python-doctr 0.8.0__py3-none-any.whl → 0.8.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- doctr/models/detection/__init__.py +1 -0
- doctr/models/detection/differentiable_binarization/tensorflow.py +14 -18
- doctr/models/detection/fast/__init__.py +6 -0
- doctr/models/detection/fast/base.py +256 -0
- doctr/models/detection/fast/pytorch.py +442 -0
- doctr/models/detection/fast/tensorflow.py +428 -0
- doctr/models/detection/zoo.py +14 -2
- doctr/models/modules/layers/pytorch.py +89 -9
- doctr/models/modules/layers/tensorflow.py +89 -9
- doctr/version.py +1 -1
- {python_doctr-0.8.0.dist-info → python_doctr-0.8.1.dist-info}/METADATA +14 -13
- {python_doctr-0.8.0.dist-info → python_doctr-0.8.1.dist-info}/RECORD +16 -12
- {python_doctr-0.8.0.dist-info → python_doctr-0.8.1.dist-info}/LICENSE +0 -0
- {python_doctr-0.8.0.dist-info → python_doctr-0.8.1.dist-info}/WHEEL +0 -0
- {python_doctr-0.8.0.dist-info → python_doctr-0.8.1.dist-info}/top_level.txt +0 -0
- {python_doctr-0.8.0.dist-info → python_doctr-0.8.1.dist-info}/zip-safe +0 -0
|
@@ -147,24 +147,20 @@ class DBNet(_DBNet, keras.Model, NestedObject):
|
|
|
147
147
|
_inputs = [layers.Input(shape=in_shape[1:]) for in_shape in self.feat_extractor.output_shape]
|
|
148
148
|
output_shape = tuple(self.fpn(_inputs).shape)
|
|
149
149
|
|
|
150
|
-
self.probability_head = keras.Sequential(
|
|
151
|
-
[
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
layers.Activation("relu"),
|
|
165
|
-
layers.Conv2DTranspose(num_classes, 2, strides=2, kernel_initializer="he_normal"),
|
|
166
|
-
]
|
|
167
|
-
)
|
|
150
|
+
self.probability_head = keras.Sequential([
|
|
151
|
+
*conv_sequence(64, "relu", True, kernel_size=3, input_shape=output_shape[1:]),
|
|
152
|
+
layers.Conv2DTranspose(64, 2, strides=2, use_bias=False, kernel_initializer="he_normal"),
|
|
153
|
+
layers.BatchNormalization(),
|
|
154
|
+
layers.Activation("relu"),
|
|
155
|
+
layers.Conv2DTranspose(num_classes, 2, strides=2, kernel_initializer="he_normal"),
|
|
156
|
+
])
|
|
157
|
+
self.threshold_head = keras.Sequential([
|
|
158
|
+
*conv_sequence(64, "relu", True, kernel_size=3, input_shape=output_shape[1:]),
|
|
159
|
+
layers.Conv2DTranspose(64, 2, strides=2, use_bias=False, kernel_initializer="he_normal"),
|
|
160
|
+
layers.BatchNormalization(),
|
|
161
|
+
layers.Activation("relu"),
|
|
162
|
+
layers.Conv2DTranspose(num_classes, 2, strides=2, kernel_initializer="he_normal"),
|
|
163
|
+
])
|
|
168
164
|
|
|
169
165
|
self.postprocessor = DBPostProcessor(
|
|
170
166
|
assume_straight_pages=assume_straight_pages, bin_thresh=bin_thresh, box_thresh=box_thresh
|
|
@@ -0,0 +1,256 @@
|
|
|
1
|
+
# Copyright (C) 2021-2024, Mindee.
|
|
2
|
+
|
|
3
|
+
# This program is licensed under the Apache License 2.0.
|
|
4
|
+
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
|
|
5
|
+
|
|
6
|
+
# Credits: post-processing adapted from https://github.com/xuannianz/DifferentiableBinarization
|
|
7
|
+
|
|
8
|
+
from typing import Dict, List, Tuple, Union
|
|
9
|
+
|
|
10
|
+
import cv2
|
|
11
|
+
import numpy as np
|
|
12
|
+
import pyclipper
|
|
13
|
+
from shapely.geometry import Polygon
|
|
14
|
+
|
|
15
|
+
from doctr.models.core import BaseModel
|
|
16
|
+
|
|
17
|
+
from ..core import DetectionPostProcessor
|
|
18
|
+
|
|
19
|
+
__all__ = ["_FAST", "FASTPostProcessor"]
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
class FASTPostProcessor(DetectionPostProcessor):
|
|
23
|
+
"""Implements a post processor for FAST model.
|
|
24
|
+
|
|
25
|
+
Args:
|
|
26
|
+
----
|
|
27
|
+
bin_thresh: threshold used to binzarized p_map at inference time
|
|
28
|
+
box_thresh: minimal objectness score to consider a box
|
|
29
|
+
assume_straight_pages: whether the inputs were expected to have horizontal text elements
|
|
30
|
+
"""
|
|
31
|
+
|
|
32
|
+
def __init__(
|
|
33
|
+
self,
|
|
34
|
+
bin_thresh: float = 0.3,
|
|
35
|
+
box_thresh: float = 0.1,
|
|
36
|
+
assume_straight_pages: bool = True,
|
|
37
|
+
) -> None:
|
|
38
|
+
super().__init__(box_thresh, bin_thresh, assume_straight_pages)
|
|
39
|
+
self.unclip_ratio = 1.0
|
|
40
|
+
|
|
41
|
+
def polygon_to_box(
|
|
42
|
+
self,
|
|
43
|
+
points: np.ndarray,
|
|
44
|
+
) -> np.ndarray:
|
|
45
|
+
"""Expand a polygon (points) by a factor unclip_ratio, and returns a polygon
|
|
46
|
+
|
|
47
|
+
Args:
|
|
48
|
+
----
|
|
49
|
+
points: The first parameter.
|
|
50
|
+
|
|
51
|
+
Returns:
|
|
52
|
+
-------
|
|
53
|
+
a box in absolute coordinates (xmin, ymin, xmax, ymax) or (4, 2) array (quadrangle)
|
|
54
|
+
"""
|
|
55
|
+
if not self.assume_straight_pages:
|
|
56
|
+
# Compute the rectangle polygon enclosing the raw polygon
|
|
57
|
+
rect = cv2.minAreaRect(points)
|
|
58
|
+
points = cv2.boxPoints(rect)
|
|
59
|
+
# Add 1 pixel to correct cv2 approx
|
|
60
|
+
area = (rect[1][0] + 1) * (1 + rect[1][1])
|
|
61
|
+
length = 2 * (rect[1][0] + rect[1][1]) + 2
|
|
62
|
+
else:
|
|
63
|
+
poly = Polygon(points)
|
|
64
|
+
area = poly.area
|
|
65
|
+
length = poly.length
|
|
66
|
+
distance = area * self.unclip_ratio / length # compute distance to expand polygon
|
|
67
|
+
offset = pyclipper.PyclipperOffset()
|
|
68
|
+
offset.AddPath(points, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
|
|
69
|
+
_points = offset.Execute(distance)
|
|
70
|
+
# Take biggest stack of points
|
|
71
|
+
idx = 0
|
|
72
|
+
if len(_points) > 1:
|
|
73
|
+
max_size = 0
|
|
74
|
+
for _idx, p in enumerate(_points):
|
|
75
|
+
if len(p) > max_size:
|
|
76
|
+
idx = _idx
|
|
77
|
+
max_size = len(p)
|
|
78
|
+
# We ensure that _points can be correctly casted to a ndarray
|
|
79
|
+
_points = [_points[idx]]
|
|
80
|
+
expanded_points: np.ndarray = np.asarray(_points) # expand polygon
|
|
81
|
+
if len(expanded_points) < 1:
|
|
82
|
+
return None # type: ignore[return-value]
|
|
83
|
+
return (
|
|
84
|
+
cv2.boundingRect(expanded_points) # type: ignore[return-value]
|
|
85
|
+
if self.assume_straight_pages
|
|
86
|
+
else np.roll(cv2.boxPoints(cv2.minAreaRect(expanded_points)), -1, axis=0)
|
|
87
|
+
)
|
|
88
|
+
|
|
89
|
+
def bitmap_to_boxes(
|
|
90
|
+
self,
|
|
91
|
+
pred: np.ndarray,
|
|
92
|
+
bitmap: np.ndarray,
|
|
93
|
+
) -> np.ndarray:
|
|
94
|
+
"""Compute boxes from a bitmap/pred_map: find connected components then filter boxes
|
|
95
|
+
|
|
96
|
+
Args:
|
|
97
|
+
----
|
|
98
|
+
pred: Pred map from differentiable linknet output
|
|
99
|
+
bitmap: Bitmap map computed from pred (binarized)
|
|
100
|
+
angle_tol: Comparison tolerance of the angle with the median angle across the page
|
|
101
|
+
ratio_tol: Under this limit aspect ratio, we cannot resolve the direction of the crop
|
|
102
|
+
|
|
103
|
+
Returns:
|
|
104
|
+
-------
|
|
105
|
+
np tensor boxes for the bitmap, each box is a 6-element list
|
|
106
|
+
containing x, y, w, h, alpha, score for the box
|
|
107
|
+
"""
|
|
108
|
+
height, width = bitmap.shape[:2]
|
|
109
|
+
boxes: List[Union[np.ndarray, List[float]]] = []
|
|
110
|
+
# get contours from connected components on the bitmap
|
|
111
|
+
contours, _ = cv2.findContours(bitmap.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
112
|
+
for contour in contours:
|
|
113
|
+
# Check whether smallest enclosing bounding box is not too small
|
|
114
|
+
if np.any(contour[:, 0].max(axis=0) - contour[:, 0].min(axis=0) < 2):
|
|
115
|
+
continue
|
|
116
|
+
# Compute objectness
|
|
117
|
+
if self.assume_straight_pages:
|
|
118
|
+
x, y, w, h = cv2.boundingRect(contour)
|
|
119
|
+
points: np.ndarray = np.array([[x, y], [x, y + h], [x + w, y + h], [x + w, y]])
|
|
120
|
+
score = self.box_score(pred, points, assume_straight_pages=True)
|
|
121
|
+
else:
|
|
122
|
+
score = self.box_score(pred, contour, assume_straight_pages=False)
|
|
123
|
+
|
|
124
|
+
if score < self.box_thresh: # remove polygons with a weak objectness
|
|
125
|
+
continue
|
|
126
|
+
|
|
127
|
+
if self.assume_straight_pages:
|
|
128
|
+
_box = self.polygon_to_box(points)
|
|
129
|
+
else:
|
|
130
|
+
_box = self.polygon_to_box(np.squeeze(contour))
|
|
131
|
+
|
|
132
|
+
if self.assume_straight_pages:
|
|
133
|
+
# compute relative polygon to get rid of img shape
|
|
134
|
+
x, y, w, h = _box
|
|
135
|
+
xmin, ymin, xmax, ymax = x / width, y / height, (x + w) / width, (y + h) / height
|
|
136
|
+
boxes.append([xmin, ymin, xmax, ymax, score])
|
|
137
|
+
else:
|
|
138
|
+
# compute relative box to get rid of img shape
|
|
139
|
+
_box[:, 0] /= width
|
|
140
|
+
_box[:, 1] /= height
|
|
141
|
+
boxes.append(_box)
|
|
142
|
+
|
|
143
|
+
if not self.assume_straight_pages:
|
|
144
|
+
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 4, 2), dtype=pred.dtype)
|
|
145
|
+
else:
|
|
146
|
+
return np.clip(np.asarray(boxes), 0, 1) if len(boxes) > 0 else np.zeros((0, 5), dtype=pred.dtype)
|
|
147
|
+
|
|
148
|
+
|
|
149
|
+
class _FAST(BaseModel):
|
|
150
|
+
"""FAST as described in `"FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation"
|
|
151
|
+
<https://arxiv.org/pdf/2111.02394.pdf>`_.
|
|
152
|
+
"""
|
|
153
|
+
|
|
154
|
+
min_size_box: int = 3
|
|
155
|
+
assume_straight_pages: bool = True
|
|
156
|
+
shrink_ratio = 0.1
|
|
157
|
+
|
|
158
|
+
def build_target(
|
|
159
|
+
self,
|
|
160
|
+
target: List[Dict[str, np.ndarray]],
|
|
161
|
+
output_shape: Tuple[int, int, int],
|
|
162
|
+
channels_last: bool = True,
|
|
163
|
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
|
164
|
+
"""Build the target, and it's mask to be used from loss computation.
|
|
165
|
+
|
|
166
|
+
Args:
|
|
167
|
+
----
|
|
168
|
+
target: target coming from dataset
|
|
169
|
+
output_shape: shape of the output of the model without batch_size
|
|
170
|
+
channels_last: whether channels are last or not
|
|
171
|
+
|
|
172
|
+
Returns:
|
|
173
|
+
-------
|
|
174
|
+
the new formatted target, mask and shrunken text kernel
|
|
175
|
+
"""
|
|
176
|
+
if any(t.dtype != np.float32 for tgt in target for t in tgt.values()):
|
|
177
|
+
raise AssertionError("the expected dtype of target 'boxes' entry is 'np.float32'.")
|
|
178
|
+
if any(np.any((t[:, :4] > 1) | (t[:, :4] < 0)) for tgt in target for t in tgt.values()):
|
|
179
|
+
raise ValueError("the 'boxes' entry of the target is expected to take values between 0 & 1.")
|
|
180
|
+
|
|
181
|
+
h: int
|
|
182
|
+
w: int
|
|
183
|
+
if channels_last:
|
|
184
|
+
h, w, num_classes = output_shape
|
|
185
|
+
else:
|
|
186
|
+
num_classes, h, w = output_shape
|
|
187
|
+
target_shape = (len(target), num_classes, h, w)
|
|
188
|
+
|
|
189
|
+
seg_target: np.ndarray = np.zeros(target_shape, dtype=np.uint8)
|
|
190
|
+
seg_mask: np.ndarray = np.ones(target_shape, dtype=bool)
|
|
191
|
+
shrunken_kernel: np.ndarray = np.zeros(target_shape, dtype=np.uint8)
|
|
192
|
+
|
|
193
|
+
for idx, tgt in enumerate(target):
|
|
194
|
+
for class_idx, _tgt in enumerate(tgt.values()):
|
|
195
|
+
# Draw each polygon on gt
|
|
196
|
+
if _tgt.shape[0] == 0:
|
|
197
|
+
# Empty image, full masked
|
|
198
|
+
seg_mask[idx, class_idx] = False
|
|
199
|
+
|
|
200
|
+
# Absolute bounding boxes
|
|
201
|
+
abs_boxes = _tgt.copy()
|
|
202
|
+
|
|
203
|
+
if abs_boxes.ndim == 3:
|
|
204
|
+
abs_boxes[:, :, 0] *= w
|
|
205
|
+
abs_boxes[:, :, 1] *= h
|
|
206
|
+
polys = abs_boxes
|
|
207
|
+
boxes_size = np.linalg.norm(abs_boxes[:, 2, :] - abs_boxes[:, 0, :], axis=-1)
|
|
208
|
+
abs_boxes = np.concatenate((abs_boxes.min(1), abs_boxes.max(1)), -1).round().astype(np.int32)
|
|
209
|
+
else:
|
|
210
|
+
abs_boxes[:, [0, 2]] *= w
|
|
211
|
+
abs_boxes[:, [1, 3]] *= h
|
|
212
|
+
abs_boxes = abs_boxes.round().astype(np.int32)
|
|
213
|
+
polys = np.stack(
|
|
214
|
+
[
|
|
215
|
+
abs_boxes[:, [0, 1]],
|
|
216
|
+
abs_boxes[:, [0, 3]],
|
|
217
|
+
abs_boxes[:, [2, 3]],
|
|
218
|
+
abs_boxes[:, [2, 1]],
|
|
219
|
+
],
|
|
220
|
+
axis=1,
|
|
221
|
+
)
|
|
222
|
+
boxes_size = np.minimum(abs_boxes[:, 2] - abs_boxes[:, 0], abs_boxes[:, 3] - abs_boxes[:, 1])
|
|
223
|
+
|
|
224
|
+
for poly, box, box_size in zip(polys, abs_boxes, boxes_size):
|
|
225
|
+
# Mask boxes that are too small
|
|
226
|
+
if box_size < self.min_size_box:
|
|
227
|
+
seg_mask[idx, class_idx, box[1] : box[3] + 1, box[0] : box[2] + 1] = False
|
|
228
|
+
continue
|
|
229
|
+
|
|
230
|
+
# Negative shrink for gt, as described in paper
|
|
231
|
+
polygon = Polygon(poly)
|
|
232
|
+
distance = polygon.area * (1 - np.power(self.shrink_ratio, 2)) / polygon.length
|
|
233
|
+
subject = [tuple(coor) for coor in poly]
|
|
234
|
+
padding = pyclipper.PyclipperOffset()
|
|
235
|
+
padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
|
|
236
|
+
shrunken = padding.Execute(-distance)
|
|
237
|
+
|
|
238
|
+
# Draw polygon on gt if it is valid
|
|
239
|
+
if len(shrunken) == 0:
|
|
240
|
+
seg_mask[idx, class_idx, box[1] : box[3] + 1, box[0] : box[2] + 1] = False
|
|
241
|
+
continue
|
|
242
|
+
shrunken = np.array(shrunken[0]).reshape(-1, 2)
|
|
243
|
+
if shrunken.shape[0] <= 2 or not Polygon(shrunken).is_valid:
|
|
244
|
+
seg_mask[idx, class_idx, box[1] : box[3] + 1, box[0] : box[2] + 1] = False
|
|
245
|
+
continue
|
|
246
|
+
cv2.fillPoly(shrunken_kernel[idx, class_idx], [shrunken.astype(np.int32)], 1.0) # type: ignore[call-overload]
|
|
247
|
+
# draw the original polygon on the segmentation target
|
|
248
|
+
cv2.fillPoly(seg_target[idx, class_idx], [poly.astype(np.int32)], 1.0) # type: ignore[call-overload]
|
|
249
|
+
|
|
250
|
+
# Don't forget to switch back to channel last if Tensorflow is used
|
|
251
|
+
if channels_last:
|
|
252
|
+
seg_target = seg_target.transpose((0, 2, 3, 1))
|
|
253
|
+
seg_mask = seg_mask.transpose((0, 2, 3, 1))
|
|
254
|
+
shrunken_kernel = shrunken_kernel.transpose((0, 2, 3, 1))
|
|
255
|
+
|
|
256
|
+
return seg_target, seg_mask, shrunken_kernel
|