pypharm 1.6.1__py3-none-any.whl → 1.6.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- PyPharm/__init__.py +4 -3
- PyPharm/algorithms/country_optimization.py +469 -469
- PyPharm/algorithms/country_optimization_v2.py +330 -330
- PyPharm/algorithms/country_optimization_v3.py +428 -428
- PyPharm/algorithms/genetic_optimization.py +130 -130
- PyPharm/algorithms/gold_digger_optimization.py +126 -126
- PyPharm/constants.py +80 -80
- PyPharm/country_optimization.py +470 -0
- PyPharm/country_optimization_v2.py +330 -0
- PyPharm/country_optimization_v3.py +426 -0
- PyPharm/genetic_optimization.py +130 -0
- PyPharm/gold_digger_optimization.py +127 -0
- PyPharm/models/__init__.py +3 -3
- PyPharm/models/compartment_models.py +985 -985
- PyPharm/models/pbpk.py +683 -683
- PyPharm/models.py +638 -0
- {pypharm-1.6.1.dist-info → pypharm-1.6.2.dist-info}/METADATA +11 -7
- pypharm-1.6.2.dist-info/RECORD +21 -0
- {pypharm-1.6.1.dist-info → pypharm-1.6.2.dist-info}/WHEEL +1 -1
- pypharm-1.6.1.dist-info/RECORD +0 -15
- {pypharm-1.6.1.dist-info → pypharm-1.6.2.dist-info}/top_level.txt +0 -0
|
@@ -1,330 +1,330 @@
|
|
|
1
|
-
import random
|
|
2
|
-
import numpy as np
|
|
3
|
-
from math import ceil
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
def random_matrix(x, x_min, x_max):
|
|
7
|
-
return x * np.random.uniform(x_min, x_max)
|
|
8
|
-
|
|
9
|
-
def check_population(country):
|
|
10
|
-
return bool(country.population.size)
|
|
11
|
-
|
|
12
|
-
def get_avg(country):
|
|
13
|
-
return country.avg_function
|
|
14
|
-
|
|
15
|
-
def get_best(country):
|
|
16
|
-
return country.best_function
|
|
17
|
-
|
|
18
|
-
vector_check_population = np.vectorize(check_population, signature='()->()')
|
|
19
|
-
vector_min = np.vectorize(min, signature='(),()->()')
|
|
20
|
-
vector_max = np.vectorize(max, signature='(),()->()')
|
|
21
|
-
vector_avg = np.vectorize(get_avg, signature='()->()')
|
|
22
|
-
vector_best = np.vectorize(get_best, signature='()->()')
|
|
23
|
-
|
|
24
|
-
class Individual:
|
|
25
|
-
|
|
26
|
-
def __init__(self, x, function):
|
|
27
|
-
self.x = x
|
|
28
|
-
self.f = function(self.x)
|
|
29
|
-
self.ep_n = 0
|
|
30
|
-
|
|
31
|
-
def __lt__(self, other):
|
|
32
|
-
return self.f < other.f
|
|
33
|
-
|
|
34
|
-
def __le__(self, other):
|
|
35
|
-
return self.f <= other.f
|
|
36
|
-
|
|
37
|
-
def __gt__(self, other):
|
|
38
|
-
return self.f > other.f
|
|
39
|
-
|
|
40
|
-
def __ge__(self, other):
|
|
41
|
-
return self.f >= other.f
|
|
42
|
-
|
|
43
|
-
def __add__(self, other):
|
|
44
|
-
return self.f + other.f
|
|
45
|
-
|
|
46
|
-
def __radd__(self, other):
|
|
47
|
-
return self.f + other
|
|
48
|
-
|
|
49
|
-
def __truediv__(self, other):
|
|
50
|
-
return self.f / other
|
|
51
|
-
|
|
52
|
-
def update_function(self, function):
|
|
53
|
-
self.f = function(self.x)
|
|
54
|
-
|
|
55
|
-
@classmethod
|
|
56
|
-
def crossing(cls, individual1, individual2, p, function, Xmin, Xmax):
|
|
57
|
-
alpha = p
|
|
58
|
-
c_min = vector_min(individual1.x, individual2.x)
|
|
59
|
-
c_max = vector_max(individual1.x, individual2.x)
|
|
60
|
-
I = c_max - c_min
|
|
61
|
-
new_x = np.random.uniform(c_min - I * alpha, c_max + I * alpha)
|
|
62
|
-
new_x = np.clip(new_x, Xmin, Xmax)
|
|
63
|
-
return [cls(new_x, function)]
|
|
64
|
-
|
|
65
|
-
def mutation(self, Xmin, Xmax, function, pmax):
|
|
66
|
-
self.ep_n += 1
|
|
67
|
-
self.x = self.x + pmax * np.random.uniform(-self.x, self.x) / self.ep_n
|
|
68
|
-
np.clip(self.x, Xmin, Xmax)
|
|
69
|
-
self.update_function(function)
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
class Country:
|
|
73
|
-
|
|
74
|
-
def __init__(self, Xmin, Xmax, N, function):
|
|
75
|
-
x_min = np.random.uniform(Xmin, Xmax)
|
|
76
|
-
x_max = np.random.uniform(x_min, Xmax)
|
|
77
|
-
self.population = []
|
|
78
|
-
ind_init = np.vectorize(lambda x: Individual(x, function), signature='(n)->()')
|
|
79
|
-
rand_mat = np.vectorize(lambda x: random_matrix(x, x_min, x_max), signature='()->(n)')
|
|
80
|
-
v = rand_mat(np.ones(N))
|
|
81
|
-
self.population = ind_init(v)
|
|
82
|
-
self.sort_population()
|
|
83
|
-
self.action = None
|
|
84
|
-
self.enemy = None
|
|
85
|
-
self.ally = None
|
|
86
|
-
|
|
87
|
-
@property
|
|
88
|
-
def best_function(self):
|
|
89
|
-
return self.population[0].f
|
|
90
|
-
|
|
91
|
-
@property
|
|
92
|
-
def avg_function(self):
|
|
93
|
-
return np.average(self.population)
|
|
94
|
-
|
|
95
|
-
def update_population(self, function):
|
|
96
|
-
for individual in self.population:
|
|
97
|
-
individual.update_function(function)
|
|
98
|
-
|
|
99
|
-
def sort_population(self):
|
|
100
|
-
self.population = np.sort(self.population)
|
|
101
|
-
|
|
102
|
-
def reproduction(self, n_min, n_max, p_min, p_max, f_min, f_max, ti, t_max, function, Xmin, Xmax):
|
|
103
|
-
n = ceil((n_max - n_min) * (f_max - self.avg_function) / (f_max - f_min) + n_min)
|
|
104
|
-
n = np.clip(n, n_min, n_max)
|
|
105
|
-
p = (p_max - p_min) * (1 - ti / t_max) * (self.avg_function - f_min) / (f_max - f_min) + p_min
|
|
106
|
-
p = np.clip(p, p_min, p_max)
|
|
107
|
-
new_individuals = np.array([])
|
|
108
|
-
for i in range(n):
|
|
109
|
-
parents = np.random.choice(self.population, 2, replace=False)
|
|
110
|
-
new_individuals = np.concatenate([new_individuals, Individual.crossing(parents[0], parents[1], p, function, Xmin, Xmax)])
|
|
111
|
-
self.population = np.concatenate([self.population, new_individuals])
|
|
112
|
-
self.sort_population()
|
|
113
|
-
|
|
114
|
-
def extinction(self, m_min, m_max, f_min, f_max):
|
|
115
|
-
m = int((m_max - m_min) * (self.avg_function - f_min) / (f_max - f_min) + m_min)
|
|
116
|
-
m = m if m <= m_max else m_max
|
|
117
|
-
m = m if m >= m_min else m_min
|
|
118
|
-
self.population = self.population[:-m]
|
|
119
|
-
|
|
120
|
-
def select_action(self, countries):
|
|
121
|
-
self.action = random.randint(0, 3)
|
|
122
|
-
if self.action == 1:
|
|
123
|
-
ally_list = [country for country in countries if country.action is None and country != self]
|
|
124
|
-
if ally_list:
|
|
125
|
-
self.ally = ally_list.pop(random.randint(0, len(ally_list) - 1))
|
|
126
|
-
self.ally.action = 1
|
|
127
|
-
self.ally.ally = self
|
|
128
|
-
else:
|
|
129
|
-
self.action = random.choice([0, 3])
|
|
130
|
-
if self.action == 2:
|
|
131
|
-
enemy_list = [country for country in countries if country.action is None and country != self]
|
|
132
|
-
if enemy_list:
|
|
133
|
-
self.enemy = enemy_list.pop(random.randint(0, len(enemy_list) - 1))
|
|
134
|
-
self.enemy.action = 2
|
|
135
|
-
self.enemy.enemy = self
|
|
136
|
-
else:
|
|
137
|
-
self.action = random.choice([0, 3])
|
|
138
|
-
|
|
139
|
-
def epedemic(self, elite, dead, function, Xmin, Xmax, p_max):
|
|
140
|
-
n_elite = ceil(elite * len(self.population))
|
|
141
|
-
n_dead = ceil(dead * len(self.population))
|
|
142
|
-
self.population = self.population[:-n_dead]
|
|
143
|
-
for individual in self.population[n_elite:]:
|
|
144
|
-
individual.mutation(Xmin, Xmax, function, p_max)
|
|
145
|
-
self.sort_population()
|
|
146
|
-
self.action = None
|
|
147
|
-
|
|
148
|
-
# def sabotage(self, n_copy):
|
|
149
|
-
# for i in range(n_copy):
|
|
150
|
-
# self.enemy.population.append(copy.copy(self.population[0]))
|
|
151
|
-
# self.action = None
|
|
152
|
-
# self.enemy = None
|
|
153
|
-
|
|
154
|
-
def motion(self, function, Xmin, Xmax):
|
|
155
|
-
x_best = self.population[0].x
|
|
156
|
-
for i in range(1, len(self.population)):
|
|
157
|
-
self.population[i].x = self.population[i].x + np.random.uniform(0, 2, self.population[i].x.size) * (x_best - self.population[i].x)
|
|
158
|
-
np.clip(self.population[i].x, Xmin, Xmax)
|
|
159
|
-
self.update_population(function)
|
|
160
|
-
self.sort_population()
|
|
161
|
-
self.action = None
|
|
162
|
-
|
|
163
|
-
@staticmethod
|
|
164
|
-
def trade(country1, country2, k):
|
|
165
|
-
if country1.population.size <= k or country2.population.size <= k:
|
|
166
|
-
k = min(country1.population.size, country2.population.size) // 2
|
|
167
|
-
indexes1 = np.random.choice(country1.population.size, k, replace=False)
|
|
168
|
-
indexes2 = np.random.choice(country2.population.size, k, replace=False)
|
|
169
|
-
country2.population = np.concatenate([country2.population, country1.population[indexes1]])
|
|
170
|
-
country1.population = np.concatenate([country1.population, country2.population[indexes2]])
|
|
171
|
-
country1.population = np.delete(country1.population, indexes1)
|
|
172
|
-
country2.population = np.delete(country2.population, indexes2)
|
|
173
|
-
country1.sort_population()
|
|
174
|
-
country2.sort_population()
|
|
175
|
-
country1.action = None
|
|
176
|
-
country2.action = None
|
|
177
|
-
country1.ally = None
|
|
178
|
-
country2.ally = None
|
|
179
|
-
|
|
180
|
-
@staticmethod
|
|
181
|
-
def war(country1, country2, l):
|
|
182
|
-
if country1.population.size <= l or country2.population.size <= l:
|
|
183
|
-
l = min(country1.population.size, country2.population.size)
|
|
184
|
-
indexes1 = np.random.choice(country1.population.size, l, replace=False)
|
|
185
|
-
indexes2 = np.random.choice(country2.population.size, l, replace=False)
|
|
186
|
-
war_list1 = country1.population[indexes1]
|
|
187
|
-
war_list2 = country2.population[indexes2]
|
|
188
|
-
country1.population = np.delete(country1.population, indexes1)
|
|
189
|
-
country2.population = np.delete(country2.population, indexes2)
|
|
190
|
-
wins1 = np.where(war_list1 > war_list2)
|
|
191
|
-
wins2 = np.where(war_list2 > war_list2)
|
|
192
|
-
if wins1[0].size > wins2[0].size:
|
|
193
|
-
np.concatenate([country1.population, war_list1])
|
|
194
|
-
np.concatenate([country1.population, war_list2])
|
|
195
|
-
elif wins2[0].size > wins1[0].size:
|
|
196
|
-
np.concatenate([country2.population, war_list1])
|
|
197
|
-
np.concatenate([country2.population, war_list2])
|
|
198
|
-
else:
|
|
199
|
-
np.concatenate([country1.population, war_list1])
|
|
200
|
-
np.concatenate([country2.population, war_list2])
|
|
201
|
-
country1.sort_population()
|
|
202
|
-
country2.sort_population()
|
|
203
|
-
country1.action = None
|
|
204
|
-
country2.action = None
|
|
205
|
-
country1.enemy = None
|
|
206
|
-
country2.enemy = None
|
|
207
|
-
|
|
208
|
-
|
|
209
|
-
class CountriesAlgorithm_v2:
|
|
210
|
-
|
|
211
|
-
def __init__(self, f, Xmin, Xmax, M, N, n, p, m, k, l, ep, tmax, printing=False):
|
|
212
|
-
self.f = f
|
|
213
|
-
self.Xmin = Xmin
|
|
214
|
-
self.Xmax = Xmax
|
|
215
|
-
self.n = n
|
|
216
|
-
self.p = p
|
|
217
|
-
self.m = m
|
|
218
|
-
self.k = k
|
|
219
|
-
self.l = l
|
|
220
|
-
self.ep = ep
|
|
221
|
-
self.tmax = tmax
|
|
222
|
-
self.printing = printing
|
|
223
|
-
country_init = np.vectorize(lambda x: Country(self.Xmin, self.Xmax, N, self.f))
|
|
224
|
-
self.countries = country_init(np.ones(M))
|
|
225
|
-
|
|
226
|
-
def sort(self, method):
|
|
227
|
-
if method == 'avg_function':
|
|
228
|
-
avg_arr = vector_avg(self.countries)
|
|
229
|
-
indexes = np.argsort(avg_arr)
|
|
230
|
-
self.countries = self.countries[indexes]
|
|
231
|
-
else:
|
|
232
|
-
avg_arr = vector_best(self.countries)
|
|
233
|
-
indexes = np.argsort(avg_arr)
|
|
234
|
-
self.countries = self.countries[indexes]
|
|
235
|
-
|
|
236
|
-
def start(self):
|
|
237
|
-
ti = 0
|
|
238
|
-
motion = 0
|
|
239
|
-
trade = 0
|
|
240
|
-
war = 0
|
|
241
|
-
epedemic = 0
|
|
242
|
-
while ti <= self.tmax:
|
|
243
|
-
ti += 1
|
|
244
|
-
for country in self.countries:
|
|
245
|
-
if country.action is None:
|
|
246
|
-
country.select_action(self.countries)
|
|
247
|
-
for country in self.countries:
|
|
248
|
-
if country.action == 0:
|
|
249
|
-
motion += 1
|
|
250
|
-
country.motion(
|
|
251
|
-
function=self.f,
|
|
252
|
-
Xmin=self.Xmin,
|
|
253
|
-
Xmax=self.Xmax
|
|
254
|
-
)
|
|
255
|
-
elif country.action == 1:
|
|
256
|
-
trade += 1
|
|
257
|
-
Country.trade(
|
|
258
|
-
country1=country,
|
|
259
|
-
country2=country.ally,
|
|
260
|
-
k=self.k
|
|
261
|
-
)
|
|
262
|
-
elif country.action == 2:
|
|
263
|
-
war += 1
|
|
264
|
-
Country.war(
|
|
265
|
-
country1=country,
|
|
266
|
-
country2=country.enemy,
|
|
267
|
-
l=self.l
|
|
268
|
-
)
|
|
269
|
-
elif country.action == 3:
|
|
270
|
-
epedemic += 1
|
|
271
|
-
country.epedemic(
|
|
272
|
-
elite=self.ep[0],
|
|
273
|
-
dead=self.ep[1],
|
|
274
|
-
Xmin=self.Xmin,
|
|
275
|
-
Xmax=self.Xmax,
|
|
276
|
-
function=self.f,
|
|
277
|
-
p_max=self.p[1],
|
|
278
|
-
)
|
|
279
|
-
indexes = np.where(vector_check_population(self.countries) == True)
|
|
280
|
-
self.countries = self.countries[indexes]
|
|
281
|
-
self.sort('avg_function')
|
|
282
|
-
if not self.countries.size:
|
|
283
|
-
break
|
|
284
|
-
f_min = self.countries[0].avg_function
|
|
285
|
-
f_max = self.countries[-1].avg_function
|
|
286
|
-
if f_min == f_max:
|
|
287
|
-
self.sort('best_function')
|
|
288
|
-
result = self.countries[0].population[0]
|
|
289
|
-
break
|
|
290
|
-
e_individuals = []
|
|
291
|
-
for country in self.countries:
|
|
292
|
-
if country.population.size == 1:
|
|
293
|
-
e_individuals.append(country.population[0])
|
|
294
|
-
continue
|
|
295
|
-
if country.population.size:
|
|
296
|
-
country.reproduction(
|
|
297
|
-
n_min=self.n[0],
|
|
298
|
-
n_max=self.n[1],
|
|
299
|
-
p_min=self.p[0],
|
|
300
|
-
p_max=self.p[1],
|
|
301
|
-
f_min=f_min,
|
|
302
|
-
f_max=f_max,
|
|
303
|
-
ti=ti,
|
|
304
|
-
t_max=self.tmax,
|
|
305
|
-
function=self.f,
|
|
306
|
-
Xmin=self.Xmin,
|
|
307
|
-
Xmax=self.Xmax
|
|
308
|
-
)
|
|
309
|
-
country.extinction(
|
|
310
|
-
m_min=self.m[0],
|
|
311
|
-
m_max=self.m[1],
|
|
312
|
-
f_min=f_min,
|
|
313
|
-
f_max=f_max
|
|
314
|
-
)
|
|
315
|
-
indexes = np.where(vector_check_population(self.countries) == True)
|
|
316
|
-
self.countries = self.countries[indexes]
|
|
317
|
-
for individual in e_individuals:
|
|
318
|
-
random_country = self.countries[random.randint(0, len(self.countries) - 1)]
|
|
319
|
-
random_country.population = np.append(random_country.population, individual)
|
|
320
|
-
random_country.sort_population()
|
|
321
|
-
self.sort('best_function')
|
|
322
|
-
if not self.countries.size:
|
|
323
|
-
break
|
|
324
|
-
result = self.countries[0].population[0]
|
|
325
|
-
|
|
326
|
-
if self.printing:
|
|
327
|
-
print(f"{ti}) Лучшее решение: {result.x} - {result.f}, Стран осталось: {len(self.countries)}, Движение/Обмен/Войны/Эпидемии: {motion}/{trade}/{war}/{epedemic}")
|
|
328
|
-
print(f"Общее количество особей: {sum([len(country.population) for country in self.countries])}")
|
|
329
|
-
return (result.x, result.f, False, ti)
|
|
330
|
-
|
|
1
|
+
import random
|
|
2
|
+
import numpy as np
|
|
3
|
+
from math import ceil
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
def random_matrix(x, x_min, x_max):
|
|
7
|
+
return x * np.random.uniform(x_min, x_max)
|
|
8
|
+
|
|
9
|
+
def check_population(country):
|
|
10
|
+
return bool(country.population.size)
|
|
11
|
+
|
|
12
|
+
def get_avg(country):
|
|
13
|
+
return country.avg_function
|
|
14
|
+
|
|
15
|
+
def get_best(country):
|
|
16
|
+
return country.best_function
|
|
17
|
+
|
|
18
|
+
vector_check_population = np.vectorize(check_population, signature='()->()')
|
|
19
|
+
vector_min = np.vectorize(min, signature='(),()->()')
|
|
20
|
+
vector_max = np.vectorize(max, signature='(),()->()')
|
|
21
|
+
vector_avg = np.vectorize(get_avg, signature='()->()')
|
|
22
|
+
vector_best = np.vectorize(get_best, signature='()->()')
|
|
23
|
+
|
|
24
|
+
class Individual:
|
|
25
|
+
|
|
26
|
+
def __init__(self, x, function):
|
|
27
|
+
self.x = x
|
|
28
|
+
self.f = function(self.x)
|
|
29
|
+
self.ep_n = 0
|
|
30
|
+
|
|
31
|
+
def __lt__(self, other):
|
|
32
|
+
return self.f < other.f
|
|
33
|
+
|
|
34
|
+
def __le__(self, other):
|
|
35
|
+
return self.f <= other.f
|
|
36
|
+
|
|
37
|
+
def __gt__(self, other):
|
|
38
|
+
return self.f > other.f
|
|
39
|
+
|
|
40
|
+
def __ge__(self, other):
|
|
41
|
+
return self.f >= other.f
|
|
42
|
+
|
|
43
|
+
def __add__(self, other):
|
|
44
|
+
return self.f + other.f
|
|
45
|
+
|
|
46
|
+
def __radd__(self, other):
|
|
47
|
+
return self.f + other
|
|
48
|
+
|
|
49
|
+
def __truediv__(self, other):
|
|
50
|
+
return self.f / other
|
|
51
|
+
|
|
52
|
+
def update_function(self, function):
|
|
53
|
+
self.f = function(self.x)
|
|
54
|
+
|
|
55
|
+
@classmethod
|
|
56
|
+
def crossing(cls, individual1, individual2, p, function, Xmin, Xmax):
|
|
57
|
+
alpha = p
|
|
58
|
+
c_min = vector_min(individual1.x, individual2.x)
|
|
59
|
+
c_max = vector_max(individual1.x, individual2.x)
|
|
60
|
+
I = c_max - c_min
|
|
61
|
+
new_x = np.random.uniform(c_min - I * alpha, c_max + I * alpha)
|
|
62
|
+
new_x = np.clip(new_x, Xmin, Xmax)
|
|
63
|
+
return [cls(new_x, function)]
|
|
64
|
+
|
|
65
|
+
def mutation(self, Xmin, Xmax, function, pmax):
|
|
66
|
+
self.ep_n += 1
|
|
67
|
+
self.x = self.x + pmax * np.random.uniform(-self.x, self.x) / self.ep_n
|
|
68
|
+
np.clip(self.x, Xmin, Xmax)
|
|
69
|
+
self.update_function(function)
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
class Country:
|
|
73
|
+
|
|
74
|
+
def __init__(self, Xmin, Xmax, N, function):
|
|
75
|
+
x_min = np.random.uniform(Xmin, Xmax)
|
|
76
|
+
x_max = np.random.uniform(x_min, Xmax)
|
|
77
|
+
self.population = []
|
|
78
|
+
ind_init = np.vectorize(lambda x: Individual(x, function), signature='(n)->()')
|
|
79
|
+
rand_mat = np.vectorize(lambda x: random_matrix(x, x_min, x_max), signature='()->(n)')
|
|
80
|
+
v = rand_mat(np.ones(N))
|
|
81
|
+
self.population = ind_init(v)
|
|
82
|
+
self.sort_population()
|
|
83
|
+
self.action = None
|
|
84
|
+
self.enemy = None
|
|
85
|
+
self.ally = None
|
|
86
|
+
|
|
87
|
+
@property
|
|
88
|
+
def best_function(self):
|
|
89
|
+
return self.population[0].f
|
|
90
|
+
|
|
91
|
+
@property
|
|
92
|
+
def avg_function(self):
|
|
93
|
+
return np.average(self.population)
|
|
94
|
+
|
|
95
|
+
def update_population(self, function):
|
|
96
|
+
for individual in self.population:
|
|
97
|
+
individual.update_function(function)
|
|
98
|
+
|
|
99
|
+
def sort_population(self):
|
|
100
|
+
self.population = np.sort(self.population)
|
|
101
|
+
|
|
102
|
+
def reproduction(self, n_min, n_max, p_min, p_max, f_min, f_max, ti, t_max, function, Xmin, Xmax):
|
|
103
|
+
n = ceil((n_max - n_min) * (f_max - self.avg_function) / (f_max - f_min) + n_min)
|
|
104
|
+
n = np.clip(n, n_min, n_max)
|
|
105
|
+
p = (p_max - p_min) * (1 - ti / t_max) * (self.avg_function - f_min) / (f_max - f_min) + p_min
|
|
106
|
+
p = np.clip(p, p_min, p_max)
|
|
107
|
+
new_individuals = np.array([])
|
|
108
|
+
for i in range(n):
|
|
109
|
+
parents = np.random.choice(self.population, 2, replace=False)
|
|
110
|
+
new_individuals = np.concatenate([new_individuals, Individual.crossing(parents[0], parents[1], p, function, Xmin, Xmax)])
|
|
111
|
+
self.population = np.concatenate([self.population, new_individuals])
|
|
112
|
+
self.sort_population()
|
|
113
|
+
|
|
114
|
+
def extinction(self, m_min, m_max, f_min, f_max):
|
|
115
|
+
m = int((m_max - m_min) * (self.avg_function - f_min) / (f_max - f_min) + m_min)
|
|
116
|
+
m = m if m <= m_max else m_max
|
|
117
|
+
m = m if m >= m_min else m_min
|
|
118
|
+
self.population = self.population[:-m]
|
|
119
|
+
|
|
120
|
+
def select_action(self, countries):
|
|
121
|
+
self.action = random.randint(0, 3)
|
|
122
|
+
if self.action == 1:
|
|
123
|
+
ally_list = [country for country in countries if country.action is None and country != self]
|
|
124
|
+
if ally_list:
|
|
125
|
+
self.ally = ally_list.pop(random.randint(0, len(ally_list) - 1))
|
|
126
|
+
self.ally.action = 1
|
|
127
|
+
self.ally.ally = self
|
|
128
|
+
else:
|
|
129
|
+
self.action = random.choice([0, 3])
|
|
130
|
+
if self.action == 2:
|
|
131
|
+
enemy_list = [country for country in countries if country.action is None and country != self]
|
|
132
|
+
if enemy_list:
|
|
133
|
+
self.enemy = enemy_list.pop(random.randint(0, len(enemy_list) - 1))
|
|
134
|
+
self.enemy.action = 2
|
|
135
|
+
self.enemy.enemy = self
|
|
136
|
+
else:
|
|
137
|
+
self.action = random.choice([0, 3])
|
|
138
|
+
|
|
139
|
+
def epedemic(self, elite, dead, function, Xmin, Xmax, p_max):
|
|
140
|
+
n_elite = ceil(elite * len(self.population))
|
|
141
|
+
n_dead = ceil(dead * len(self.population))
|
|
142
|
+
self.population = self.population[:-n_dead]
|
|
143
|
+
for individual in self.population[n_elite:]:
|
|
144
|
+
individual.mutation(Xmin, Xmax, function, p_max)
|
|
145
|
+
self.sort_population()
|
|
146
|
+
self.action = None
|
|
147
|
+
|
|
148
|
+
# def sabotage(self, n_copy):
|
|
149
|
+
# for i in range(n_copy):
|
|
150
|
+
# self.enemy.population.append(copy.copy(self.population[0]))
|
|
151
|
+
# self.action = None
|
|
152
|
+
# self.enemy = None
|
|
153
|
+
|
|
154
|
+
def motion(self, function, Xmin, Xmax):
|
|
155
|
+
x_best = self.population[0].x
|
|
156
|
+
for i in range(1, len(self.population)):
|
|
157
|
+
self.population[i].x = self.population[i].x + np.random.uniform(0, 2, self.population[i].x.size) * (x_best - self.population[i].x)
|
|
158
|
+
np.clip(self.population[i].x, Xmin, Xmax)
|
|
159
|
+
self.update_population(function)
|
|
160
|
+
self.sort_population()
|
|
161
|
+
self.action = None
|
|
162
|
+
|
|
163
|
+
@staticmethod
|
|
164
|
+
def trade(country1, country2, k):
|
|
165
|
+
if country1.population.size <= k or country2.population.size <= k:
|
|
166
|
+
k = min(country1.population.size, country2.population.size) // 2
|
|
167
|
+
indexes1 = np.random.choice(country1.population.size, k, replace=False)
|
|
168
|
+
indexes2 = np.random.choice(country2.population.size, k, replace=False)
|
|
169
|
+
country2.population = np.concatenate([country2.population, country1.population[indexes1]])
|
|
170
|
+
country1.population = np.concatenate([country1.population, country2.population[indexes2]])
|
|
171
|
+
country1.population = np.delete(country1.population, indexes1)
|
|
172
|
+
country2.population = np.delete(country2.population, indexes2)
|
|
173
|
+
country1.sort_population()
|
|
174
|
+
country2.sort_population()
|
|
175
|
+
country1.action = None
|
|
176
|
+
country2.action = None
|
|
177
|
+
country1.ally = None
|
|
178
|
+
country2.ally = None
|
|
179
|
+
|
|
180
|
+
@staticmethod
|
|
181
|
+
def war(country1, country2, l):
|
|
182
|
+
if country1.population.size <= l or country2.population.size <= l:
|
|
183
|
+
l = min(country1.population.size, country2.population.size)
|
|
184
|
+
indexes1 = np.random.choice(country1.population.size, l, replace=False)
|
|
185
|
+
indexes2 = np.random.choice(country2.population.size, l, replace=False)
|
|
186
|
+
war_list1 = country1.population[indexes1]
|
|
187
|
+
war_list2 = country2.population[indexes2]
|
|
188
|
+
country1.population = np.delete(country1.population, indexes1)
|
|
189
|
+
country2.population = np.delete(country2.population, indexes2)
|
|
190
|
+
wins1 = np.where(war_list1 > war_list2)
|
|
191
|
+
wins2 = np.where(war_list2 > war_list2)
|
|
192
|
+
if wins1[0].size > wins2[0].size:
|
|
193
|
+
np.concatenate([country1.population, war_list1])
|
|
194
|
+
np.concatenate([country1.population, war_list2])
|
|
195
|
+
elif wins2[0].size > wins1[0].size:
|
|
196
|
+
np.concatenate([country2.population, war_list1])
|
|
197
|
+
np.concatenate([country2.population, war_list2])
|
|
198
|
+
else:
|
|
199
|
+
np.concatenate([country1.population, war_list1])
|
|
200
|
+
np.concatenate([country2.population, war_list2])
|
|
201
|
+
country1.sort_population()
|
|
202
|
+
country2.sort_population()
|
|
203
|
+
country1.action = None
|
|
204
|
+
country2.action = None
|
|
205
|
+
country1.enemy = None
|
|
206
|
+
country2.enemy = None
|
|
207
|
+
|
|
208
|
+
|
|
209
|
+
class CountriesAlgorithm_v2:
|
|
210
|
+
|
|
211
|
+
def __init__(self, f, Xmin, Xmax, M, N, n, p, m, k, l, ep, tmax, printing=False):
|
|
212
|
+
self.f = f
|
|
213
|
+
self.Xmin = Xmin
|
|
214
|
+
self.Xmax = Xmax
|
|
215
|
+
self.n = n
|
|
216
|
+
self.p = p
|
|
217
|
+
self.m = m
|
|
218
|
+
self.k = k
|
|
219
|
+
self.l = l
|
|
220
|
+
self.ep = ep
|
|
221
|
+
self.tmax = tmax
|
|
222
|
+
self.printing = printing
|
|
223
|
+
country_init = np.vectorize(lambda x: Country(self.Xmin, self.Xmax, N, self.f))
|
|
224
|
+
self.countries = country_init(np.ones(M))
|
|
225
|
+
|
|
226
|
+
def sort(self, method):
|
|
227
|
+
if method == 'avg_function':
|
|
228
|
+
avg_arr = vector_avg(self.countries)
|
|
229
|
+
indexes = np.argsort(avg_arr)
|
|
230
|
+
self.countries = self.countries[indexes]
|
|
231
|
+
else:
|
|
232
|
+
avg_arr = vector_best(self.countries)
|
|
233
|
+
indexes = np.argsort(avg_arr)
|
|
234
|
+
self.countries = self.countries[indexes]
|
|
235
|
+
|
|
236
|
+
def start(self):
|
|
237
|
+
ti = 0
|
|
238
|
+
motion = 0
|
|
239
|
+
trade = 0
|
|
240
|
+
war = 0
|
|
241
|
+
epedemic = 0
|
|
242
|
+
while ti <= self.tmax:
|
|
243
|
+
ti += 1
|
|
244
|
+
for country in self.countries:
|
|
245
|
+
if country.action is None:
|
|
246
|
+
country.select_action(self.countries)
|
|
247
|
+
for country in self.countries:
|
|
248
|
+
if country.action == 0:
|
|
249
|
+
motion += 1
|
|
250
|
+
country.motion(
|
|
251
|
+
function=self.f,
|
|
252
|
+
Xmin=self.Xmin,
|
|
253
|
+
Xmax=self.Xmax
|
|
254
|
+
)
|
|
255
|
+
elif country.action == 1:
|
|
256
|
+
trade += 1
|
|
257
|
+
Country.trade(
|
|
258
|
+
country1=country,
|
|
259
|
+
country2=country.ally,
|
|
260
|
+
k=self.k
|
|
261
|
+
)
|
|
262
|
+
elif country.action == 2:
|
|
263
|
+
war += 1
|
|
264
|
+
Country.war(
|
|
265
|
+
country1=country,
|
|
266
|
+
country2=country.enemy,
|
|
267
|
+
l=self.l
|
|
268
|
+
)
|
|
269
|
+
elif country.action == 3:
|
|
270
|
+
epedemic += 1
|
|
271
|
+
country.epedemic(
|
|
272
|
+
elite=self.ep[0],
|
|
273
|
+
dead=self.ep[1],
|
|
274
|
+
Xmin=self.Xmin,
|
|
275
|
+
Xmax=self.Xmax,
|
|
276
|
+
function=self.f,
|
|
277
|
+
p_max=self.p[1],
|
|
278
|
+
)
|
|
279
|
+
indexes = np.where(vector_check_population(self.countries) == True)
|
|
280
|
+
self.countries = self.countries[indexes]
|
|
281
|
+
self.sort('avg_function')
|
|
282
|
+
if not self.countries.size:
|
|
283
|
+
break
|
|
284
|
+
f_min = self.countries[0].avg_function
|
|
285
|
+
f_max = self.countries[-1].avg_function
|
|
286
|
+
if f_min == f_max:
|
|
287
|
+
self.sort('best_function')
|
|
288
|
+
result = self.countries[0].population[0]
|
|
289
|
+
break
|
|
290
|
+
e_individuals = []
|
|
291
|
+
for country in self.countries:
|
|
292
|
+
if country.population.size == 1:
|
|
293
|
+
e_individuals.append(country.population[0])
|
|
294
|
+
continue
|
|
295
|
+
if country.population.size:
|
|
296
|
+
country.reproduction(
|
|
297
|
+
n_min=self.n[0],
|
|
298
|
+
n_max=self.n[1],
|
|
299
|
+
p_min=self.p[0],
|
|
300
|
+
p_max=self.p[1],
|
|
301
|
+
f_min=f_min,
|
|
302
|
+
f_max=f_max,
|
|
303
|
+
ti=ti,
|
|
304
|
+
t_max=self.tmax,
|
|
305
|
+
function=self.f,
|
|
306
|
+
Xmin=self.Xmin,
|
|
307
|
+
Xmax=self.Xmax
|
|
308
|
+
)
|
|
309
|
+
country.extinction(
|
|
310
|
+
m_min=self.m[0],
|
|
311
|
+
m_max=self.m[1],
|
|
312
|
+
f_min=f_min,
|
|
313
|
+
f_max=f_max
|
|
314
|
+
)
|
|
315
|
+
indexes = np.where(vector_check_population(self.countries) == True)
|
|
316
|
+
self.countries = self.countries[indexes]
|
|
317
|
+
for individual in e_individuals:
|
|
318
|
+
random_country = self.countries[random.randint(0, len(self.countries) - 1)]
|
|
319
|
+
random_country.population = np.append(random_country.population, individual)
|
|
320
|
+
random_country.sort_population()
|
|
321
|
+
self.sort('best_function')
|
|
322
|
+
if not self.countries.size:
|
|
323
|
+
break
|
|
324
|
+
result = self.countries[0].population[0]
|
|
325
|
+
|
|
326
|
+
if self.printing:
|
|
327
|
+
print(f"{ti}) Лучшее решение: {result.x} - {result.f}, Стран осталось: {len(self.countries)}, Движение/Обмен/Войны/Эпидемии: {motion}/{trade}/{war}/{epedemic}")
|
|
328
|
+
print(f"Общее количество особей: {sum([len(country.population) for country in self.countries])}")
|
|
329
|
+
return (result.x, result.f, False, ti)
|
|
330
|
+
|