pyqrack-cuda 1.27.0__py3-none-manylinux_2_35_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyqrack/__init__.py +13 -0
- pyqrack/neuron_activation_fn.py +21 -0
- pyqrack/pauli.py +19 -0
- pyqrack/qrack_circuit.py +472 -0
- pyqrack/qrack_cl_precompile/Linux/2_35/qrack_cl_precompile +0 -0
- pyqrack/qrack_neuron.py +246 -0
- pyqrack/qrack_simulator.py +3530 -0
- pyqrack/qrack_system/__init__.py +9 -0
- pyqrack/qrack_system/qrack_lib/Linux/2_35/libqrack.a +0 -0
- pyqrack/qrack_system/qrack_lib/Linux/2_35/libqrack_pinvoke.so +0 -0
- pyqrack/qrack_system/qrack_lib/Linux/2_35/libqrack_pinvoke.so.9.6.0 +0 -0
- pyqrack/qrack_system/qrack_system.py +1063 -0
- pyqrack/quimb_circuit_type.py +17 -0
- pyqrack/util/__init__.py +8 -0
- pyqrack/util/convert_qiskit_circuit_to_qasm_experiment.py +61 -0
- pyqrack_cuda-1.27.0.dist-info/LICENSE +21 -0
- pyqrack_cuda-1.27.0.dist-info/METADATA +62 -0
- pyqrack_cuda-1.27.0.dist-info/RECORD +20 -0
- pyqrack_cuda-1.27.0.dist-info/WHEEL +5 -0
- pyqrack_cuda-1.27.0.dist-info/top_level.txt +1 -0
pyqrack/qrack_neuron.py
ADDED
@@ -0,0 +1,246 @@
|
|
1
|
+
# (C) Daniel Strano and the Qrack contributors 2017-2023. All rights reserved.
|
2
|
+
#
|
3
|
+
# Use of this source code is governed by an MIT-style license that can be
|
4
|
+
# found in the LICENSE file or at https://opensource.org/licenses/MIT.
|
5
|
+
|
6
|
+
import ctypes
|
7
|
+
import sys
|
8
|
+
|
9
|
+
from .qrack_system import Qrack
|
10
|
+
from .neuron_activation_fn import NeuronActivationFn
|
11
|
+
|
12
|
+
class QrackNeuron:
|
13
|
+
"""Class that exposes the QNeuron class of Qrack
|
14
|
+
|
15
|
+
This model of a "quantum neuron" is based on the concept of a "uniformly controlled"
|
16
|
+
rotation of a single output qubit around the Pauli Y axis, and has been developed by
|
17
|
+
others. In our case, the primary relevant gate could also be called a
|
18
|
+
single-qubit-target multiplexer.
|
19
|
+
|
20
|
+
(See https://arxiv.org/abs/quant-ph/0407010 for an introduction to "uniformly controlled
|
21
|
+
gates.)
|
22
|
+
|
23
|
+
QrackNeuron is meant to be interchangeable with a single classical neuron, as in
|
24
|
+
conventional neural net software. It differs from classical neurons in conventional
|
25
|
+
neural nets, in that the "synaptic cleft" is modelled as a single qubit. Hence, this
|
26
|
+
neuron can train and predict in superposition.
|
27
|
+
|
28
|
+
Attributes:
|
29
|
+
nid(int): Qrack ID of this neuron
|
30
|
+
simulator(QrackSimulator): Simulator instance for all synaptic clefts of the neuron
|
31
|
+
controls(list(int)): Indices of all "control" qubits, for neuron input
|
32
|
+
target(int): Index of "target" qubit, for neuron output
|
33
|
+
tolerance(double): Rounding tolerance
|
34
|
+
"""
|
35
|
+
|
36
|
+
def _get_error(self):
|
37
|
+
return Qrack.qrack_lib.get_error(self.simulator.sid)
|
38
|
+
|
39
|
+
def _throw_if_error(self):
|
40
|
+
if self._get_error() != 0:
|
41
|
+
raise RuntimeError("QrackNeuron C++ library raised exception.")
|
42
|
+
|
43
|
+
def __init__(
|
44
|
+
self,
|
45
|
+
simulator,
|
46
|
+
controls,
|
47
|
+
target,
|
48
|
+
activation_fn = NeuronActivationFn.Sigmoid,
|
49
|
+
alpha = 1.0,
|
50
|
+
tolerance = sys.float_info.epsilon,
|
51
|
+
_init = True
|
52
|
+
):
|
53
|
+
self.simulator = simulator
|
54
|
+
self.controls = controls
|
55
|
+
self.target = target
|
56
|
+
self.activation_fn = activation_fn
|
57
|
+
self.alpha = alpha
|
58
|
+
self.tolerance = tolerance
|
59
|
+
|
60
|
+
self.amp_count = 1 << (len(controls) + 1)
|
61
|
+
|
62
|
+
if not _init:
|
63
|
+
return
|
64
|
+
|
65
|
+
self.nid = Qrack.qrack_lib.init_qneuron(simulator.sid, len(controls), self._ulonglong_byref(controls), target, activation_fn, alpha, tolerance)
|
66
|
+
|
67
|
+
self._throw_if_error()
|
68
|
+
|
69
|
+
def __del__(self):
|
70
|
+
if self.nid is not None:
|
71
|
+
Qrack.qrack_lib.destroy_qneuron(self.nid)
|
72
|
+
self.nid = None
|
73
|
+
|
74
|
+
def clone(self):
|
75
|
+
"""Clones this neuron.
|
76
|
+
|
77
|
+
Create a new, independent neuron instance with identical angles,
|
78
|
+
inputs, output, and tolerance, for the same QrackSimulator.
|
79
|
+
|
80
|
+
Raises:
|
81
|
+
RuntimeError: QrackNeuron C++ library raised an exception.
|
82
|
+
"""
|
83
|
+
result = QrackNeuron(self.simulator, self.controls, self.target, self.activation_fn, self.alpha, self.tolerance)
|
84
|
+
self.nid = Qrack.qrack_lib.clone_qneuron(self.simulator.sid)
|
85
|
+
self._throw_if_error()
|
86
|
+
return result
|
87
|
+
|
88
|
+
def _ulonglong_byref(self, a):
|
89
|
+
return (ctypes.c_ulonglong * len(a))(*a)
|
90
|
+
|
91
|
+
def _real1_byref(self, a):
|
92
|
+
# This needs to be c_double, if PyQrack is built with fp64.
|
93
|
+
if Qrack.fppow < 6:
|
94
|
+
return (ctypes.c_float * len(a))(*a)
|
95
|
+
return (ctypes.c_double * len(a))(*a)
|
96
|
+
|
97
|
+
def set_angles(self, a):
|
98
|
+
"""Directly sets the neuron parameters.
|
99
|
+
|
100
|
+
Set all synaptic parameters of the neuron directly, by a list
|
101
|
+
enumerated over the integer permutations of input qubits.
|
102
|
+
|
103
|
+
Args:
|
104
|
+
a(list(double)): List of input permutation angles
|
105
|
+
|
106
|
+
Raises:
|
107
|
+
ValueError: Angles 'a' in QrackNeuron.set_angles() must contain at least (2 ** len(self.controls)) elements.
|
108
|
+
RuntimeError: QrackSimulator raised an exception.
|
109
|
+
"""
|
110
|
+
if len(a) < (1 << len(self.controls)):
|
111
|
+
raise ValueError("Angles 'a' in QrackNeuron.set_angles() must contain at least (2 ** len(self.controls)) elements.")
|
112
|
+
Qrack.qrack_lib.set_qneuron_angles(self.nid, self._real1_byref(a))
|
113
|
+
self._throw_if_error()
|
114
|
+
|
115
|
+
def get_angles(self):
|
116
|
+
"""Directly gets the neuron parameters.
|
117
|
+
|
118
|
+
Get all synaptic parameters of the neuron directly, as a list
|
119
|
+
enumerated over the integer permutations of input qubits.
|
120
|
+
|
121
|
+
Raises:
|
122
|
+
RuntimeError: QrackNeuron C++ library raised an exception.
|
123
|
+
"""
|
124
|
+
ket = self._real1_byref([0.0] * self.amp_count)
|
125
|
+
Qrack.qrack_lib.get_qneuron_angles(self.nid, ket)
|
126
|
+
self._throw_if_error()
|
127
|
+
return list(ket)
|
128
|
+
|
129
|
+
def set_alpha(self, a):
|
130
|
+
"""Set the neuron 'alpha' parameter.
|
131
|
+
|
132
|
+
To enable nonlinear activation, `QrackNeuron` has an 'alpha'
|
133
|
+
parameter that is applied as a power to its angles, before
|
134
|
+
learning and prediction. This makes the activation function
|
135
|
+
sharper (or less sharp).
|
136
|
+
|
137
|
+
Raises:
|
138
|
+
RuntimeError: QrackNeuron C++ library raised an exception.
|
139
|
+
"""
|
140
|
+
self.alpha = a
|
141
|
+
Qrack.qrack_lib.set_qneuron_alpha(self.nid, a)
|
142
|
+
self._throw_if_error()
|
143
|
+
|
144
|
+
def set_activation_fn(self, f):
|
145
|
+
"""Sets the activation function of this QrackNeuron
|
146
|
+
|
147
|
+
Nonlinear activation functions can be important to neural net
|
148
|
+
applications, like DNN. The available activation functions are
|
149
|
+
enumerated in `NeuronActivationFn`.
|
150
|
+
|
151
|
+
Raises:
|
152
|
+
RuntimeError: QrackNeuron C++ library raised an exception.
|
153
|
+
"""
|
154
|
+
self.activation_fn = f
|
155
|
+
Qrack.qrack_lib.set_qneuron_activation_fn(self.nid, f)
|
156
|
+
self._throw_if_error()
|
157
|
+
|
158
|
+
def predict(self, e=True, r=True):
|
159
|
+
"""Predict based on training
|
160
|
+
|
161
|
+
"Predict" the anticipated output, based on input and training.
|
162
|
+
By default, "predict()" will initialize the output qubit as by
|
163
|
+
resetting to |0> and then acting a Hadamard gate. From that
|
164
|
+
state, the method amends the output qubit upon the basis of
|
165
|
+
the state of its input qubits, applying a rotation around
|
166
|
+
Pauli Y axis according to the angle learned for the input.
|
167
|
+
|
168
|
+
Args:
|
169
|
+
e(bool): If False, predict the opposite
|
170
|
+
r(bool): If True, start by resetting the output to 50/50
|
171
|
+
|
172
|
+
Raises:
|
173
|
+
RuntimeError: QrackNeuron C++ library raised an exception.
|
174
|
+
"""
|
175
|
+
result = Qrack.qrack_lib.qneuron_predict(self.nid, e, r)
|
176
|
+
self._throw_if_error()
|
177
|
+
return result
|
178
|
+
|
179
|
+
def unpredict(self, e=True):
|
180
|
+
"""Uncompute a prediction
|
181
|
+
|
182
|
+
Uncompute a 'prediction' of the anticipated output, based on
|
183
|
+
input and training.
|
184
|
+
|
185
|
+
Args:
|
186
|
+
e(bool): If False, unpredict the opposite
|
187
|
+
|
188
|
+
Raises:
|
189
|
+
RuntimeError: QrackNeuron C++ library raised an exception.
|
190
|
+
"""
|
191
|
+
result = Qrack.qrack_lib.qneuron_unpredict(self.nid, e)
|
192
|
+
self._throw_if_error()
|
193
|
+
return result
|
194
|
+
|
195
|
+
def learn_cycle(self, e=True):
|
196
|
+
"""Run a learning cycle
|
197
|
+
|
198
|
+
A learning cycle consists of predicting a result, saving the
|
199
|
+
classical outcome, and uncomputing the prediction.
|
200
|
+
|
201
|
+
Args:
|
202
|
+
e(bool): If False, predict the opposite
|
203
|
+
|
204
|
+
Raises:
|
205
|
+
RuntimeError: QrackNeuron C++ library raised an exception.
|
206
|
+
"""
|
207
|
+
Qrack.qrack_lib.qneuron_learn_cycle(self.nid, e)
|
208
|
+
self._throw_if_error()
|
209
|
+
|
210
|
+
def learn(self, eta, e=True, r=True):
|
211
|
+
"""Learn from current qubit state
|
212
|
+
|
213
|
+
"Learn" to associate current inputs with output. Based on
|
214
|
+
input qubit states and volatility 'eta,' the input state
|
215
|
+
synaptic parameter is updated to prefer the "e" ("expected")
|
216
|
+
output.
|
217
|
+
|
218
|
+
Args:
|
219
|
+
eta(double): Training volatility, 0 to 1
|
220
|
+
e(bool): If False, predict the opposite
|
221
|
+
r(bool): If True, start by resetting the output to 50/50
|
222
|
+
|
223
|
+
Raises:
|
224
|
+
RuntimeError: QrackNeuron C++ library raised an exception.
|
225
|
+
"""
|
226
|
+
Qrack.qrack_lib.qneuron_learn(self.nid, eta, e, r)
|
227
|
+
self._throw_if_error()
|
228
|
+
|
229
|
+
def learn_permutation(self, eta, e=True, r=True):
|
230
|
+
"""Learn from current classical state
|
231
|
+
|
232
|
+
Learn to associate current inputs with output, under the
|
233
|
+
assumption that the inputs and outputs are "classical."
|
234
|
+
Based on input qubit states and volatility 'eta,' the input
|
235
|
+
state angle is updated to prefer the "e" ("expected") output.
|
236
|
+
|
237
|
+
Args:
|
238
|
+
eta(double): Training volatility, 0 to 1
|
239
|
+
e(bool): If False, predict the opposite
|
240
|
+
r(bool): If True, start by resetting the output to 50/50
|
241
|
+
|
242
|
+
Raises:
|
243
|
+
RuntimeError: QrackNeuron C++ library raised an exception.
|
244
|
+
"""
|
245
|
+
Qrack.qrack_lib.qneuron_learn_permutation(self.nid, eta, e, r)
|
246
|
+
self._throw_if_error()
|