1024, 1024),
|
|
40
40
|
"mean": (0.798, 0.785, 0.772),
|
|
41
41
|
"std": (0.264, 0.2749, 0.287),
|
|
42
|
-
"url": "https://doctr-static.mindee.com/models?id=v0.
|
|
42
|
+
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/db_mobilenet_v3_large-21748dd0.pt&src=0",
|
|
43
43
|
},
|
|
44
44
|
}
|
|
45
45
|
|
|
@@ -273,7 +273,7 @@ class DBNet(_DBNet, nn.Module):
|
|
|
273
273
|
dice_map = torch.softmax(out_map, dim=1)
|
|
274
274
|
else:
|
|
275
275
|
# compute binary map instead
|
|
276
|
-
dice_map = 1 / (1 + torch.exp(-50.0 * (prob_map - thresh_map)))
|
|
276
|
+
dice_map = 1 / (1 + torch.exp(-50.0 * (prob_map - thresh_map)))
|
|
277
277
|
# Class reduced
|
|
278
278
|
inter = (seg_mask * dice_map * seg_target).sum((0, 2, 3))
|
|
279
279
|
cardinality = (seg_mask * (dice_map + seg_target)).sum((0, 2, 3))
|
|
@@ -31,7 +31,7 @@ class FASTPostProcessor(DetectionPostProcessor):
|
|
|
31
31
|
|
|
32
32
|
def __init__(
|
|
33
33
|
self,
|
|
34
|
-
bin_thresh: float = 0.
|
|
34
|
+
bin_thresh: float = 0.1,
|
|
35
35
|
box_thresh: float = 0.1,
|
|
36
36
|
assume_straight_pages: bool = True,
|
|
37
37
|
) -> None:
|
|
@@ -111,7 +111,7 @@ class FASTPostProcessor(DetectionPostProcessor):
|
|
|
111
111
|
contours, _ = cv2.findContours(bitmap.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
112
112
|
for contour in contours:
|
|
113
113
|
# Check whether smallest enclosing bounding box is not too small
|
|
114
|
-
if np.any(contour[:, 0].max(axis=0) - contour[:, 0].min(axis=0) < 2):
|
|
114
|
+
if np.any(contour[:, 0].max(axis=0) - contour[:, 0].min(axis=0) < 2): # type: ignore[index]
|
|
115
115
|
continue
|
|
116
116
|
# Compute objectness
|
|
117
117
|
if self.assume_straight_pages:
|
|
@@ -138,10 +138,11 @@ class FASTPostProcessor(DetectionPostProcessor):
|
|
|
138
138
|
# compute relative box to get rid of img shape
|
|
139
139
|
_box[:, 0] /= width
|
|
140
140
|
_box[:, 1] /= height
|
|
141
|
-
|
|
141
|
+
# Add score to box as (0, score)
|
|
142
|
+
boxes.append(np.vstack([_box, np.array([0.0, score])]))
|
|
142
143
|
|
|
143
144
|
if not self.assume_straight_pages:
|
|
144
|
-
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0,
|
|
145
|
+
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 5, 2), dtype=pred.dtype)
|
|
145
146
|
else:
|
|
146
147
|
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 5), dtype=pred.dtype)
|
|
147
148
|
|
|
@@ -153,7 +154,7 @@ class _FAST(BaseModel):
|
|
|
153
154
|
|
|
154
155
|
min_size_box: int = 3
|
|
155
156
|
assume_straight_pages: bool = True
|
|
156
|
-
shrink_ratio = 0.
|
|
157
|
+
shrink_ratio = 0.4
|
|
157
158
|
|
|
158
159
|
def build_target(
|
|
159
160
|
self,
|
|
@@ -26,19 +26,19 @@ default_cfgs: Dict[str, Dict[str, Any]] = {
|
|
|
26
26
|
"input_shape": (3, 1024, 1024),
|
|
27
27
|
"mean": (0.798, 0.785, 0.772),
|
|
28
28
|
"std": (0.264, 0.2749, 0.287),
|
|
29
|
-
"url":
|
|
29
|
+
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/fast_tiny-1acac421.pt&src=0",
|
|
30
30
|
},
|
|
31
31
|
"fast_small": {
|
|
32
32
|
"input_shape": (3, 1024, 1024),
|
|
33
33
|
"mean": (0.798, 0.785, 0.772),
|
|
34
34
|
"std": (0.264, 0.2749, 0.287),
|
|
35
|
-
"url":
|
|
35
|
+
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/fast_small-10952cc1.pt&src=0",
|
|
36
36
|
},
|
|
37
37
|
"fast_base": {
|
|
38
38
|
"input_shape": (3, 1024, 1024),
|
|
39
39
|
"mean": (0.798, 0.785, 0.772),
|
|
40
40
|
"std": (0.264, 0.2749, 0.287),
|
|
41
|
-
"url":
|
|
41
|
+
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/fast_base-688a8b34.pt&src=0",
|
|
42
42
|
},
|
|
43
43
|
}
|
|
44
44
|
|
|
@@ -119,7 +119,7 @@ class FAST(_FAST, nn.Module):
|
|
|
119
119
|
def __init__(
|
|
120
120
|
self,
|
|
121
121
|
feat_extractor: IntermediateLayerGetter,
|
|
122
|
-
bin_thresh: float = 0.
|
|
122
|
+
bin_thresh: float = 0.1,
|
|
123
123
|
box_thresh: float = 0.1,
|
|
124
124
|
dropout_prob: float = 0.1,
|
|
125
125
|
pooling_size: int = 4, # different from paper performs better on close text-rich images
|
|
@@ -29,19 +29,19 @@ default_cfgs: Dict[str, Dict[str, Any]] = {
|
|
|
29
29
|
"input_shape": (1024, 1024, 3),
|
|
30
30
|
"mean": (0.798, 0.785, 0.772),
|
|
31
31
|
"std": (0.264, 0.2749, 0.287),
|
|
32
|
-
"url":
|
|
32
|
+
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/fast_tiny-959daecb.zip&src=0",
|
|
33
33
|
},
|
|
34
34
|
"fast_small": {
|
|
35
35
|
"input_shape": (1024, 1024, 3),
|
|
36
36
|
"mean": (0.798, 0.785, 0.772),
|
|
37
37
|
"std": (0.264, 0.2749, 0.287),
|
|
38
|
-
"url":
|
|
38
|
+
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/fast_small-f1617503.zip&src=0",
|
|
39
39
|
},
|
|
40
40
|
"fast_base": {
|
|
41
41
|
"input_shape": (1024, 1024, 3),
|
|
42
42
|
"mean": (0.798, 0.785, 0.772),
|
|
43
43
|
"std": (0.264, 0.2749, 0.287),
|
|
44
|
-
"url":
|
|
44
|
+
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/fast_base-255e2ac3.zip&src=0",
|
|
45
45
|
},
|
|
46
46
|
}
|
|
47
47
|
|
|
@@ -122,7 +122,7 @@ class FAST(_FAST, keras.Model, NestedObject):
|
|
|
122
122
|
def __init__(
|
|
123
123
|
self,
|
|
124
124
|
feature_extractor: IntermediateLayerGetter,
|
|
125
|
-
bin_thresh: float = 0.
|
|
125
|
+
bin_thresh: float = 0.1,
|
|
126
126
|
box_thresh: float = 0.1,
|
|
127
127
|
dropout_prob: float = 0.1,
|
|
128
128
|
pooling_size: int = 4, # different from paper performs better on close text-rich images
|
|
@@ -111,7 +111,7 @@ class LinkNetPostProcessor(DetectionPostProcessor):
|
|
|
111
111
|
contours, _ = cv2.findContours(bitmap.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
112
112
|
for contour in contours:
|
|
113
113
|
# Check whether smallest enclosing bounding box is not too small
|
|
114
|
-
if np.any(contour[:, 0].max(axis=0) - contour[:, 0].min(axis=0) < 2):
|
|
114
|
+
if np.any(contour[:, 0].max(axis=0) - contour[:, 0].min(axis=0) < 2): # type: ignore[index]
|
|
115
115
|
continue
|
|
116
116
|
# Compute objectness
|
|
117
117
|
if self.assume_straight_pages:
|
|
@@ -138,10 +138,11 @@ class LinkNetPostProcessor(DetectionPostProcessor):
|
|
|
138
138
|
# compute relative box to get rid of img shape
|
|
139
139
|
_box[:, 0] /= width
|
|
140
140
|
_box[:, 1] /= height
|
|
141
|
-
|
|
141
|
+
# Add score to box as (0, score)
|
|
142
|
+
boxes.append(np.vstack([_box, np.array([0.0, score])]))
|
|
142
143
|
|
|
143
144
|
if not self.assume_straight_pages:
|
|
144
|
-
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0,
|
|
145
|
+
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 5, 2), dtype=pred.dtype)
|
|
145
146
|
else:
|
|
146
147
|
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 5), dtype=pred.dtype)
|
|
147
148
|
|
|
@@ -9,6 +9,7 @@ import numpy as np
|
|
|
9
9
|
import torch
|
|
10
10
|
from torch import nn
|
|
11
11
|
|
|
12
|
+
from doctr.models.detection._utils import _remove_padding
|
|
12
13
|
from doctr.models.preprocessor import PreProcessor
|
|
13
14
|
from doctr.models.utils import set_device_and_dtype
|
|
14
15
|
|
|
@@ -40,6 +41,11 @@ class DetectionPredictor(nn.Module):
|
|
|
40
41
|
return_maps: bool = False,
|
|
41
42
|
**kwargs: Any,
|
|
42
43
|
) -> Union[List[Dict[str, np.ndarray]], Tuple[List[Dict[str, np.ndarray]], List[np.ndarray]]]:
|
|
44
|
+
# Extract parameters from the preprocessor
|
|
45
|
+
preserve_aspect_ratio = self.pre_processor.resize.preserve_aspect_ratio
|
|
46
|
+
symmetric_pad = self.pre_processor.resize.symmetric_pad
|
|
47
|
+
assume_straight_pages = self.model.assume_straight_pages
|
|
48
|
+
|
|
43
49
|
# Dimension check
|
|
44
50
|
if any(page.ndim != 3 for page in pages):
|
|
45
51
|
raise ValueError("incorrect input shape: all pages are expected to be multi-channel 2D images.")
|
|
@@ -52,7 +58,15 @@ class DetectionPredictor(nn.Module):
|
|
|
52
58
|
predicted_batches = [
|
|
53
59
|
self.model(batch, return_preds=True, return_model_output=True, **kwargs) for batch in processed_batches
|
|
54
60
|
]
|
|
55
|
-
|
|
61
|
+
# Remove padding from loc predictions
|
|
62
|
+
preds = _remove_padding(
|
|
63
|
+
pages, # type: ignore[arg-type]
|
|
64
|
+
[pred for batch in predicted_batches for pred in batch["preds"]],
|
|
65
|
+
preserve_aspect_ratio=preserve_aspect_ratio,
|
|
66
|
+
symmetric_pad=symmetric_pad,
|
|
67
|
+
assume_straight_pages=assume_straight_pages,
|
|
68
|
+
)
|
|
69
|
+
|
|
56
70
|
if return_maps:
|
|
57
71
|
seg_maps = [
|
|
58
72
|
pred.permute(1, 2, 0).detach().cpu().numpy() for batch in predicted_batches for pred in batch["out_map"]
|
|
@@ -9,6 +9,7 @@ import numpy as np
|
|
|
9
9
|
import tensorflow as tf
|
|
10
10
|
from tensorflow import keras
|
|
11
11
|
|
|
12
|
+
from doctr.models.detection._utils import _remove_padding
|
|
12
13
|
from doctr.models.preprocessor import PreProcessor
|
|
13
14
|
from doctr.utils.repr import NestedObject
|
|
14
15
|
|
|
@@ -40,6 +41,11 @@ class DetectionPredictor(NestedObject):
|
|
|
40
41
|
return_maps: bool = False,
|
|
41
42
|
**kwargs: Any,
|
|
42
43
|
) -> Union[List[Dict[str, np.ndarray]], Tuple[List[Dict[str, np.ndarray]], List[np.ndarray]]]:
|
|
44
|
+
# Extract parameters from the preprocessor
|
|
45
|
+
preserve_aspect_ratio = self.pre_processor.resize.preserve_aspect_ratio
|
|
46
|
+
symmetric_pad = self.pre_processor.resize.symmetric_pad
|
|
47
|
+
assume_straight_pages = self.model.assume_straight_pages
|
|
48
|
+
|
|
43
49
|
# Dimension check
|
|
44
50
|
if any(page.ndim != 3 for page in pages):
|
|
45
51
|
raise ValueError("incorrect input shape: all pages are expected to be multi-channel 2D images.")
|
|
@@ -50,7 +56,15 @@ class DetectionPredictor(NestedObject):
|
|
|
50
56
|
for batch in processed_batches
|
|
51
57
|
]
|
|
52
58
|
|
|
53
|
-
|
|
59
|
+
# Remove padding from loc predictions
|
|
60
|
+
preds = _remove_padding(
|
|
61
|
+
pages,
|
|
62
|
+
[pred for batch in predicted_batches for pred in batch["preds"]],
|
|
63
|
+
preserve_aspect_ratio=preserve_aspect_ratio,
|
|
64
|
+
symmetric_pad=symmetric_pad,
|
|
65
|
+
assume_straight_pages=assume_straight_pages,
|
|
66
|
+
)
|
|
67
|
+
|
|
54
68
|
if return_maps:
|
|
55
69
|
seg_maps = [pred.numpy() for batch in predicted_batches for pred in batch["out_map"]]
|
|
56
70
|
return preds, seg_maps
|
doctr/models/detection/zoo.py
CHANGED
|
@@ -8,6 +8,7 @@ from typing import Any, List
|
|
|
8
8
|
from doctr.file_utils import is_tf_available, is_torch_available
|
|
9
9
|
|
|
10
10
|
from .. import detection
|
|
11
|
+
from ..detection.fast import reparameterize
|
|
11
12
|
from ..preprocessor import PreProcessor
|
|
12
13
|
from .predictor import DetectionPredictor
|
|
13
14
|
|
|
@@ -51,18 +52,22 @@ def _predictor(arch: Any, pretrained: bool, assume_straight_pages: bool = True,
|
|
|
51
52
|
pretrained_backbone=kwargs.get("pretrained_backbone", True),
|
|
52
53
|
assume_straight_pages=assume_straight_pages,
|
|
53
54
|
)
|
|
55
|
+
# Reparameterize FAST models by default to lower inference latency and memory usage
|
|
56
|
+
if isinstance(_model, detection.FAST):
|
|
57
|
+
_model = reparameterize(_model)
|
|
54
58
|
else:
|
|
55
59
|
if not isinstance(arch, (detection.DBNet, detection.LinkNet, detection.FAST)):
|
|
56
60
|
raise ValueError(f"unknown architecture: {type(arch)}")
|
|
57
61
|
|
|
58
62
|
_model = arch
|
|
59
63
|
_model.assume_straight_pages = assume_straight_pages
|
|
64
|
+
_model.postprocessor.assume_straight_pages = assume_straight_pages
|
|
60
65
|
|
|
61
66
|
kwargs.pop("pretrained_backbone", None)
|
|
62
67
|
|
|
63
68
|
kwargs["mean"] = kwargs.get("mean", _model.cfg["mean"])
|
|
64
69
|
kwargs["std"] = kwargs.get("std", _model.cfg["std"])
|
|
65
|
-
kwargs["batch_size"] = kwargs.get("batch_size",
|
|
70
|
+
kwargs["batch_size"] = kwargs.get("batch_size", 2)
|
|
66
71
|
predictor = DetectionPredictor(
|
|
67
72
|
PreProcessor(_model.cfg["input_shape"][:-1] if is_tf_available() else _model.cfg["input_shape"][1:], **kwargs),
|
|
68
73
|
_model,
|
|
@@ -71,7 +76,7 @@ def _predictor(arch: Any, pretrained: bool, assume_straight_pages: bool = True,
|
|
|
71
76
|
|
|
72
77
|
|
|
73
78
|
def detection_predictor(
|
|
74
|
-
arch: Any = "
|
|
79
|
+
arch: Any = "fast_base",
|
|
75
80
|
pretrained: bool = False,
|
|
76
81
|
assume_straight_pages: bool = True,
|
|
77
82
|
**kwargs: Any,
|
doctr/models/factory/hub.py
CHANGED
|
@@ -36,7 +36,6 @@ AVAILABLE_ARCHS = {
|
|
|
36
36
|
"classification": models.classification.zoo.ARCHS,
|
|
37
37
|
"detection": models.detection.zoo.ARCHS,
|
|
38
38
|
"recognition": models.recognition.zoo.ARCHS,
|
|
39
|
-
"obj_detection": ["fasterrcnn_mobilenet_v3_large_fpn"] if is_torch_available() else None,
|
|
40
39
|
}
|
|
41
40
|
|
|
42
41
|
|
|
@@ -110,8 +109,8 @@ def push_to_hf_hub(model: Any, model_name: str, task: str, **kwargs) -> None: #
|
|
|
110
109
|
|
|
111
110
|
if run_config is None and arch is None:
|
|
112
111
|
raise ValueError("run_config or arch must be specified")
|
|
113
|
-
if task not in ["classification", "detection", "recognition"
|
|
114
|
-
raise ValueError("task must be one of classification, detection, recognition
|
|
112
|
+
if task not in ["classification", "detection", "recognition"]:
|
|
113
|
+
raise ValueError("task must be one of classification, detection, recognition")
|
|
115
114
|
|
|
116
115
|
# default readme
|
|
117
116
|
readme = textwrap.dedent(
|
|
@@ -165,7 +164,7 @@ def push_to_hf_hub(model: Any, model_name: str, task: str, **kwargs) -> None: #
|
|
|
165
164
|
\n{json.dumps(vars(run_config), indent=2, ensure_ascii=False)}"""
|
|
166
165
|
)
|
|
167
166
|
|
|
168
|
-
if arch not in AVAILABLE_ARCHS[task]:
|
|
167
|
+
if arch not in AVAILABLE_ARCHS[task]:
|
|
169
168
|
raise ValueError(
|
|
170
169
|
f"Architecture: {arch} for task: {task} not found.\
|
|
171
170
|
\nAvailable architectures: {AVAILABLE_ARCHS}"
|
|
@@ -217,14 +216,6 @@ def from_hub(repo_id: str, **kwargs: Any):
|
|
|
217
216
|
model = models.detection.__dict__[arch](pretrained=False)
|
|
218
217
|
elif task == "recognition":
|
|
219
218
|
model = models.recognition.__dict__[arch](pretrained=False, input_shape=cfg["input_shape"], vocab=cfg["vocab"])
|
|
220
|
-
elif task == "obj_detection" and is_torch_available():
|
|
221
|
-
model = models.obj_detection.__dict__[arch](
|
|
222
|
-
pretrained=False,
|
|
223
|
-
image_mean=cfg["mean"],
|
|
224
|
-
image_std=cfg["std"],
|
|
225
|
-
max_size=cfg["input_shape"][-1],
|
|
226
|
-
num_classes=len(cfg["classes"]),
|
|
227
|
-
)
|
|
228
219
|
|
|
229
220
|
# update model cfg
|
|
230
221
|
model.cfg = cfg
|
|
@@ -7,7 +7,7 @@ from typing import Any, Optional
|
|
|
7
7
|
|
|
8
8
|
from doctr.models.builder import KIEDocumentBuilder
|
|
9
9
|
|
|
10
|
-
from ..classification.predictor import
|
|
10
|
+
from ..classification.predictor import OrientationPredictor
|
|
11
11
|
from ..predictor.base import _OCRPredictor
|
|
12
12
|
|
|
13
13
|
__all__ = ["_KIEPredictor"]
|
|
@@ -25,10 +25,13 @@ class _KIEPredictor(_OCRPredictor):
|
|
|
25
25
|
accordingly. Doing so will improve performances for documents with page-uniform rotations.
|
|
26
26
|
preserve_aspect_ratio: if True, resize preserving the aspect ratio (with padding)
|
|
27
27
|
symmetric_pad: if True and preserve_aspect_ratio is True, pas the image symmetrically.
|
|
28
|
+
detect_orientation: if True, the estimated general page orientation will be added to the predictions for each
|
|
29
|
+
page. Doing so will slightly deteriorate the overall latency.
|
|
28
30
|
kwargs: keyword args of `DocumentBuilder`
|
|
29
31
|
"""
|
|
30
32
|
|
|
31
|
-
crop_orientation_predictor: Optional[
|
|
33
|
+
crop_orientation_predictor: Optional[OrientationPredictor]
|
|
34
|
+
page_orientation_predictor: Optional[OrientationPredictor]
|
|
32
35
|
|
|
33
36
|
def __init__(
|
|
34
37
|
self,
|
|
@@ -36,8 +39,11 @@ class _KIEPredictor(_OCRPredictor):
|
|
|
36
39
|
straighten_pages: bool = False,
|
|
37
40
|
preserve_aspect_ratio: bool = True,
|
|
38
41
|
symmetric_pad: bool = True,
|
|
42
|
+
detect_orientation: bool = False,
|
|
39
43
|
**kwargs: Any,
|
|
40
44
|
) -> None:
|
|
41
|
-
super().__init__(
|
|
45
|
+
super().__init__(
|
|
46
|
+
assume_straight_pages, straighten_pages, preserve_aspect_ratio, symmetric_pad, detect_orientation, **kwargs
|
|
47
|
+
)
|
|
42
48
|
|
|
43
49
|
self.doc_builder: KIEDocumentBuilder = KIEDocumentBuilder(**kwargs)
|