pymc-extras 0.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (101) hide show
  1. pymc_extras/__init__.py +29 -0
  2. pymc_extras/distributions/__init__.py +40 -0
  3. pymc_extras/distributions/continuous.py +351 -0
  4. pymc_extras/distributions/discrete.py +399 -0
  5. pymc_extras/distributions/histogram_utils.py +163 -0
  6. pymc_extras/distributions/multivariate/__init__.py +3 -0
  7. pymc_extras/distributions/multivariate/r2d2m2cp.py +446 -0
  8. pymc_extras/distributions/timeseries.py +356 -0
  9. pymc_extras/gp/__init__.py +18 -0
  10. pymc_extras/gp/latent_approx.py +183 -0
  11. pymc_extras/inference/__init__.py +18 -0
  12. pymc_extras/inference/find_map.py +431 -0
  13. pymc_extras/inference/fit.py +44 -0
  14. pymc_extras/inference/laplace.py +570 -0
  15. pymc_extras/inference/pathfinder.py +134 -0
  16. pymc_extras/inference/smc/__init__.py +13 -0
  17. pymc_extras/inference/smc/sampling.py +451 -0
  18. pymc_extras/linearmodel.py +130 -0
  19. pymc_extras/model/__init__.py +0 -0
  20. pymc_extras/model/marginal/__init__.py +0 -0
  21. pymc_extras/model/marginal/distributions.py +276 -0
  22. pymc_extras/model/marginal/graph_analysis.py +372 -0
  23. pymc_extras/model/marginal/marginal_model.py +595 -0
  24. pymc_extras/model/model_api.py +56 -0
  25. pymc_extras/model/transforms/__init__.py +0 -0
  26. pymc_extras/model/transforms/autoreparam.py +434 -0
  27. pymc_extras/model_builder.py +759 -0
  28. pymc_extras/preprocessing/__init__.py +0 -0
  29. pymc_extras/preprocessing/standard_scaler.py +17 -0
  30. pymc_extras/printing.py +182 -0
  31. pymc_extras/statespace/__init__.py +13 -0
  32. pymc_extras/statespace/core/__init__.py +7 -0
  33. pymc_extras/statespace/core/compile.py +48 -0
  34. pymc_extras/statespace/core/representation.py +438 -0
  35. pymc_extras/statespace/core/statespace.py +2268 -0
  36. pymc_extras/statespace/filters/__init__.py +15 -0
  37. pymc_extras/statespace/filters/distributions.py +453 -0
  38. pymc_extras/statespace/filters/kalman_filter.py +820 -0
  39. pymc_extras/statespace/filters/kalman_smoother.py +126 -0
  40. pymc_extras/statespace/filters/utilities.py +59 -0
  41. pymc_extras/statespace/models/ETS.py +670 -0
  42. pymc_extras/statespace/models/SARIMAX.py +536 -0
  43. pymc_extras/statespace/models/VARMAX.py +393 -0
  44. pymc_extras/statespace/models/__init__.py +6 -0
  45. pymc_extras/statespace/models/structural.py +1651 -0
  46. pymc_extras/statespace/models/utilities.py +387 -0
  47. pymc_extras/statespace/utils/__init__.py +0 -0
  48. pymc_extras/statespace/utils/constants.py +74 -0
  49. pymc_extras/statespace/utils/coord_tools.py +0 -0
  50. pymc_extras/statespace/utils/data_tools.py +182 -0
  51. pymc_extras/utils/__init__.py +23 -0
  52. pymc_extras/utils/linear_cg.py +290 -0
  53. pymc_extras/utils/pivoted_cholesky.py +69 -0
  54. pymc_extras/utils/prior.py +200 -0
  55. pymc_extras/utils/spline.py +131 -0
  56. pymc_extras/version.py +11 -0
  57. pymc_extras/version.txt +1 -0
  58. pymc_extras-0.2.0.dist-info/LICENSE +212 -0
  59. pymc_extras-0.2.0.dist-info/METADATA +99 -0
  60. pymc_extras-0.2.0.dist-info/RECORD +101 -0
  61. pymc_extras-0.2.0.dist-info/WHEEL +5 -0
  62. pymc_extras-0.2.0.dist-info/top_level.txt +2 -0
  63. tests/__init__.py +13 -0
  64. tests/distributions/__init__.py +19 -0
  65. tests/distributions/test_continuous.py +185 -0
  66. tests/distributions/test_discrete.py +210 -0
  67. tests/distributions/test_discrete_markov_chain.py +258 -0
  68. tests/distributions/test_multivariate.py +304 -0
  69. tests/model/__init__.py +0 -0
  70. tests/model/marginal/__init__.py +0 -0
  71. tests/model/marginal/test_distributions.py +131 -0
  72. tests/model/marginal/test_graph_analysis.py +182 -0
  73. tests/model/marginal/test_marginal_model.py +867 -0
  74. tests/model/test_model_api.py +29 -0
  75. tests/statespace/__init__.py +0 -0
  76. tests/statespace/test_ETS.py +411 -0
  77. tests/statespace/test_SARIMAX.py +405 -0
  78. tests/statespace/test_VARMAX.py +184 -0
  79. tests/statespace/test_coord_assignment.py +116 -0
  80. tests/statespace/test_distributions.py +270 -0
  81. tests/statespace/test_kalman_filter.py +326 -0
  82. tests/statespace/test_representation.py +175 -0
  83. tests/statespace/test_statespace.py +818 -0
  84. tests/statespace/test_statespace_JAX.py +156 -0
  85. tests/statespace/test_structural.py +829 -0
  86. tests/statespace/utilities/__init__.py +0 -0
  87. tests/statespace/utilities/shared_fixtures.py +9 -0
  88. tests/statespace/utilities/statsmodel_local_level.py +42 -0
  89. tests/statespace/utilities/test_helpers.py +310 -0
  90. tests/test_blackjax_smc.py +222 -0
  91. tests/test_find_map.py +98 -0
  92. tests/test_histogram_approximation.py +109 -0
  93. tests/test_laplace.py +238 -0
  94. tests/test_linearmodel.py +208 -0
  95. tests/test_model_builder.py +306 -0
  96. tests/test_pathfinder.py +45 -0
  97. tests/test_pivoted_cholesky.py +24 -0
  98. tests/test_printing.py +98 -0
  99. tests/test_prior_from_trace.py +172 -0
  100. tests/test_splines.py +77 -0
  101. tests/utils.py +31 -0
@@ -0,0 +1,759 @@
1
+ # Copyright 2023 The PyMC Developers
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ import hashlib
17
+ import json
18
+ import warnings
19
+
20
+ from abc import abstractmethod
21
+ from pathlib import Path
22
+ from typing import Any
23
+
24
+ import arviz as az
25
+ import numpy as np
26
+ import pandas as pd
27
+ import pymc as pm
28
+ import xarray as xr
29
+
30
+ from pymc.util import RandomState
31
+
32
+ # If scikit-learn is available, use its data validator
33
+ try:
34
+ from sklearn.utils.validation import check_array, check_X_y
35
+ # If scikit-learn is not available, return the data unchanged
36
+ except ImportError:
37
+
38
+ def check_X_y(X, y, **kwargs):
39
+ return X, y
40
+
41
+ def check_array(X, **kwargs):
42
+ return X
43
+
44
+
45
+ class ModelBuilder:
46
+ """
47
+ ModelBuilder can be used to provide an easy-to-use API (similar to scikit-learn) for models
48
+ and help with deployment.
49
+ """
50
+
51
+ _model_type = "BaseClass"
52
+ version = "None"
53
+
54
+ def __init__(
55
+ self,
56
+ model_config: dict | None = None,
57
+ sampler_config: dict | None = None,
58
+ ):
59
+ """
60
+ Initializes model configuration and sampler configuration for the model
61
+
62
+ Parameters
63
+ ----------
64
+ data : Dictionary, optional
65
+ It is the data we need to train the model on.
66
+ model_config : Dictionary, optional
67
+ dictionary of parameters that initialise model configuration. Class-default defined by the user default_model_config method.
68
+ sampler_config : Dictionary, optional
69
+ dictionary of parameters that initialise sampler configuration. Class-default defined by the user default_sampler_config method.
70
+
71
+ Examples
72
+ --------
73
+ >>> class MyModel(ModelBuilder):
74
+ >>> ...
75
+ >>> model = MyModel(model_config, sampler_config)
76
+ """
77
+ sampler_config = (
78
+ self.get_default_sampler_config() if sampler_config is None else sampler_config
79
+ )
80
+ self.sampler_config = sampler_config
81
+ model_config = self.get_default_model_config() if model_config is None else model_config
82
+
83
+ self.model_config = model_config # parameters for priors etc.
84
+ self.model = None # Set by build_model
85
+ self.idata: az.InferenceData | None = None # idata is generated during fitting
86
+ self.is_fitted_ = False
87
+
88
+ def _validate_data(self, X, y=None):
89
+ if y is not None:
90
+ return check_X_y(X, y, accept_sparse=False, y_numeric=True, multi_output=False)
91
+ else:
92
+ return check_array(X, accept_sparse=False)
93
+
94
+ @abstractmethod
95
+ def _data_setter(
96
+ self,
97
+ X: np.ndarray | pd.DataFrame,
98
+ y: np.ndarray | pd.DataFrame | list = None,
99
+ ) -> None:
100
+ """
101
+ Sets new data in the model.
102
+
103
+ Parameters
104
+ ----------
105
+ X : array, shape (n_obs, n_features)
106
+ The training input samples.
107
+ y : array, shape (n_obs,)
108
+ The target values (real numbers).
109
+
110
+ Returns
111
+ -------
112
+ None
113
+
114
+ Examples
115
+ --------
116
+ >>> def _data_setter(self, data : pd.DataFrame):
117
+ >>> with self.model:
118
+ >>> pm.set_data({'x': X['x'].values})
119
+ >>> try: # if y values in new data
120
+ >>> pm.set_data({'y_data': y.values})
121
+ >>> except: # dummies otherwise
122
+ >>> pm.set_data({'y_data': np.zeros(len(data))})
123
+
124
+ """
125
+
126
+ raise NotImplementedError
127
+
128
+ @property
129
+ @abstractmethod
130
+ def output_var(self):
131
+ """
132
+ Returns the name of the output variable of the model.
133
+
134
+ Returns
135
+ -------
136
+ output_var : str
137
+ Name of the output variable of the model.
138
+ """
139
+ raise NotImplementedError
140
+
141
+ @staticmethod
142
+ @abstractmethod
143
+ def get_default_model_config() -> dict:
144
+ """
145
+ Returns a class default config dict for model builder if no model_config is provided on class initialization
146
+ Useful for understanding structure of required model_config to allow its customization by users
147
+
148
+ Examples
149
+ --------
150
+ >>> @staticmethod
151
+ >>> def default_model_config():
152
+ >>> return {
153
+ >>> 'a' : {
154
+ >>> 'loc': 7,
155
+ >>> 'scale' : 3
156
+ >>> },
157
+ >>> 'b' : {
158
+ >>> 'loc': 3,
159
+ >>> 'scale': 5
160
+ >>> }
161
+ >>> 'obs_error': 2
162
+ >>> }
163
+
164
+ Returns
165
+ -------
166
+ model_config : dict
167
+ A set of default parameters for predictor distributions that allow to save and recreate the model.
168
+ """
169
+ raise NotImplementedError
170
+
171
+ @staticmethod
172
+ @abstractmethod
173
+ def get_default_sampler_config(self) -> dict:
174
+ """
175
+ Returns a class default sampler dict for model builder if no sampler_config is provided on class initialization
176
+ Useful for understanding structure of required sampler_config to allow its customization by users
177
+
178
+ Examples
179
+ --------
180
+ >>> @staticmethod
181
+ >>> def default_sampler_config():
182
+ >>> return {
183
+ >>> 'draws': 1_000,
184
+ >>> 'tune': 1_000,
185
+ >>> 'chains': 1,
186
+ >>> 'target_accept': 0.95,
187
+ >>> }
188
+
189
+ Returns
190
+ -------
191
+ sampler_config : dict
192
+ A set of default settings for used by model in fit process.
193
+ """
194
+ raise NotImplementedError
195
+
196
+ @abstractmethod
197
+ def _generate_and_preprocess_model_data(
198
+ self, X: pd.DataFrame | pd.Series, y: pd.Series
199
+ ) -> None:
200
+ """
201
+ Applies preprocessing to the data before fitting the model.
202
+ if validate is True, it will check if the data is valid for the model.
203
+ sets self.model_coords based on provided dataset
204
+
205
+ In case of optional parameters being passed into the model, this method should implement the conditional
206
+ logic responsible for correct handling of the optional parameters, and including them into the dataset.
207
+
208
+ Parameters
209
+ ----------
210
+ X : array, shape (n_obs, n_features)
211
+ y : array, shape (n_obs,)
212
+
213
+ Examples
214
+ --------
215
+ >>> @classmethod
216
+ >>> def _generate_and_preprocess_model_data(self, X, y):
217
+ coords = {
218
+ 'x_dim': X.dim_variable,
219
+ } #only include if applicable for your model
220
+ >>> self.X = X
221
+ >>> self.y = y
222
+
223
+ Returns
224
+ -------
225
+ None
226
+
227
+ """
228
+ raise NotImplementedError
229
+
230
+ @abstractmethod
231
+ def build_model(
232
+ self,
233
+ X: pd.DataFrame,
234
+ y: pd.Series,
235
+ **kwargs,
236
+ ) -> None:
237
+ """
238
+ Creates an instance of pm.Model based on provided data and model_config, and
239
+ attaches it to self.
240
+
241
+ Parameters
242
+ ----------
243
+ X : pd.DataFrame
244
+ The input data that is going to be used in the model. This should be a DataFrame
245
+ containing the features (predictors) for the model. For efficiency reasons, it should
246
+ only contain the necessary data columns, not the entire available dataset, as this
247
+ will be encoded into the data used to recreate the model.
248
+
249
+ y : pd.Series
250
+ The target data for the model. This should be a Series representing the output
251
+ or dependent variable for the model.
252
+
253
+ kwargs : dict
254
+ Additional keyword arguments that may be used for model configuration.
255
+
256
+ See Also
257
+ --------
258
+ default_model_config : returns default model config
259
+
260
+ Returns
261
+ -------
262
+ None
263
+
264
+ Raises
265
+ ------
266
+ NotImplementedError
267
+ This is an abstract method and must be implemented in a subclass.
268
+ """
269
+ raise NotImplementedError
270
+
271
+ def sample_model(self, **kwargs):
272
+ """
273
+ Sample from the PyMC model.
274
+
275
+ Parameters
276
+ ----------
277
+ **kwargs : dict
278
+ Additional keyword arguments to pass to the PyMC sampler.
279
+
280
+ Returns
281
+ -------
282
+ xarray.Dataset
283
+ The PyMC samples dataset.
284
+
285
+ Raises
286
+ ------
287
+ RuntimeError
288
+ If the PyMC model hasn't been built yet.
289
+
290
+ Examples
291
+ --------
292
+ >>> self.build_model()
293
+ >>> idata = self.sample_model(draws=100, tune=10)
294
+ >>> assert isinstance(idata, xr.Dataset)
295
+ >>> assert "posterior" in idata
296
+ >>> assert "prior" in idata
297
+ >>> assert "observed_data" in idata
298
+ >>> assert "log_likelihood" in idata
299
+ """
300
+ if self.model is None:
301
+ raise RuntimeError(
302
+ "The model hasn't been built yet, call .build_model() first or call .fit() instead."
303
+ )
304
+
305
+ with self.model:
306
+ sampler_args = {**self.sampler_config, **kwargs}
307
+ idata = pm.sample(**sampler_args)
308
+ idata.extend(pm.sample_prior_predictive(), join="right")
309
+ idata.extend(pm.sample_posterior_predictive(idata), join="right")
310
+
311
+ idata = self.set_idata_attrs(idata)
312
+ return idata
313
+
314
+ def set_idata_attrs(self, idata=None):
315
+ """
316
+ Set attributes on an InferenceData object.
317
+
318
+ Parameters
319
+ ----------
320
+ idata : arviz.InferenceData, optional
321
+ The InferenceData object to set attributes on.
322
+
323
+ Raises
324
+ ------
325
+ RuntimeError
326
+ If no InferenceData object is provided.
327
+
328
+ Returns
329
+ -------
330
+ None
331
+
332
+ Examples
333
+ --------
334
+ >>> model = MyModel(ModelBuilder)
335
+ >>> idata = az.InferenceData(your_dataset)
336
+ >>> model.set_idata_attrs(idata=idata)
337
+ >>> assert "id" in idata.attrs #this and the following lines are part of doctest, not user manual
338
+ >>> assert "model_type" in idata.attrs
339
+ >>> assert "version" in idata.attrs
340
+ >>> assert "sampler_config" in idata.attrs
341
+ >>> assert "model_config" in idata.attrs
342
+ """
343
+ if idata is None:
344
+ idata = self.idata
345
+ if idata is None:
346
+ raise RuntimeError("No idata provided to set attrs on.")
347
+ idata.attrs["id"] = self.id
348
+ idata.attrs["model_type"] = self._model_type
349
+ idata.attrs["version"] = self.version
350
+ idata.attrs["sampler_config"] = json.dumps(self.sampler_config)
351
+ idata.attrs["model_config"] = json.dumps(self._serializable_model_config)
352
+ # Only classes with non-dataset parameters will implement save_input_params
353
+ if hasattr(self, "_save_input_params"):
354
+ self._save_input_params(idata)
355
+ return idata
356
+
357
+ def save(self, fname: str) -> None:
358
+ """
359
+ Save the model's inference data to a file.
360
+
361
+ Parameters
362
+ ----------
363
+ fname : str
364
+ The name and path of the file to save the inference data with model parameters.
365
+
366
+ Returns
367
+ -------
368
+ None
369
+
370
+ Raises
371
+ ------
372
+ RuntimeError
373
+ If the model hasn't been fit yet (no inference data available).
374
+
375
+ Examples
376
+ --------
377
+ This method is meant to be overridden and implemented by subclasses.
378
+ It should not be called directly on the base abstract class or its instances.
379
+
380
+ >>> class MyModel(ModelBuilder):
381
+ >>> def __init__(self):
382
+ >>> super().__init__()
383
+ >>> model = MyModel()
384
+ >>> model.fit(data)
385
+ >>> model.save('model_results.nc') # This will call the overridden method in MyModel
386
+ """
387
+ if self.idata is not None and "posterior" in self.idata:
388
+ file = Path(str(fname))
389
+ self.idata.to_netcdf(str(file))
390
+ else:
391
+ raise RuntimeError("The model hasn't been fit yet, call .fit() first")
392
+
393
+ @classmethod
394
+ def _model_config_formatting(cls, model_config: dict) -> dict:
395
+ """
396
+ Because of json serialization, model_config values that were originally tuples or numpy are being encoded as lists.
397
+ This function converts them back to tuples and numpy arrays to ensure correct id encoding.
398
+ """
399
+ for key in model_config:
400
+ if isinstance(model_config[key], dict):
401
+ for sub_key in model_config[key]:
402
+ if isinstance(model_config[key][sub_key], list):
403
+ # Check if "dims" key to convert it to tuple
404
+ if sub_key == "dims":
405
+ model_config[key][sub_key] = tuple(model_config[key][sub_key])
406
+ # Convert all other lists to numpy arrays
407
+ else:
408
+ model_config[key][sub_key] = np.array(model_config[key][sub_key])
409
+ return model_config
410
+
411
+ @classmethod
412
+ def load(cls, fname: str):
413
+ """
414
+ Creates a ModelBuilder instance from a file,
415
+ Loads inference data for the model.
416
+
417
+ Parameters
418
+ ----------
419
+ fname : string
420
+ This denotes the name with path from where idata should be loaded from.
421
+
422
+ Returns
423
+ -------
424
+ Returns an instance of ModelBuilder.
425
+
426
+ Raises
427
+ ------
428
+ ValueError
429
+ If the inference data that is loaded doesn't match with the model.
430
+
431
+ Examples
432
+ --------
433
+ >>> class MyModel(ModelBuilder):
434
+ >>> ...
435
+ >>> name = './mymodel.nc'
436
+ >>> imported_model = MyModel.load(name)
437
+ """
438
+ filepath = Path(str(fname))
439
+ idata = az.from_netcdf(filepath)
440
+ # needs to be converted, because json.loads was changing tuple to list
441
+ model_config = cls._model_config_formatting(json.loads(idata.attrs["model_config"]))
442
+ model = cls(
443
+ model_config=model_config,
444
+ sampler_config=json.loads(idata.attrs["sampler_config"]),
445
+ )
446
+ model.idata = idata
447
+ dataset = idata.fit_data.to_dataframe()
448
+ X = dataset.drop(columns=[model.output_var])
449
+ y = dataset[model.output_var]
450
+ model.build_model(X, y)
451
+ # All previously used data is in idata.
452
+
453
+ if model.id != idata.attrs["id"]:
454
+ raise ValueError(
455
+ f"The file '{fname}' does not contain an inference data of the same model or configuration as '{cls._model_type}'"
456
+ )
457
+
458
+ return model
459
+
460
+ def fit(
461
+ self,
462
+ X: pd.DataFrame,
463
+ y: pd.Series | None = None,
464
+ progressbar: bool = True,
465
+ predictor_names: list[str] | None = None,
466
+ random_seed: RandomState = None,
467
+ **kwargs: Any,
468
+ ) -> az.InferenceData:
469
+ """
470
+ Fit a model using the data passed as a parameter.
471
+ Sets attrs to inference data of the model.
472
+
473
+
474
+ Parameters
475
+ ----------
476
+ X : array-like if sklearn is available, otherwise array, shape (n_obs, n_features)
477
+ The training input samples.
478
+ y : array-like if sklearn is available, otherwise array, shape (n_obs,)
479
+ The target values (real numbers).
480
+ progressbar : bool
481
+ Specifies whether the fit progressbar should be displayed
482
+ predictor_names: List[str] = None,
483
+ Allows for custom naming of predictors given in a form of 2dArray
484
+ allows for naming of predictors when given in a form of np.ndarray, if not provided the predictors will be named like predictor1, predictor2...
485
+ random_seed : RandomState
486
+ Provides sampler with initial random seed for obtaining reproducible samples
487
+ **kwargs : Any
488
+ Custom sampler settings can be provided in form of keyword arguments.
489
+
490
+ Returns
491
+ -------
492
+ self : az.InferenceData
493
+ returns inference data of the fitted model.
494
+
495
+ Examples
496
+ --------
497
+ >>> model = MyModel()
498
+ >>> idata = model.fit(data)
499
+ Auto-assigning NUTS sampler...
500
+ Initializing NUTS using jitter+adapt_diag...
501
+ """
502
+ if predictor_names is None:
503
+ predictor_names = []
504
+ if y is None:
505
+ y = np.zeros(X.shape[0])
506
+ y = pd.DataFrame({self.output_var: y})
507
+ self._generate_and_preprocess_model_data(X, y.values.flatten())
508
+ self.build_model(self.X, self.y)
509
+
510
+ sampler_config = self.sampler_config.copy()
511
+ sampler_config["progressbar"] = progressbar
512
+ sampler_config["random_seed"] = random_seed
513
+ sampler_config.update(**kwargs)
514
+ self.idata = self.sample_model(**sampler_config)
515
+
516
+ X_df = pd.DataFrame(X, columns=X.columns)
517
+ combined_data = pd.concat([X_df, y], axis=1)
518
+ assert all(combined_data.columns), "All columns must have non-empty names"
519
+ with warnings.catch_warnings():
520
+ warnings.filterwarnings(
521
+ "ignore",
522
+ category=UserWarning,
523
+ message="The group fit_data is not defined in the InferenceData scheme",
524
+ )
525
+ self.idata.add_groups(fit_data=combined_data.to_xarray()) # type: ignore
526
+
527
+ return self.idata # type: ignore
528
+
529
+ def predict(
530
+ self,
531
+ X_pred: np.ndarray | pd.DataFrame | pd.Series,
532
+ extend_idata: bool = True,
533
+ **kwargs,
534
+ ) -> np.ndarray:
535
+ """
536
+ Uses model to predict on unseen data and return point prediction of all the samples. The point prediction
537
+ for each input row is the expected output value, computed as the mean of MCMC samples.
538
+
539
+ Parameters
540
+ ----------
541
+ X_pred : array-like if sklearn is available, otherwise array, shape (n_pred, n_features)
542
+ The input data used for prediction.
543
+ extend_idata : Boolean determining whether the predictions should be added to inference data object.
544
+ Defaults to True.
545
+ **kwargs: Additional arguments to pass to pymc.sample_posterior_predictive
546
+
547
+ Returns
548
+ -------
549
+ y_pred : ndarray, shape (n_pred,)
550
+ Predicted output corresponding to input X_pred.
551
+
552
+ Examples
553
+ --------
554
+ >>> model = MyModel()
555
+ >>> idata = model.fit(data)
556
+ >>> x_pred = []
557
+ >>> prediction_data = pd.DataFrame({'input':x_pred})
558
+ >>> pred_mean = model.predict(prediction_data)
559
+ """
560
+
561
+ posterior_predictive_samples = self.sample_posterior_predictive(
562
+ X_pred, extend_idata, combined=False, **kwargs
563
+ )
564
+
565
+ if self.output_var not in posterior_predictive_samples:
566
+ raise KeyError(
567
+ f"Output variable {self.output_var} not found in posterior predictive samples."
568
+ )
569
+
570
+ posterior_means = posterior_predictive_samples[self.output_var].mean(
571
+ dim=["chain", "draw"], keep_attrs=True
572
+ )
573
+ return posterior_means.data
574
+
575
+ def sample_prior_predictive(
576
+ self,
577
+ X_pred,
578
+ y_pred=None,
579
+ samples: int | None = None,
580
+ extend_idata: bool = False,
581
+ combined: bool = True,
582
+ **kwargs,
583
+ ):
584
+ """
585
+ Sample from the model's prior predictive distribution.
586
+
587
+ Parameters
588
+ ----------
589
+ X_pred : array, shape (n_pred, n_features)
590
+ The input data used for prediction using prior distribution.
591
+ samples : int
592
+ Number of samples from the prior parameter distributions to generate.
593
+ If not set, uses sampler_config['draws'] if that is available, otherwise defaults to 500.
594
+ extend_idata : Boolean determining whether the predictions should be added to inference data object.
595
+ Defaults to False.
596
+ combined: Combine chain and draw dims into sample. Won't work if a dim named sample already exists.
597
+ Defaults to True.
598
+ **kwargs: Additional arguments to pass to pymc.sample_prior_predictive
599
+
600
+ Returns
601
+ -------
602
+ prior_predictive_samples : DataArray, shape (n_pred, samples)
603
+ Prior predictive samples for each input X_pred
604
+ """
605
+ if y_pred is None:
606
+ y_pred = pd.Series(np.zeros(len(X_pred)), name=self.output_var)
607
+ if samples is None:
608
+ samples = self.sampler_config.get("draws", 500)
609
+
610
+ if self.model is None:
611
+ self.build_model(X_pred, y_pred)
612
+ else:
613
+ self._data_setter(X_pred, y_pred)
614
+ with self.model: # sample with new input data
615
+ prior_pred: az.InferenceData = pm.sample_prior_predictive(samples, **kwargs)
616
+ self.set_idata_attrs(prior_pred)
617
+ if extend_idata:
618
+ if self.idata is not None:
619
+ self.idata.extend(prior_pred, join="right")
620
+ else:
621
+ self.idata = prior_pred
622
+
623
+ prior_predictive_samples = az.extract(prior_pred, "prior_predictive", combined=combined)
624
+
625
+ return prior_predictive_samples
626
+
627
+ def sample_posterior_predictive(self, X_pred, extend_idata, combined, **kwargs):
628
+ """
629
+ Sample from the model's posterior predictive distribution.
630
+
631
+ Parameters
632
+ ----------
633
+ X_pred : array, shape (n_pred, n_features)
634
+ The input data used for prediction using prior distribution..
635
+ extend_idata : Boolean determining whether the predictions should be added to inference data object.
636
+ Defaults to False.
637
+ combined: Combine chain and draw dims into sample. Won't work if a dim named sample already exists.
638
+ Defaults to True.
639
+ **kwargs: Additional arguments to pass to pymc.sample_posterior_predictive
640
+
641
+ Returns
642
+ -------
643
+ posterior_predictive_samples : DataArray, shape (n_pred, samples)
644
+ Posterior predictive samples for each input X_pred
645
+ """
646
+ self._data_setter(X_pred)
647
+
648
+ with self.model: # sample with new input data
649
+ post_pred = pm.sample_posterior_predictive(self.idata, **kwargs)
650
+ if extend_idata:
651
+ self.idata.extend(post_pred, join="right")
652
+
653
+ posterior_predictive_samples = az.extract(
654
+ post_pred, "posterior_predictive", combined=combined
655
+ )
656
+
657
+ return posterior_predictive_samples
658
+
659
+ def get_params(self, deep=True):
660
+ """
661
+ Get all the model parameters needed to instantiate a copy of the model, not including training data.
662
+ """
663
+ return {
664
+ "model_config": self.model_config,
665
+ "sampler_config": self.sampler_config,
666
+ }
667
+
668
+ def set_params(self, **params):
669
+ """
670
+ Set all the model parameters needed to instantiate the model, not including training data.
671
+ """
672
+ self.model_config = params["model_config"]
673
+ self.sampler_config = params["sampler_config"]
674
+
675
+ @property
676
+ @abstractmethod
677
+ def _serializable_model_config(self) -> dict[str, int | float | dict]:
678
+ """
679
+ Converts non-serializable values from model_config to their serializable reversable equivalent.
680
+ Data types like pandas DataFrame, Series or datetime aren't JSON serializable,
681
+ so in order to save the model they need to be formatted.
682
+
683
+ Returns
684
+ -------
685
+ model_config: dict
686
+ """
687
+
688
+ def predict_proba(
689
+ self,
690
+ X_pred: np.ndarray | pd.DataFrame | pd.Series,
691
+ extend_idata: bool = True,
692
+ combined: bool = False,
693
+ **kwargs,
694
+ ) -> xr.DataArray:
695
+ """Alias for `predict_posterior`, for consistency with scikit-learn probabilistic estimators."""
696
+ return self.predict_posterior(X_pred, extend_idata, combined, **kwargs)
697
+
698
+ def predict_posterior(
699
+ self,
700
+ X_pred: np.ndarray | pd.DataFrame | pd.Series,
701
+ extend_idata: bool = True,
702
+ combined: bool = True,
703
+ **kwargs,
704
+ ) -> xr.DataArray:
705
+ """
706
+ Generate posterior predictive samples on unseen data.
707
+
708
+ Parameters
709
+ ----------
710
+ X_pred : array-like if sklearn is available, otherwise array, shape (n_pred, n_features)
711
+ The input data used for prediction.
712
+ extend_idata : Boolean determining whether the predictions should be added to inference data object.
713
+ Defaults to True.
714
+ combined: Combine chain and draw dims into sample. Won't work if a dim named sample already exists.
715
+ Defaults to True.
716
+ **kwargs: Additional arguments to pass to pymc.sample_posterior_predictive
717
+
718
+ Returns
719
+ -------
720
+ y_pred : DataArray, shape (n_pred, chains * draws) if combined is True, otherwise (chains, draws, n_pred)
721
+ Posterior predictive samples for each input X_pred
722
+ """
723
+
724
+ X_pred = self._validate_data(X_pred)
725
+ posterior_predictive_samples = self.sample_posterior_predictive(
726
+ X_pred, extend_idata, combined, **kwargs
727
+ )
728
+
729
+ if self.output_var not in posterior_predictive_samples:
730
+ raise KeyError(
731
+ f"Output variable {self.output_var} not found in posterior predictive samples."
732
+ )
733
+
734
+ return posterior_predictive_samples[self.output_var]
735
+
736
+ @property
737
+ def id(self) -> str:
738
+ """
739
+ Generate a unique hash value for the model.
740
+
741
+ The hash value is created using the last 16 characters of the SHA256 hash encoding, based on the model configuration,
742
+ version, and model type.
743
+
744
+ Returns
745
+ -------
746
+ str
747
+ A string of length 16 characters containing a unique hash of the model.
748
+
749
+ Examples
750
+ --------
751
+ >>> model = MyModel()
752
+ >>> model.id
753
+ '0123456789abcdef'
754
+ """
755
+ hasher = hashlib.sha256()
756
+ hasher.update(str(self.model_config.values()).encode())
757
+ hasher.update(self.version.encode())
758
+ hasher.update(self._model_type.encode())
759
+ return hasher.hexdigest()[:16]