pypharm 1.6.1__py3-none-any.whl → 1.6.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- PyPharm/__init__.py +4 -3
- PyPharm/algorithms/country_optimization.py +469 -469
- PyPharm/algorithms/country_optimization_v2.py +330 -330
- PyPharm/algorithms/country_optimization_v3.py +428 -428
- PyPharm/algorithms/genetic_optimization.py +130 -130
- PyPharm/algorithms/gold_digger_optimization.py +126 -126
- PyPharm/constants.py +80 -80
- PyPharm/country_optimization.py +470 -0
- PyPharm/country_optimization_v2.py +330 -0
- PyPharm/country_optimization_v3.py +426 -0
- PyPharm/genetic_optimization.py +130 -0
- PyPharm/gold_digger_optimization.py +127 -0
- PyPharm/models/__init__.py +3 -3
- PyPharm/models/compartment_models.py +985 -985
- PyPharm/models/pbpk.py +683 -683
- PyPharm/models.py +638 -0
- {pypharm-1.6.1.dist-info → pypharm-1.6.2.dist-info}/METADATA +11 -7
- pypharm-1.6.2.dist-info/RECORD +21 -0
- {pypharm-1.6.1.dist-info → pypharm-1.6.2.dist-info}/WHEEL +1 -1
- pypharm-1.6.1.dist-info/RECORD +0 -15
- {pypharm-1.6.1.dist-info → pypharm-1.6.2.dist-info}/top_level.txt +0 -0
PyPharm/constants.py
CHANGED
|
@@ -1,81 +1,81 @@
|
|
|
1
|
-
MODEL_CONST = {
|
|
2
|
-
'human':{
|
|
3
|
-
'adipose': {'V':143, 'Q': 60 * 3.7},
|
|
4
|
-
'bone': {'V':124, 'Q': 60 * 3.6} ,
|
|
5
|
-
'brain': {'V':20.7, 'Q': 60 * 10} ,
|
|
6
|
-
'gut': {'V':23.6, 'Q': 60 * 13} ,
|
|
7
|
-
'heart': {'V':3.8, 'Q': 60 * 2.14},
|
|
8
|
-
'kidney': {'V':4.4, 'Q': 60 * 15.7} ,
|
|
9
|
-
'liver': {'V':24.1, 'Q': 60 * 21} ,
|
|
10
|
-
'lung': {'V':16.7, 'Q': 60 * 71} ,
|
|
11
|
-
'muscle': {'V':429, 'Q': 60 * 10.7} ,
|
|
12
|
-
'pancreas': {'V':1.2, 'Q': 60 * 1.9} ,
|
|
13
|
-
'skin': {'V':111, 'Q': 60 * 4.3} ,
|
|
14
|
-
'spleen': {'V':2.7, 'Q': 60 * 1.1},
|
|
15
|
-
'stomach': {'V':2.2, 'Q': 60 * 0.56},
|
|
16
|
-
'teaster': {'V':0.51, 'Q': 60 * 0.04},
|
|
17
|
-
'arterial_blood': {'V':25.7} ,
|
|
18
|
-
'venous_blood': {'V':51.4}
|
|
19
|
-
},
|
|
20
|
-
'rat':{
|
|
21
|
-
'adipose': {'V':40, 'Q': 60 * 1.6},
|
|
22
|
-
'bone': {'V':53.2, 'Q': 60 * 10.12},
|
|
23
|
-
'brain': {'V':6.8, 'Q': 60 * 5.32} ,
|
|
24
|
-
'gut': {'V':40, 'Q': 60 * 52} ,
|
|
25
|
-
'heart': {'V':3.2, 'Q': 60 * 15.68},
|
|
26
|
-
'kidney': {'V':9.2, 'Q': 60 * 36.92},
|
|
27
|
-
'liver': {'V':41.2, 'Q': 60 * 80} ,
|
|
28
|
-
'lung': {'V':4, 'Q': 60 * 203.2} ,
|
|
29
|
-
'muscle': {'V':487.6, 'Q': 60 * 30} ,
|
|
30
|
-
'pancreas': {'V':5.2, 'Q': 60 * 4} ,
|
|
31
|
-
'skin': {'V':160, 'Q': 60 * 20} ,
|
|
32
|
-
'spleen': {'V':2.4, 'Q': 60 * 5} ,
|
|
33
|
-
'stomach': {'V':4.4, 'Q': 60 * 8.2} ,
|
|
34
|
-
'teaster': {'V':10, 'Q': 60 * 1.8} ,
|
|
35
|
-
'arterial_blood': {'V':22.4} ,
|
|
36
|
-
# 'arterial_blood': {'V':22.4, 'Q': 60 * 10.8} ,
|
|
37
|
-
'venous_blood': {'V':45.2}
|
|
38
|
-
},
|
|
39
|
-
'mouse': {
|
|
40
|
-
'adipose': {'V': 1000 * 1e-3 / 0.02, 'Q': 60 * 4e-5 * 1000 / 0.02},
|
|
41
|
-
'bone': {'V': 1000 * 1.58e-3 / 0.02, 'Q': 60 * 2.53e-4 * 1000 / 0.02},
|
|
42
|
-
'brain': {'V': 1000 * 1.7e-4 / 0.02, 'Q': 60 * 1.3e-4 * 1000 / 0.02},
|
|
43
|
-
'gut': {'V': 1000 * 6.27e-4 / 0.02, 'Q': 60 * 5e-4 * 1000 / 0.02},
|
|
44
|
-
'heart': {'V': 1000 * 9.5e-5 / 0.02, 'Q': 60 * 2.8e-4 * 1000 / 0.02},
|
|
45
|
-
'kidney': {'V': 1000 * 3.4e-4 / 0.02, 'Q': 60 * 1.3e-3 * 1000 / 0.02},
|
|
46
|
-
'liver': {'V': 1000 * 1e-3/ 0.02, 'Q' : 60 * 3.5e-4 * 1000 / 0.02},
|
|
47
|
-
'lung': {'V': 1000 * 1e-4 / 0.02, 'Q': 60 * 5.47e-3 * 1000 / 0.02},
|
|
48
|
-
'muscle': {'V': 1000 * 0.01e-1 / 0.02, 'Q': 60 * 9.1e-4 * 1000 / 0.02},
|
|
49
|
-
'pancreas': {'V': 1000 * 1.3e-4 / 0.02, 'Q': 60 * 5.2e-5 * 1000 / 0.02},
|
|
50
|
-
'skin': {'V': 1000 * 2.9e-3 / 0.02, 'Q': 60 * 4.1e-4 * 1000 / 0.02},
|
|
51
|
-
'spleen': {'V': 1000 * 1e-4 / 0.02, 'Q': 60 * 9e-5 * 1000 / 0.02},
|
|
52
|
-
'stomach': {'V': 1000 * 1.1e-4 / 0.02, 'Q': 60 * 1.1e-4 * 1000 / 0.02},
|
|
53
|
-
'teaster': {'V': 1, 'Q': 1},
|
|
54
|
-
'arterial_blood': {'V': 1000 * 2.28e-4 / 0.02},
|
|
55
|
-
# 'arterial_blood': {'V':22.4, 'Q': 60 * 10.8} ,
|
|
56
|
-
'venous_blood': {'V': 1000 * 5.25e-4 / 0.02}
|
|
57
|
-
}
|
|
58
|
-
}
|
|
59
|
-
|
|
60
|
-
class ORGAN_NAMES:
|
|
61
|
-
|
|
62
|
-
LUNG = 'lung'
|
|
63
|
-
HEART = 'heart'
|
|
64
|
-
BRAIN = 'brain'
|
|
65
|
-
MUSCLE = 'muscle'
|
|
66
|
-
ADIPOSE = 'adipose'
|
|
67
|
-
SKIN = 'skin'
|
|
68
|
-
BONE = 'bone'
|
|
69
|
-
KIDNEY = 'kidney'
|
|
70
|
-
LIVER = 'liver'
|
|
71
|
-
GUT = 'gut'
|
|
72
|
-
SPLEEN = 'spleen'
|
|
73
|
-
STOMACH = 'stomach'
|
|
74
|
-
PANCREAS = 'pancreas'
|
|
75
|
-
VENOUS = 'venous_blood'
|
|
76
|
-
ARTERIAL = 'arterial_blood'
|
|
77
|
-
|
|
78
|
-
class ANIMALS:
|
|
79
|
-
HUMAN = 'human'
|
|
80
|
-
RAT = 'rat'
|
|
1
|
+
MODEL_CONST = {
|
|
2
|
+
'human':{
|
|
3
|
+
'adipose': {'V':143, 'Q': 60 * 3.7},
|
|
4
|
+
'bone': {'V':124, 'Q': 60 * 3.6} ,
|
|
5
|
+
'brain': {'V':20.7, 'Q': 60 * 10} ,
|
|
6
|
+
'gut': {'V':23.6, 'Q': 60 * 13} ,
|
|
7
|
+
'heart': {'V':3.8, 'Q': 60 * 2.14},
|
|
8
|
+
'kidney': {'V':4.4, 'Q': 60 * 15.7} ,
|
|
9
|
+
'liver': {'V':24.1, 'Q': 60 * 21} ,
|
|
10
|
+
'lung': {'V':16.7, 'Q': 60 * 71} ,
|
|
11
|
+
'muscle': {'V':429, 'Q': 60 * 10.7} ,
|
|
12
|
+
'pancreas': {'V':1.2, 'Q': 60 * 1.9} ,
|
|
13
|
+
'skin': {'V':111, 'Q': 60 * 4.3} ,
|
|
14
|
+
'spleen': {'V':2.7, 'Q': 60 * 1.1},
|
|
15
|
+
'stomach': {'V':2.2, 'Q': 60 * 0.56},
|
|
16
|
+
'teaster': {'V':0.51, 'Q': 60 * 0.04},
|
|
17
|
+
'arterial_blood': {'V':25.7} ,
|
|
18
|
+
'venous_blood': {'V':51.4}
|
|
19
|
+
},
|
|
20
|
+
'rat':{
|
|
21
|
+
'adipose': {'V':40, 'Q': 60 * 1.6},
|
|
22
|
+
'bone': {'V':53.2, 'Q': 60 * 10.12},
|
|
23
|
+
'brain': {'V':6.8, 'Q': 60 * 5.32} ,
|
|
24
|
+
'gut': {'V':40, 'Q': 60 * 52} ,
|
|
25
|
+
'heart': {'V':3.2, 'Q': 60 * 15.68},
|
|
26
|
+
'kidney': {'V':9.2, 'Q': 60 * 36.92},
|
|
27
|
+
'liver': {'V':41.2, 'Q': 60 * 80} ,
|
|
28
|
+
'lung': {'V':4, 'Q': 60 * 203.2} ,
|
|
29
|
+
'muscle': {'V':487.6, 'Q': 60 * 30} ,
|
|
30
|
+
'pancreas': {'V':5.2, 'Q': 60 * 4} ,
|
|
31
|
+
'skin': {'V':160, 'Q': 60 * 20} ,
|
|
32
|
+
'spleen': {'V':2.4, 'Q': 60 * 5} ,
|
|
33
|
+
'stomach': {'V':4.4, 'Q': 60 * 8.2} ,
|
|
34
|
+
'teaster': {'V':10, 'Q': 60 * 1.8} ,
|
|
35
|
+
'arterial_blood': {'V':22.4} ,
|
|
36
|
+
# 'arterial_blood': {'V':22.4, 'Q': 60 * 10.8} ,
|
|
37
|
+
'venous_blood': {'V':45.2}
|
|
38
|
+
},
|
|
39
|
+
'mouse': {
|
|
40
|
+
'adipose': {'V': 1000 * 1e-3 / 0.02, 'Q': 60 * 4e-5 * 1000 / 0.02},
|
|
41
|
+
'bone': {'V': 1000 * 1.58e-3 / 0.02, 'Q': 60 * 2.53e-4 * 1000 / 0.02},
|
|
42
|
+
'brain': {'V': 1000 * 1.7e-4 / 0.02, 'Q': 60 * 1.3e-4 * 1000 / 0.02},
|
|
43
|
+
'gut': {'V': 1000 * 6.27e-4 / 0.02, 'Q': 60 * 5e-4 * 1000 / 0.02},
|
|
44
|
+
'heart': {'V': 1000 * 9.5e-5 / 0.02, 'Q': 60 * 2.8e-4 * 1000 / 0.02},
|
|
45
|
+
'kidney': {'V': 1000 * 3.4e-4 / 0.02, 'Q': 60 * 1.3e-3 * 1000 / 0.02},
|
|
46
|
+
'liver': {'V': 1000 * 1e-3/ 0.02, 'Q' : 60 * 3.5e-4 * 1000 / 0.02},
|
|
47
|
+
'lung': {'V': 1000 * 1e-4 / 0.02, 'Q': 60 * 5.47e-3 * 1000 / 0.02},
|
|
48
|
+
'muscle': {'V': 1000 * 0.01e-1 / 0.02, 'Q': 60 * 9.1e-4 * 1000 / 0.02},
|
|
49
|
+
'pancreas': {'V': 1000 * 1.3e-4 / 0.02, 'Q': 60 * 5.2e-5 * 1000 / 0.02},
|
|
50
|
+
'skin': {'V': 1000 * 2.9e-3 / 0.02, 'Q': 60 * 4.1e-4 * 1000 / 0.02},
|
|
51
|
+
'spleen': {'V': 1000 * 1e-4 / 0.02, 'Q': 60 * 9e-5 * 1000 / 0.02},
|
|
52
|
+
'stomach': {'V': 1000 * 1.1e-4 / 0.02, 'Q': 60 * 1.1e-4 * 1000 / 0.02},
|
|
53
|
+
'teaster': {'V': 1, 'Q': 1},
|
|
54
|
+
'arterial_blood': {'V': 1000 * 2.28e-4 / 0.02},
|
|
55
|
+
# 'arterial_blood': {'V':22.4, 'Q': 60 * 10.8} ,
|
|
56
|
+
'venous_blood': {'V': 1000 * 5.25e-4 / 0.02}
|
|
57
|
+
}
|
|
58
|
+
}
|
|
59
|
+
|
|
60
|
+
class ORGAN_NAMES:
|
|
61
|
+
|
|
62
|
+
LUNG = 'lung'
|
|
63
|
+
HEART = 'heart'
|
|
64
|
+
BRAIN = 'brain'
|
|
65
|
+
MUSCLE = 'muscle'
|
|
66
|
+
ADIPOSE = 'adipose'
|
|
67
|
+
SKIN = 'skin'
|
|
68
|
+
BONE = 'bone'
|
|
69
|
+
KIDNEY = 'kidney'
|
|
70
|
+
LIVER = 'liver'
|
|
71
|
+
GUT = 'gut'
|
|
72
|
+
SPLEEN = 'spleen'
|
|
73
|
+
STOMACH = 'stomach'
|
|
74
|
+
PANCREAS = 'pancreas'
|
|
75
|
+
VENOUS = 'venous_blood'
|
|
76
|
+
ARTERIAL = 'arterial_blood'
|
|
77
|
+
|
|
78
|
+
class ANIMALS:
|
|
79
|
+
HUMAN = 'human'
|
|
80
|
+
RAT = 'rat'
|
|
81
81
|
MOUSE = 'mouse'
|
|
@@ -0,0 +1,470 @@
|
|
|
1
|
+
import random
|
|
2
|
+
import numpy as np
|
|
3
|
+
from operator import attrgetter
|
|
4
|
+
from math import ceil, cos, sin
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class Individual:
|
|
8
|
+
|
|
9
|
+
def __init__(self, x, function):
|
|
10
|
+
self.x = x
|
|
11
|
+
self.f = function(self.x)
|
|
12
|
+
self.ep_n = 0
|
|
13
|
+
|
|
14
|
+
def update_function(self, function):
|
|
15
|
+
self.f = function(self.x)
|
|
16
|
+
|
|
17
|
+
@classmethod
|
|
18
|
+
def crossing(cls, individual1, individual2, p, function, Xmin, Xmax):
|
|
19
|
+
x1 = []
|
|
20
|
+
x2 = []
|
|
21
|
+
for i in range(len(individual1.x)):
|
|
22
|
+
if i % 2:
|
|
23
|
+
x1.append(individual1.x[i])
|
|
24
|
+
x2.append(individual2.x[i])
|
|
25
|
+
else:
|
|
26
|
+
x1.append(individual2.x[i])
|
|
27
|
+
x2.append(individual1.x[i])
|
|
28
|
+
x1[i] += random.uniform(-p * x1[i], p * x1[i])
|
|
29
|
+
x1[i] = x1[i] if x1[i] >= Xmin[i] else Xmin[i]
|
|
30
|
+
x1[i] = x1[i] if x1[i] <= Xmax[i] else Xmax[i]
|
|
31
|
+
x2[i] += random.uniform(-p * x2[i], p * x2[i])
|
|
32
|
+
x2[i] = x2[i] if x2[i] >= Xmin[i] else Xmin[i]
|
|
33
|
+
x2[i] = x2[i] if x2[i] <= Xmax[i] else Xmax[i]
|
|
34
|
+
return [cls(x1, function), cls(x2, function)]
|
|
35
|
+
|
|
36
|
+
@classmethod
|
|
37
|
+
def crossing2(cls, individual1, individual2, p, function, Xmin, Xmax):
|
|
38
|
+
x1 = []
|
|
39
|
+
x2 = []
|
|
40
|
+
random_list = list(range(len(individual1.x)))
|
|
41
|
+
random.shuffle(random_list)
|
|
42
|
+
random_list = random_list[:len(individual1.x) // 2]
|
|
43
|
+
for i in range(len(individual1.x)):
|
|
44
|
+
if i in random_list:
|
|
45
|
+
x1.append(individual1.x[i])
|
|
46
|
+
x2.append(individual2.x[i])
|
|
47
|
+
else:
|
|
48
|
+
x1.append(individual2.x[i])
|
|
49
|
+
x2.append(individual1.x[i])
|
|
50
|
+
x1[i] += random.uniform(-p * x1[i], p * x1[i])
|
|
51
|
+
x1[i] = x1[i] if x1[i] >= Xmin[i] else Xmin[i]
|
|
52
|
+
x1[i] = x1[i] if x1[i] <= Xmax[i] else Xmax[i]
|
|
53
|
+
x2[i] += random.uniform(-p * x2[i], p * x2[i])
|
|
54
|
+
x2[i] = x2[i] if x2[i] >= Xmin[i] else Xmin[i]
|
|
55
|
+
x2[i] = x2[i] if x2[i] <= Xmax[i] else Xmax[i]
|
|
56
|
+
return [cls(x1, function), cls(x2, function)]
|
|
57
|
+
|
|
58
|
+
@classmethod
|
|
59
|
+
def crossing3(cls, individual1, individual2, p, function, Xmin, Xmax):
|
|
60
|
+
x1 = []
|
|
61
|
+
x2 = []
|
|
62
|
+
max_n = len(individual1.x) // 2
|
|
63
|
+
n = random.randint(1, max_n)
|
|
64
|
+
l = []
|
|
65
|
+
for i in range(len(individual1.x) // n):
|
|
66
|
+
l += [j + 2 * i * n for j in range(n) if j + 2 * i * n < len(individual1.x)]
|
|
67
|
+
for i in range(len(individual1.x)):
|
|
68
|
+
if i in l:
|
|
69
|
+
x1.append(individual1.x[i])
|
|
70
|
+
x2.append(individual2.x[i])
|
|
71
|
+
else:
|
|
72
|
+
x1.append(individual2.x[i])
|
|
73
|
+
x2.append(individual1.x[i])
|
|
74
|
+
x1[i] += random.uniform(-p * x1[i], p * x1[i])
|
|
75
|
+
x1[i] = x1[i] if x1[i] >= Xmin[i] else Xmin[i]
|
|
76
|
+
x1[i] = x1[i] if x1[i] <= Xmax[i] else Xmax[i]
|
|
77
|
+
x2[i] += random.uniform(-p * x2[i], p * x2[i])
|
|
78
|
+
x2[i] = x2[i] if x2[i] >= Xmin[i] else Xmin[i]
|
|
79
|
+
x2[i] = x2[i] if x2[i] <= Xmax[i] else Xmax[i]
|
|
80
|
+
return [cls(x1, function), cls(x2, function)]
|
|
81
|
+
|
|
82
|
+
@classmethod
|
|
83
|
+
def crossing4(cls, individual1, individual2, p, function, Xmin, Xmax):
|
|
84
|
+
x1 = []
|
|
85
|
+
x2 = []
|
|
86
|
+
for i in range(len(individual1.x)):
|
|
87
|
+
x1.append((individual1.x[i] + individual2.x[i]) / 2)
|
|
88
|
+
x2.append((individual1.x[i] + individual2.x[i]) / 2)
|
|
89
|
+
x2[i] += random.uniform(-p * x2[i], p * x2[i])
|
|
90
|
+
x2[i] = x2[i] if x2[i] >= Xmin[i] else Xmin[i]
|
|
91
|
+
x2[i] = x2[i] if x2[i] <= Xmax[i] else Xmax[i]
|
|
92
|
+
return [cls(x1, function), cls(x2, function)]
|
|
93
|
+
|
|
94
|
+
@classmethod
|
|
95
|
+
def crossing5(cls, individual1, individual2, p, function, Xmin, Xmax):
|
|
96
|
+
x1 = []
|
|
97
|
+
# x2 = []
|
|
98
|
+
for i in range(len(individual1.x)):
|
|
99
|
+
x1.append((individual1.x[i] + individual2.x[i]) / 2)
|
|
100
|
+
# x2.append((individual1.x[i] + individual2.x[i]) / 2)
|
|
101
|
+
# x2[i] += random.uniform(-p * x2[i], p * x2[i])
|
|
102
|
+
# x2[i] = x2[i] if x2[i] >= Xmin[i] else Xmin[i]
|
|
103
|
+
# x2[i] = x2[i] if x2[i] <= Xmax[i] else Xmax[i]
|
|
104
|
+
return [cls(x1, function)] #, cls(x2, function)]
|
|
105
|
+
|
|
106
|
+
@classmethod
|
|
107
|
+
def crossing6(cls, individual1, individual2, p, function, Xmin, Xmax):
|
|
108
|
+
x1 = []
|
|
109
|
+
k = random.random()
|
|
110
|
+
if k > 0.5:
|
|
111
|
+
x2 = []
|
|
112
|
+
for i in range(len(individual1.x)):
|
|
113
|
+
x1.append((individual1.x[i] + individual2.x[i]) / 2)
|
|
114
|
+
if k > 0.5:
|
|
115
|
+
x2.append((individual1.x[i] + individual2.x[i]) / 2)
|
|
116
|
+
x2[i] += random.uniform(-p * x2[i], p * x2[i])
|
|
117
|
+
x2[i] = x2[i] if x2[i] >= Xmin[i] else Xmin[i]
|
|
118
|
+
x2[i] = x2[i] if x2[i] <= Xmax[i] else Xmax[i]
|
|
119
|
+
if k > 0.5:
|
|
120
|
+
return [cls(x1, function), cls(x2, function)]
|
|
121
|
+
return [cls(x1, function)]
|
|
122
|
+
|
|
123
|
+
@classmethod
|
|
124
|
+
def crossing7(cls, individual1, individual2, p, function, Xmin, Xmax):
|
|
125
|
+
k = random.random()
|
|
126
|
+
if k <= 1 / 3:
|
|
127
|
+
return Individual.crossing4(individual1, individual2, p, function, Xmin, Xmax)
|
|
128
|
+
elif k <= 2 / 3:
|
|
129
|
+
return Individual.crossing8(individual1, individual2, p, function, Xmin, Xmax)
|
|
130
|
+
else:
|
|
131
|
+
return Individual.crossing6(individual1, individual2, p, function, Xmin, Xmax)
|
|
132
|
+
|
|
133
|
+
@classmethod
|
|
134
|
+
def crossing8(cls, individual1, individual2, p, function, Xmin, Xmax):
|
|
135
|
+
new_x = []
|
|
136
|
+
alpha = 0.5
|
|
137
|
+
for i in range(len(individual1.x)):
|
|
138
|
+
c_min = min(individual1.x[i], individual2.x[i])
|
|
139
|
+
c_max = max(individual1.x[i], individual2.x[i])
|
|
140
|
+
I = c_max - c_min
|
|
141
|
+
new_x.append(random.uniform(c_min - I * alpha, c_max + I * alpha))
|
|
142
|
+
new_x = np.clip(new_x, Xmin, Xmax)
|
|
143
|
+
return [cls(new_x, function)]
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
@classmethod
|
|
147
|
+
def crossing9(cls, individual1, individual2, p, function, Xmin, Xmax):
|
|
148
|
+
new_x = []
|
|
149
|
+
alpha = 0.5
|
|
150
|
+
for i in range(len(individual1.x)):
|
|
151
|
+
c_min = min(individual1.x[i], individual2.x[i])
|
|
152
|
+
c_max = max(individual1.x[i], individual2.x[i])
|
|
153
|
+
I = c_max - c_min
|
|
154
|
+
new_x.append(random.uniform(c_min - I * alpha, c_max + I * alpha))
|
|
155
|
+
new_x = np.clip(new_x, Xmin, Xmax)
|
|
156
|
+
if random.random() <= 0.5:
|
|
157
|
+
for i in range(len(individual1.x)):
|
|
158
|
+
new_x[i] += random.uniform(-p * new_x[i], p * new_x[i])
|
|
159
|
+
new_x = np.clip(new_x, Xmin, Xmax)
|
|
160
|
+
return [cls(new_x, function)]
|
|
161
|
+
|
|
162
|
+
@classmethod
|
|
163
|
+
def crossing10(cls, individual1, individual2, p, function, Xmin, Xmax, p2):
|
|
164
|
+
k = random.random()
|
|
165
|
+
if k <= 1 / 3:
|
|
166
|
+
return Individual.crossing9(individual1, individual2, p, function, Xmin, Xmax, p2)
|
|
167
|
+
else:
|
|
168
|
+
return Individual.crossing8(individual1, individual2, p, function, Xmin, Xmax)
|
|
169
|
+
|
|
170
|
+
@classmethod
|
|
171
|
+
def crossing11(cls, individual1, individual2, p, function, Xmin, Xmax):
|
|
172
|
+
new_x = []
|
|
173
|
+
alpha = p
|
|
174
|
+
for i in range(len(individual1.x)):
|
|
175
|
+
c_min = min(individual1.x[i], individual2.x[i])
|
|
176
|
+
c_max = max(individual1.x[i], individual2.x[i])
|
|
177
|
+
I = c_max - c_min
|
|
178
|
+
new_x.append(random.uniform(c_min - I * alpha, c_max + I * alpha))
|
|
179
|
+
new_x = np.clip(new_x, Xmin, Xmax)
|
|
180
|
+
return [cls(new_x, function)]
|
|
181
|
+
|
|
182
|
+
def mutation(self, Xmin, Xmax, function, pmax):
|
|
183
|
+
self.ep_n += 1
|
|
184
|
+
for i in range(len(self.x)):
|
|
185
|
+
self.x[i] += pmax * random.uniform(-self.x[i], self.x[i]) / self.ep_n
|
|
186
|
+
self.x[i] = self.x[i] if self.x[i] >= Xmin[i] else Xmin[i]
|
|
187
|
+
self.x[i] = self.x[i] if self.x[i] <= Xmax[i] else Xmax[i]
|
|
188
|
+
self.update_function(function)
|
|
189
|
+
|
|
190
|
+
|
|
191
|
+
class Country:
|
|
192
|
+
|
|
193
|
+
def __init__(self, Xmin, Xmax, N, function):
|
|
194
|
+
x_min = []
|
|
195
|
+
x_max = []
|
|
196
|
+
for i in range(len(Xmin)):
|
|
197
|
+
x_min.append(random.uniform(Xmin[i], Xmax[i]))
|
|
198
|
+
x_max.append(random.uniform(x_min[i], Xmax[i]))
|
|
199
|
+
self.population = []
|
|
200
|
+
for i in range(N):
|
|
201
|
+
x = []
|
|
202
|
+
for j in range(len(Xmin)):
|
|
203
|
+
x.append(random.uniform(x_min[j], x_max[j]))
|
|
204
|
+
self.population.append(Individual(x, function))
|
|
205
|
+
self.sort_population()
|
|
206
|
+
self.action = None
|
|
207
|
+
self.enemy = None
|
|
208
|
+
self.ally = None
|
|
209
|
+
|
|
210
|
+
@property
|
|
211
|
+
def best_function(self):
|
|
212
|
+
return self.population[0].f
|
|
213
|
+
|
|
214
|
+
@property
|
|
215
|
+
def avg_function(self):
|
|
216
|
+
return sum([individual.f for individual in self.population]) / len(self.population)
|
|
217
|
+
|
|
218
|
+
def update_population(self, function):
|
|
219
|
+
for individual in self.population:
|
|
220
|
+
individual.update_function(function)
|
|
221
|
+
|
|
222
|
+
def sort_population(self):
|
|
223
|
+
self.population.sort(key=attrgetter('f'))
|
|
224
|
+
|
|
225
|
+
def reproduction(self, n_min, n_max, p_min, p_max, f_min, f_max, ti, t_max, function, Xmin, Xmax):
|
|
226
|
+
n = ceil((n_max - n_min) * (f_max - self.avg_function) / (f_max - f_min) + n_min)
|
|
227
|
+
n = np.clip(n, n_min, n_max)
|
|
228
|
+
p = (p_max - p_min) * (1 - ti / t_max) * (self.avg_function - f_min) / (f_max - f_min) + p_min
|
|
229
|
+
p = np.clip(p, p_min, p_max)
|
|
230
|
+
# p2 = (1 - ti / t_max) * (self.avg_function - f_min) / (f_max - f_min)
|
|
231
|
+
new_individuals = []
|
|
232
|
+
|
|
233
|
+
for i in range(n):
|
|
234
|
+
if len(self.population) == 2 and self.population[0] == self.population[1]:
|
|
235
|
+
new_individuals.extend(Individual.crossing11(self.population[0], self.population[1], p, function, Xmin, Xmax))
|
|
236
|
+
continue
|
|
237
|
+
k1 = random.randint(0, len(self.population) - 1)
|
|
238
|
+
individual1 = self.population[k1]
|
|
239
|
+
k2 = k1
|
|
240
|
+
while k2 == k1:
|
|
241
|
+
k2 = random.randint(0, len(self.population) - 1)
|
|
242
|
+
individual2 = self.population[k2]
|
|
243
|
+
new_individuals.extend(Individual.crossing11(individual1, individual2, p, function, Xmin, Xmax))
|
|
244
|
+
self.population.extend(new_individuals)
|
|
245
|
+
self.sort_population()
|
|
246
|
+
|
|
247
|
+
def extinction(self, m_min, m_max, f_min, f_max):
|
|
248
|
+
m = int((m_max - m_min) * (self.avg_function - f_min) / (f_max - f_min) + m_min)
|
|
249
|
+
m = m if m <= m_max else m_max
|
|
250
|
+
m = m if m >= m_min else m_min
|
|
251
|
+
self.population = self.population[:-m]
|
|
252
|
+
|
|
253
|
+
def select_action(self, countries):
|
|
254
|
+
self.action = random.randint(0, 3)
|
|
255
|
+
if self.action == 1:
|
|
256
|
+
ally_list = [country for country in countries if country.action is None and country != self]
|
|
257
|
+
if ally_list:
|
|
258
|
+
self.ally = ally_list.pop(random.randint(0, len(ally_list) - 1))
|
|
259
|
+
self.ally.action = 1
|
|
260
|
+
self.ally.ally = self
|
|
261
|
+
else:
|
|
262
|
+
self.action = random.choice([0, 3])
|
|
263
|
+
if self.action == 2:
|
|
264
|
+
enemy_list = [country for country in countries if country.action is None and country != self]
|
|
265
|
+
if enemy_list:
|
|
266
|
+
self.enemy = enemy_list.pop(random.randint(0, len(enemy_list) - 1))
|
|
267
|
+
self.enemy.action = 2
|
|
268
|
+
self.enemy.enemy = self
|
|
269
|
+
else:
|
|
270
|
+
self.action = random.choice([0, 3])
|
|
271
|
+
|
|
272
|
+
def epedemic(self, elite, dead, function, Xmin, Xmax, p_max):
|
|
273
|
+
n_elite = ceil(elite * len(self.population))
|
|
274
|
+
n_dead = ceil(dead * len(self.population))
|
|
275
|
+
self.population = self.population[:-n_dead]
|
|
276
|
+
for individual in self.population[n_elite:]:
|
|
277
|
+
individual.mutation(Xmin, Xmax, function, p_max)
|
|
278
|
+
self.sort_population()
|
|
279
|
+
self.action = None
|
|
280
|
+
|
|
281
|
+
# def sabotage(self, n_copy):
|
|
282
|
+
# for i in range(n_copy):
|
|
283
|
+
# self.enemy.population.append(copy.copy(self.population[0]))
|
|
284
|
+
# self.action = None
|
|
285
|
+
# self.enemy = None
|
|
286
|
+
|
|
287
|
+
def motion(self, function, Xmin, Xmax):
|
|
288
|
+
x_best = self.population[0].x
|
|
289
|
+
for i in range(1, len(self.population)):
|
|
290
|
+
for j in range(len(x_best)):
|
|
291
|
+
self.population[i].x[j] += random.uniform(0, 2) * (x_best[j] - self.population[i].x[j])
|
|
292
|
+
self.population[i].x[j] = self.population[i].x[j] if self.population[i].x[j] >= Xmin[j] else Xmin[j]
|
|
293
|
+
self.population[i].x[j] = self.population[i].x[j] if self.population[i].x[j] <= Xmax[j] else Xmax[j]
|
|
294
|
+
self.update_population(function)
|
|
295
|
+
self.sort_population()
|
|
296
|
+
self.action = None
|
|
297
|
+
|
|
298
|
+
@staticmethod
|
|
299
|
+
def trade(country1, country2, k):
|
|
300
|
+
trade_list1 = []
|
|
301
|
+
trade_list2 = []
|
|
302
|
+
if len(country1.population) <= k or len(country2.population) <= k:
|
|
303
|
+
k = min(len(country1.population), len(country2.population)) // 2
|
|
304
|
+
for i in range(k):
|
|
305
|
+
trade_list1.append(country1.population.pop(random.randint(0, len(country1.population) - 1)))
|
|
306
|
+
trade_list2.append(country2.population.pop(random.randint(0, len(country2.population) - 1)))
|
|
307
|
+
country1.population.extend(trade_list2)
|
|
308
|
+
country2.population.extend(trade_list1)
|
|
309
|
+
country1.sort_population()
|
|
310
|
+
country2.sort_population()
|
|
311
|
+
country1.action = None
|
|
312
|
+
country2.action = None
|
|
313
|
+
country1.ally = None
|
|
314
|
+
country2.ally = None
|
|
315
|
+
|
|
316
|
+
@staticmethod
|
|
317
|
+
def war(country1, country2, l):
|
|
318
|
+
war_list1 = []
|
|
319
|
+
war_list2 = []
|
|
320
|
+
if len(country1.population) <= l or len(country2.population) <= l:
|
|
321
|
+
l = min(len(country1.population), len(country2.population))
|
|
322
|
+
for i in range(l):
|
|
323
|
+
war_list1.append(country1.population.pop(random.randint(0, len(country1.population) - 1)))
|
|
324
|
+
war_list2.append(country2.population.pop(random.randint(0, len(country2.population) - 1)))
|
|
325
|
+
wins1 = 0
|
|
326
|
+
wins2 = 0
|
|
327
|
+
for i in range(l-1, -1, -1):
|
|
328
|
+
if war_list1[i].f < war_list2[i].f:
|
|
329
|
+
war_list2.pop(i)
|
|
330
|
+
wins1 += 1
|
|
331
|
+
elif war_list1[i].f > war_list2[i].f:
|
|
332
|
+
war_list1.pop(i)
|
|
333
|
+
wins2 += 1
|
|
334
|
+
if wins1 > wins2:
|
|
335
|
+
country1.population.extend(war_list1)
|
|
336
|
+
country1.population.extend(war_list2)
|
|
337
|
+
elif wins2 > wins1:
|
|
338
|
+
country2.population.extend(war_list1)
|
|
339
|
+
country2.population.extend(war_list2)
|
|
340
|
+
else:
|
|
341
|
+
country1.population.extend(war_list1)
|
|
342
|
+
country2.population.extend(war_list2)
|
|
343
|
+
country1.sort_population()
|
|
344
|
+
country2.sort_population()
|
|
345
|
+
country1.action = None
|
|
346
|
+
country2.action = None
|
|
347
|
+
country1.enemy = None
|
|
348
|
+
country2.enemy = None
|
|
349
|
+
|
|
350
|
+
|
|
351
|
+
class CountriesAlgorithm:
|
|
352
|
+
|
|
353
|
+
def __init__(self, f, Xmin, Xmax, M, N, n, p, m, k, l, ep, tmax, printing=False, memory_list=None):
|
|
354
|
+
self.f = f
|
|
355
|
+
self.Xmin = Xmin
|
|
356
|
+
self.Xmax = Xmax
|
|
357
|
+
self.n = n
|
|
358
|
+
self.p = p
|
|
359
|
+
self.m = m
|
|
360
|
+
self.k = k
|
|
361
|
+
self.l = l
|
|
362
|
+
self.ep = ep
|
|
363
|
+
self.tmax = tmax
|
|
364
|
+
self.countries = []
|
|
365
|
+
self.printing = printing
|
|
366
|
+
self.memory_list = memory_list
|
|
367
|
+
for i in range(M):
|
|
368
|
+
self.countries.append(Country(self.Xmin, self.Xmax, N, self.f))
|
|
369
|
+
|
|
370
|
+
def start(self):
|
|
371
|
+
ti = 0
|
|
372
|
+
motion = 0
|
|
373
|
+
trade = 0
|
|
374
|
+
war = 0
|
|
375
|
+
epedemic = 0
|
|
376
|
+
if self.memory_list is not None:
|
|
377
|
+
self.memory_list[0] = False
|
|
378
|
+
while ti <= self.tmax:
|
|
379
|
+
ti += 1
|
|
380
|
+
for country in self.countries:
|
|
381
|
+
if country.action is None:
|
|
382
|
+
country.select_action(self.countries)
|
|
383
|
+
for country in self.countries:
|
|
384
|
+
if country.action == 0:
|
|
385
|
+
motion += 1
|
|
386
|
+
country.motion(
|
|
387
|
+
function=self.f,
|
|
388
|
+
Xmin=self.Xmin,
|
|
389
|
+
Xmax=self.Xmax
|
|
390
|
+
)
|
|
391
|
+
elif country.action == 1:
|
|
392
|
+
trade += 1
|
|
393
|
+
Country.trade(
|
|
394
|
+
country1=country,
|
|
395
|
+
country2=country.ally,
|
|
396
|
+
k=self.k
|
|
397
|
+
)
|
|
398
|
+
elif country.action == 2:
|
|
399
|
+
war += 1
|
|
400
|
+
Country.war(
|
|
401
|
+
country1=country,
|
|
402
|
+
country2=country.enemy,
|
|
403
|
+
l=self.l
|
|
404
|
+
)
|
|
405
|
+
elif country.action == 3:
|
|
406
|
+
epedemic += 1
|
|
407
|
+
country.epedemic(
|
|
408
|
+
elite=self.ep[0],
|
|
409
|
+
dead=self.ep[1],
|
|
410
|
+
Xmin=self.Xmin,
|
|
411
|
+
Xmax=self.Xmax,
|
|
412
|
+
function=self.f,
|
|
413
|
+
p_max=self.p[1],
|
|
414
|
+
)
|
|
415
|
+
self.countries = [country for country in self.countries if country.population]
|
|
416
|
+
self.countries = sorted(self.countries, key=attrgetter('avg_function'))
|
|
417
|
+
if not self.countries:
|
|
418
|
+
break
|
|
419
|
+
f_min = self.countries[0].avg_function
|
|
420
|
+
f_max = self.countries[-1].avg_function
|
|
421
|
+
if f_min == f_max:
|
|
422
|
+
self.countries = sorted(self.countries, key=attrgetter('best_function'))
|
|
423
|
+
result = self.countries[0].population[0]
|
|
424
|
+
break
|
|
425
|
+
e_individuals = []
|
|
426
|
+
for country in self.countries:
|
|
427
|
+
if len(country.population) == 1:
|
|
428
|
+
e_individuals.append(country.population[0])
|
|
429
|
+
continue
|
|
430
|
+
if country.population:
|
|
431
|
+
country.reproduction(
|
|
432
|
+
n_min=self.n[0],
|
|
433
|
+
n_max=self.n[1],
|
|
434
|
+
p_min=self.p[0],
|
|
435
|
+
p_max=self.p[1],
|
|
436
|
+
f_min=f_min,
|
|
437
|
+
f_max=f_max,
|
|
438
|
+
ti=ti,
|
|
439
|
+
t_max=self.tmax,
|
|
440
|
+
function=self.f,
|
|
441
|
+
Xmin=self.Xmin,
|
|
442
|
+
Xmax=self.Xmax
|
|
443
|
+
)
|
|
444
|
+
country.extinction(
|
|
445
|
+
m_min=self.m[0],
|
|
446
|
+
m_max=self.m[1],
|
|
447
|
+
f_min=f_min,
|
|
448
|
+
f_max=f_max
|
|
449
|
+
)
|
|
450
|
+
self.countries = [country for country in self.countries if country.population]
|
|
451
|
+
for individual in e_individuals:
|
|
452
|
+
random_country = self.countries[random.randint(0, len(self.countries) - 1)]
|
|
453
|
+
random_country.population.append(individual)
|
|
454
|
+
random_country.sort_population()
|
|
455
|
+
self.countries = sorted(self.countries, key=attrgetter('best_function'))
|
|
456
|
+
if not self.countries:
|
|
457
|
+
break
|
|
458
|
+
result = self.countries[0].population[0]
|
|
459
|
+
|
|
460
|
+
if self.printing:
|
|
461
|
+
print(f"{ti}) Лучшее решение: {result.x} - {result.f}, Стран осталось: {len(self.countries)}, Движение/Обмен/Войны/Эпидемии: {motion}/{trade}/{war}/{epedemic}")
|
|
462
|
+
print(f"Общее количество особей: {sum([len(country.population) for country in self.countries])}")
|
|
463
|
+
|
|
464
|
+
if self.memory_list is not None:
|
|
465
|
+
self.memory_list[0] = ti
|
|
466
|
+
for i in range(len(result.x)):
|
|
467
|
+
self.memory_list[i + 1] = float(result.x[i])
|
|
468
|
+
self.memory_list[-1] = float(result.f)
|
|
469
|
+
return (result.x, result.f, False, ti)
|
|
470
|
+
|