pymc-extras 0.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pymc_extras/__init__.py +29 -0
- pymc_extras/distributions/__init__.py +40 -0
- pymc_extras/distributions/continuous.py +351 -0
- pymc_extras/distributions/discrete.py +399 -0
- pymc_extras/distributions/histogram_utils.py +163 -0
- pymc_extras/distributions/multivariate/__init__.py +3 -0
- pymc_extras/distributions/multivariate/r2d2m2cp.py +446 -0
- pymc_extras/distributions/timeseries.py +356 -0
- pymc_extras/gp/__init__.py +18 -0
- pymc_extras/gp/latent_approx.py +183 -0
- pymc_extras/inference/__init__.py +18 -0
- pymc_extras/inference/find_map.py +431 -0
- pymc_extras/inference/fit.py +44 -0
- pymc_extras/inference/laplace.py +570 -0
- pymc_extras/inference/pathfinder.py +134 -0
- pymc_extras/inference/smc/__init__.py +13 -0
- pymc_extras/inference/smc/sampling.py +451 -0
- pymc_extras/linearmodel.py +130 -0
- pymc_extras/model/__init__.py +0 -0
- pymc_extras/model/marginal/__init__.py +0 -0
- pymc_extras/model/marginal/distributions.py +276 -0
- pymc_extras/model/marginal/graph_analysis.py +372 -0
- pymc_extras/model/marginal/marginal_model.py +595 -0
- pymc_extras/model/model_api.py +56 -0
- pymc_extras/model/transforms/__init__.py +0 -0
- pymc_extras/model/transforms/autoreparam.py +434 -0
- pymc_extras/model_builder.py +759 -0
- pymc_extras/preprocessing/__init__.py +0 -0
- pymc_extras/preprocessing/standard_scaler.py +17 -0
- pymc_extras/printing.py +182 -0
- pymc_extras/statespace/__init__.py +13 -0
- pymc_extras/statespace/core/__init__.py +7 -0
- pymc_extras/statespace/core/compile.py +48 -0
- pymc_extras/statespace/core/representation.py +438 -0
- pymc_extras/statespace/core/statespace.py +2268 -0
- pymc_extras/statespace/filters/__init__.py +15 -0
- pymc_extras/statespace/filters/distributions.py +453 -0
- pymc_extras/statespace/filters/kalman_filter.py +820 -0
- pymc_extras/statespace/filters/kalman_smoother.py +126 -0
- pymc_extras/statespace/filters/utilities.py +59 -0
- pymc_extras/statespace/models/ETS.py +670 -0
- pymc_extras/statespace/models/SARIMAX.py +536 -0
- pymc_extras/statespace/models/VARMAX.py +393 -0
- pymc_extras/statespace/models/__init__.py +6 -0
- pymc_extras/statespace/models/structural.py +1651 -0
- pymc_extras/statespace/models/utilities.py +387 -0
- pymc_extras/statespace/utils/__init__.py +0 -0
- pymc_extras/statespace/utils/constants.py +74 -0
- pymc_extras/statespace/utils/coord_tools.py +0 -0
- pymc_extras/statespace/utils/data_tools.py +182 -0
- pymc_extras/utils/__init__.py +23 -0
- pymc_extras/utils/linear_cg.py +290 -0
- pymc_extras/utils/pivoted_cholesky.py +69 -0
- pymc_extras/utils/prior.py +200 -0
- pymc_extras/utils/spline.py +131 -0
- pymc_extras/version.py +11 -0
- pymc_extras/version.txt +1 -0
- pymc_extras-0.2.0.dist-info/LICENSE +212 -0
- pymc_extras-0.2.0.dist-info/METADATA +99 -0
- pymc_extras-0.2.0.dist-info/RECORD +101 -0
- pymc_extras-0.2.0.dist-info/WHEEL +5 -0
- pymc_extras-0.2.0.dist-info/top_level.txt +2 -0
- tests/__init__.py +13 -0
- tests/distributions/__init__.py +19 -0
- tests/distributions/test_continuous.py +185 -0
- tests/distributions/test_discrete.py +210 -0
- tests/distributions/test_discrete_markov_chain.py +258 -0
- tests/distributions/test_multivariate.py +304 -0
- tests/model/__init__.py +0 -0
- tests/model/marginal/__init__.py +0 -0
- tests/model/marginal/test_distributions.py +131 -0
- tests/model/marginal/test_graph_analysis.py +182 -0
- tests/model/marginal/test_marginal_model.py +867 -0
- tests/model/test_model_api.py +29 -0
- tests/statespace/__init__.py +0 -0
- tests/statespace/test_ETS.py +411 -0
- tests/statespace/test_SARIMAX.py +405 -0
- tests/statespace/test_VARMAX.py +184 -0
- tests/statespace/test_coord_assignment.py +116 -0
- tests/statespace/test_distributions.py +270 -0
- tests/statespace/test_kalman_filter.py +326 -0
- tests/statespace/test_representation.py +175 -0
- tests/statespace/test_statespace.py +818 -0
- tests/statespace/test_statespace_JAX.py +156 -0
- tests/statespace/test_structural.py +829 -0
- tests/statespace/utilities/__init__.py +0 -0
- tests/statespace/utilities/shared_fixtures.py +9 -0
- tests/statespace/utilities/statsmodel_local_level.py +42 -0
- tests/statespace/utilities/test_helpers.py +310 -0
- tests/test_blackjax_smc.py +222 -0
- tests/test_find_map.py +98 -0
- tests/test_histogram_approximation.py +109 -0
- tests/test_laplace.py +238 -0
- tests/test_linearmodel.py +208 -0
- tests/test_model_builder.py +306 -0
- tests/test_pathfinder.py +45 -0
- tests/test_pivoted_cholesky.py +24 -0
- tests/test_printing.py +98 -0
- tests/test_prior_from_trace.py +172 -0
- tests/test_splines.py +77 -0
- tests/utils.py +31 -0
|
@@ -0,0 +1,434 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
|
|
3
|
+
from collections.abc import Sequence
|
|
4
|
+
from dataclasses import dataclass
|
|
5
|
+
from functools import singledispatch
|
|
6
|
+
|
|
7
|
+
import numpy as np
|
|
8
|
+
import pymc as pm
|
|
9
|
+
import pytensor
|
|
10
|
+
import pytensor.tensor as pt
|
|
11
|
+
import scipy.special
|
|
12
|
+
|
|
13
|
+
from pymc.distributions import SymbolicRandomVariable
|
|
14
|
+
from pymc.logprob.transforms import Transform
|
|
15
|
+
from pymc.model.fgraph import (
|
|
16
|
+
ModelDeterministic,
|
|
17
|
+
ModelNamed,
|
|
18
|
+
fgraph_from_model,
|
|
19
|
+
model_deterministic,
|
|
20
|
+
model_free_rv,
|
|
21
|
+
model_from_fgraph,
|
|
22
|
+
model_named,
|
|
23
|
+
)
|
|
24
|
+
from pymc.pytensorf import toposort_replace
|
|
25
|
+
from pytensor.graph.basic import Apply, Variable
|
|
26
|
+
from pytensor.tensor.random.op import RandomVariable
|
|
27
|
+
|
|
28
|
+
_log = logging.getLogger("pmx")
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
@dataclass
|
|
32
|
+
class VIP:
|
|
33
|
+
r"""Helper to reparemetrize VIP model.
|
|
34
|
+
|
|
35
|
+
Manipulation of :math:`\lambda` in the below equation is done using this helper class.
|
|
36
|
+
|
|
37
|
+
.. math::
|
|
38
|
+
|
|
39
|
+
\begin{align*}
|
|
40
|
+
\eta_{k} &\sim \text{normal}(\lambda_{k} \cdot \mu, \sigma^{\lambda_{k}})\\
|
|
41
|
+
\theta_{k} &= \mu + \sigma^{1 - \lambda_{k}} ( \eta_{k} - \lambda_{k} \cdot \mu)
|
|
42
|
+
\sim \text{normal}(\mu, \sigma).
|
|
43
|
+
\end{align*}
|
|
44
|
+
"""
|
|
45
|
+
|
|
46
|
+
_logit_lambda: dict[str, pytensor.tensor.sharedvar.TensorSharedVariable]
|
|
47
|
+
|
|
48
|
+
@property
|
|
49
|
+
def variational_parameters(self) -> list[pytensor.tensor.sharedvar.TensorSharedVariable]:
|
|
50
|
+
r"""Return raw :math:`\operatorname{logit}(\lambda_k)` for custom optimization.
|
|
51
|
+
|
|
52
|
+
Examples
|
|
53
|
+
--------
|
|
54
|
+
with model:
|
|
55
|
+
# set all parameterizations to mix of centered and non-centered
|
|
56
|
+
vip.set_all_lambda(0.5)
|
|
57
|
+
|
|
58
|
+
pm.fit(more_obj_params=vip.variational_parameters, method="fullrank_advi")
|
|
59
|
+
"""
|
|
60
|
+
return list(self._logit_lambda.values())
|
|
61
|
+
|
|
62
|
+
def truncate_lambda(self, **kwargs: float):
|
|
63
|
+
r"""Truncate :math:`\lambda_k` with :math:`\varepsilon`.
|
|
64
|
+
|
|
65
|
+
.. math::
|
|
66
|
+
|
|
67
|
+
\hat \lambda_k = \begin{cases}
|
|
68
|
+
0, \quad &\lambda_k \le \varepsilon\\
|
|
69
|
+
\lambda_k, \quad &\varepsilon \lt \lambda_k \lt 1-\varepsilon\\
|
|
70
|
+
1, \quad &\lambda_k \ge 1-\varepsilon\\
|
|
71
|
+
\end{cases}
|
|
72
|
+
|
|
73
|
+
Parameters
|
|
74
|
+
----------
|
|
75
|
+
kwargs : Dict[str, float]
|
|
76
|
+
Variable to :math:`\varepsilon` mapping.
|
|
77
|
+
If :math:`\lambda` (or :math:`1-\lambda`) is not passing
|
|
78
|
+
the threshold of :math:`\varepsilon`, it will be clipped
|
|
79
|
+
to 1 or zero if rounding is turned on.
|
|
80
|
+
"""
|
|
81
|
+
lambdas = self.get_lambda()
|
|
82
|
+
update = dict()
|
|
83
|
+
for var, eps in kwargs.items():
|
|
84
|
+
lam = lambdas[var]
|
|
85
|
+
update[var] = np.piecewise(
|
|
86
|
+
lam,
|
|
87
|
+
[lam < eps, lam > (1 - eps)],
|
|
88
|
+
[0, 1, lambda x: x],
|
|
89
|
+
)
|
|
90
|
+
self.set_lambda(**update)
|
|
91
|
+
|
|
92
|
+
def truncate_all_lambda(self, value: float):
|
|
93
|
+
r"""Truncate all :math:`\lambda_k` with :math:`\varepsilon`.
|
|
94
|
+
|
|
95
|
+
.. math::
|
|
96
|
+
|
|
97
|
+
\hat \lambda_k = \begin{cases}
|
|
98
|
+
0, \quad &\lambda_k \le \varepsilon\\
|
|
99
|
+
\lambda_k, \quad &\varepsilon \lt \lambda_k \lt 1-\varepsilon\\
|
|
100
|
+
1, \quad &\lambda_k \ge 1-\varepsilon\\
|
|
101
|
+
\end{cases}
|
|
102
|
+
|
|
103
|
+
|
|
104
|
+
|
|
105
|
+
Parameters
|
|
106
|
+
----------
|
|
107
|
+
value : float
|
|
108
|
+
:math:`\varepsilon`
|
|
109
|
+
"""
|
|
110
|
+
truncate = dict.fromkeys(
|
|
111
|
+
self._logit_lambda.keys(),
|
|
112
|
+
value,
|
|
113
|
+
)
|
|
114
|
+
self.truncate_lambda(**truncate)
|
|
115
|
+
|
|
116
|
+
def get_lambda(self) -> dict[str, np.ndarray]:
|
|
117
|
+
r"""Get :math:`\lambda_k` that are currently used by the model.
|
|
118
|
+
|
|
119
|
+
Returns
|
|
120
|
+
-------
|
|
121
|
+
Dict[str, np.ndarray]
|
|
122
|
+
Mapping from variable name to :math:`\lambda_k`.
|
|
123
|
+
"""
|
|
124
|
+
return {
|
|
125
|
+
name: scipy.special.expit(shared.get_value())
|
|
126
|
+
for name, shared in self._logit_lambda.items()
|
|
127
|
+
}
|
|
128
|
+
|
|
129
|
+
def set_lambda(self, **kwargs: dict[str, np.ndarray | float]):
|
|
130
|
+
r"""Set :math:`\lambda_k` per variable."""
|
|
131
|
+
for key, value in kwargs.items():
|
|
132
|
+
logit_lam = scipy.special.logit(value)
|
|
133
|
+
shared = self._logit_lambda[key]
|
|
134
|
+
fill = np.broadcast_to(
|
|
135
|
+
logit_lam,
|
|
136
|
+
shared.type.shape,
|
|
137
|
+
)
|
|
138
|
+
shared.set_value(fill)
|
|
139
|
+
|
|
140
|
+
def set_all_lambda(self, value: np.ndarray | float):
|
|
141
|
+
r"""Set :math:`\lambda_k` globally."""
|
|
142
|
+
config = dict.fromkeys(
|
|
143
|
+
self._logit_lambda.keys(),
|
|
144
|
+
value,
|
|
145
|
+
)
|
|
146
|
+
self.set_lambda(**config)
|
|
147
|
+
|
|
148
|
+
def fit(self, *args, **kwargs) -> pm.Approximation:
|
|
149
|
+
r"""Set :math:`\lambda_k` using Variational Inference.
|
|
150
|
+
|
|
151
|
+
Examples
|
|
152
|
+
--------
|
|
153
|
+
|
|
154
|
+
.. code-block:: python
|
|
155
|
+
|
|
156
|
+
with model:
|
|
157
|
+
# set all parameterizations to mix of centered and non-centered
|
|
158
|
+
vip.set_all_lambda(0.5)
|
|
159
|
+
|
|
160
|
+
# fit using ADVI
|
|
161
|
+
mf = vip.fit(random_seed=42)
|
|
162
|
+
"""
|
|
163
|
+
kwargs.setdefault("obj_optimizer", pm.adagrad_window(learning_rate=0.1))
|
|
164
|
+
kwargs.setdefault("method", "advi")
|
|
165
|
+
return pm.fit(
|
|
166
|
+
*args,
|
|
167
|
+
more_obj_params=self.variational_parameters,
|
|
168
|
+
**kwargs,
|
|
169
|
+
)
|
|
170
|
+
|
|
171
|
+
|
|
172
|
+
def vip_reparam_node(
|
|
173
|
+
op: RandomVariable,
|
|
174
|
+
node: Apply,
|
|
175
|
+
name: str,
|
|
176
|
+
dims: list[Variable],
|
|
177
|
+
transform: Transform | None,
|
|
178
|
+
) -> tuple[ModelDeterministic, ModelNamed]:
|
|
179
|
+
if not isinstance(node.op, RandomVariable | SymbolicRandomVariable):
|
|
180
|
+
raise TypeError("Op should be RandomVariable type")
|
|
181
|
+
# FIXME: This is wrong when size is None
|
|
182
|
+
_, size, *_ = node.inputs
|
|
183
|
+
eval_size = size.eval(mode="FAST_COMPILE")
|
|
184
|
+
if eval_size is not None:
|
|
185
|
+
rv_shape = tuple(eval_size)
|
|
186
|
+
else:
|
|
187
|
+
rv_shape = ()
|
|
188
|
+
lam_name = f"{name}::lam_logit__"
|
|
189
|
+
_log.debug(f"Creating {lam_name} with shape of {rv_shape}")
|
|
190
|
+
logit_lam_ = pytensor.shared(
|
|
191
|
+
np.zeros(rv_shape),
|
|
192
|
+
shape=rv_shape,
|
|
193
|
+
name=lam_name,
|
|
194
|
+
)
|
|
195
|
+
logit_lam = model_named(logit_lam_, *dims)
|
|
196
|
+
lam = pt.sigmoid(logit_lam)
|
|
197
|
+
return (
|
|
198
|
+
_vip_reparam_node(
|
|
199
|
+
op,
|
|
200
|
+
node=node,
|
|
201
|
+
name=name,
|
|
202
|
+
dims=dims,
|
|
203
|
+
transform=transform,
|
|
204
|
+
lam=lam,
|
|
205
|
+
),
|
|
206
|
+
logit_lam,
|
|
207
|
+
)
|
|
208
|
+
|
|
209
|
+
|
|
210
|
+
@singledispatch
|
|
211
|
+
def _vip_reparam_node(
|
|
212
|
+
op: RandomVariable,
|
|
213
|
+
node: Apply,
|
|
214
|
+
name: str,
|
|
215
|
+
dims: list[Variable],
|
|
216
|
+
transform: Transform | None,
|
|
217
|
+
lam: pt.TensorVariable,
|
|
218
|
+
) -> ModelDeterministic:
|
|
219
|
+
raise NotImplementedError
|
|
220
|
+
|
|
221
|
+
|
|
222
|
+
@_vip_reparam_node.register
|
|
223
|
+
def _(
|
|
224
|
+
op: pm.Normal,
|
|
225
|
+
node: Apply,
|
|
226
|
+
name: str,
|
|
227
|
+
dims: list[Variable],
|
|
228
|
+
transform: Transform | None,
|
|
229
|
+
lam: pt.TensorVariable,
|
|
230
|
+
) -> ModelDeterministic:
|
|
231
|
+
rng, size, loc, scale = node.inputs
|
|
232
|
+
if transform is not None:
|
|
233
|
+
raise NotImplementedError("Reparametrization of Normal with Transform is not implemented")
|
|
234
|
+
vip_rv_ = pm.Normal.dist(
|
|
235
|
+
lam * loc,
|
|
236
|
+
scale**lam,
|
|
237
|
+
size=size,
|
|
238
|
+
rng=rng,
|
|
239
|
+
)
|
|
240
|
+
vip_rv_.name = f"{name}::tau_"
|
|
241
|
+
|
|
242
|
+
vip_rv = model_free_rv(
|
|
243
|
+
vip_rv_,
|
|
244
|
+
vip_rv_.clone(),
|
|
245
|
+
None,
|
|
246
|
+
*dims,
|
|
247
|
+
)
|
|
248
|
+
|
|
249
|
+
vip_rep_ = loc + scale ** (1 - lam) * (vip_rv - lam * loc)
|
|
250
|
+
|
|
251
|
+
vip_rep_.name = name
|
|
252
|
+
|
|
253
|
+
vip_rep = model_deterministic(vip_rep_, *dims)
|
|
254
|
+
return vip_rep
|
|
255
|
+
|
|
256
|
+
|
|
257
|
+
@_vip_reparam_node.register
|
|
258
|
+
def _(
|
|
259
|
+
op: pm.Exponential,
|
|
260
|
+
node: Apply,
|
|
261
|
+
name: str,
|
|
262
|
+
dims: list[Variable],
|
|
263
|
+
transform: Transform | None,
|
|
264
|
+
lam: pt.TensorVariable,
|
|
265
|
+
) -> ModelDeterministic:
|
|
266
|
+
rng, size, scale = node.inputs
|
|
267
|
+
scale_centered = scale**lam
|
|
268
|
+
scale_noncentered = scale ** (1 - lam)
|
|
269
|
+
vip_rv_ = pm.Exponential.dist(
|
|
270
|
+
scale=scale_centered,
|
|
271
|
+
size=size,
|
|
272
|
+
rng=rng,
|
|
273
|
+
)
|
|
274
|
+
vip_rv_value_ = vip_rv_.clone()
|
|
275
|
+
vip_rv_.name = f"{name}::tau_"
|
|
276
|
+
if transform is not None:
|
|
277
|
+
vip_rv_value_.name = f"{vip_rv_.name}_{transform.name}__"
|
|
278
|
+
else:
|
|
279
|
+
vip_rv_value_.name = vip_rv_.name
|
|
280
|
+
vip_rv = model_free_rv(
|
|
281
|
+
vip_rv_,
|
|
282
|
+
vip_rv_value_,
|
|
283
|
+
transform,
|
|
284
|
+
*dims,
|
|
285
|
+
)
|
|
286
|
+
|
|
287
|
+
vip_rep_ = scale_noncentered * vip_rv
|
|
288
|
+
|
|
289
|
+
vip_rep_.name = name
|
|
290
|
+
|
|
291
|
+
vip_rep = model_deterministic(vip_rep_, *dims)
|
|
292
|
+
return vip_rep
|
|
293
|
+
|
|
294
|
+
|
|
295
|
+
def vip_reparametrize(
|
|
296
|
+
model: pm.Model,
|
|
297
|
+
var_names: Sequence[str],
|
|
298
|
+
) -> tuple[pm.Model, VIP]:
|
|
299
|
+
r"""Repametrize Model using Variationally Informed Parametrization (VIP).
|
|
300
|
+
|
|
301
|
+
.. math::
|
|
302
|
+
|
|
303
|
+
\begin{align*}
|
|
304
|
+
\eta_{k} &\sim \text{normal}(\lambda_{k} \cdot \mu, \sigma^{\lambda_{k}})\\
|
|
305
|
+
\theta_{k} &= \mu + \sigma^{1 - \lambda_{k}} ( \eta_{k} - \lambda_{k} \cdot \mu)
|
|
306
|
+
\sim \text{normal}(\mu, \sigma).
|
|
307
|
+
\end{align*}
|
|
308
|
+
|
|
309
|
+
Parameters
|
|
310
|
+
----------
|
|
311
|
+
model : Model
|
|
312
|
+
Model with centered parameterizations for variables.
|
|
313
|
+
var_names : Sequence[str]
|
|
314
|
+
Target variables to reparemetrize.
|
|
315
|
+
|
|
316
|
+
Returns
|
|
317
|
+
-------
|
|
318
|
+
Tuple[Model, VIP]
|
|
319
|
+
Updated model and VIP helper to reparametrize or infer parametrization of the model.
|
|
320
|
+
|
|
321
|
+
Examples
|
|
322
|
+
--------
|
|
323
|
+
The traditional eight schools.
|
|
324
|
+
|
|
325
|
+
.. code-block:: python
|
|
326
|
+
|
|
327
|
+
import pymc as pm
|
|
328
|
+
import numpy as np
|
|
329
|
+
|
|
330
|
+
J = 8
|
|
331
|
+
y = np.array([28.0, 8.0, -3.0, 7.0, -1.0, 1.0, 18.0, 12.0])
|
|
332
|
+
sigma = np.array([15.0, 10.0, 16.0, 11.0, 9.0, 11.0, 10.0, 18.0])
|
|
333
|
+
|
|
334
|
+
with pm.Model() as Centered_eight:
|
|
335
|
+
mu = pm.Normal("mu", mu=0, sigma=5)
|
|
336
|
+
tau = pm.HalfCauchy("tau", beta=5)
|
|
337
|
+
theta = pm.Normal("theta", mu=mu, sigma=tau, shape=J)
|
|
338
|
+
obs = pm.Normal("obs", mu=theta, sigma=sigma, observed=y)
|
|
339
|
+
|
|
340
|
+
The regular model definition with centered parametrization is sufficient to use VIP.
|
|
341
|
+
To change the model parametrization use the following function.
|
|
342
|
+
|
|
343
|
+
.. code-block:: python
|
|
344
|
+
|
|
345
|
+
from pymc_extras.model.transforms.autoreparam import vip_reparametrize
|
|
346
|
+
Reparam_eight, vip = vip_reparametrize(Centered_eight, ["theta"])
|
|
347
|
+
|
|
348
|
+
with Reparam_eight:
|
|
349
|
+
# set all parameterizations to cenered (not needed)
|
|
350
|
+
vip.set_all_lambda(1)
|
|
351
|
+
|
|
352
|
+
# set all parameterizations to non-cenered (desired)
|
|
353
|
+
vip.set_all_lambda(0)
|
|
354
|
+
|
|
355
|
+
# or per variable
|
|
356
|
+
vip.set_lambda(theta=0)
|
|
357
|
+
|
|
358
|
+
# just set non-centered parameterization
|
|
359
|
+
trace = pm.sample()
|
|
360
|
+
|
|
361
|
+
However, setting it manually is not always great experience, we can learn it.
|
|
362
|
+
|
|
363
|
+
.. code-block:: python
|
|
364
|
+
|
|
365
|
+
with Reparam_eight:
|
|
366
|
+
# set all parameterizations to mix of centered and non-centered
|
|
367
|
+
vip.set_all_lambda(0.5)
|
|
368
|
+
|
|
369
|
+
# fit using ADVI
|
|
370
|
+
mf = vip.fit(random_seed=42)
|
|
371
|
+
|
|
372
|
+
# display lambdas
|
|
373
|
+
print(vip.get_lambda())
|
|
374
|
+
|
|
375
|
+
# {'theta': array([0.01473405, 0.02221006, 0.03656685, 0.03798879, 0.04876761,
|
|
376
|
+
# 0.0300203 , 0.02733082, 0.01817754])}
|
|
377
|
+
|
|
378
|
+
Now you can use sampling again:
|
|
379
|
+
|
|
380
|
+
.. code-block:: python
|
|
381
|
+
|
|
382
|
+
with Reparam_eight:
|
|
383
|
+
trace = pm.sample()
|
|
384
|
+
|
|
385
|
+
Sometimes it makes sense to enable clipping (that is off by default).
|
|
386
|
+
The idea is to round :math:`\varepsilon` to the closest extremum (:math:`0` or :math:`0`)
|
|
387
|
+
|
|
388
|
+
.. math::
|
|
389
|
+
|
|
390
|
+
\hat \lambda_k = \begin{cases}
|
|
391
|
+
0, \quad &\lambda_k \le \varepsilon\\
|
|
392
|
+
\lambda_k, \quad &\varepsilon \lt \lambda_k \lt 1-\varepsilon\\
|
|
393
|
+
1, \quad &\lambda_k \ge 1-\varepsilon
|
|
394
|
+
\end{cases}
|
|
395
|
+
|
|
396
|
+
.. code-block:: python
|
|
397
|
+
|
|
398
|
+
vip.truncate_all_lambda(0.1)
|
|
399
|
+
|
|
400
|
+
Sampling has to be performed again
|
|
401
|
+
|
|
402
|
+
.. code-block:: python
|
|
403
|
+
|
|
404
|
+
with Reparam_eight:
|
|
405
|
+
trace = pm.sample()
|
|
406
|
+
|
|
407
|
+
References
|
|
408
|
+
----------
|
|
409
|
+
- Automatic Reparameterisation of Probabilistic Programs,
|
|
410
|
+
Maria I. Gorinova, Dave Moore, Matthew D. Hoffman (2019)
|
|
411
|
+
"""
|
|
412
|
+
fmodel, memo = fgraph_from_model(model)
|
|
413
|
+
lambda_names = []
|
|
414
|
+
replacements = []
|
|
415
|
+
for name in var_names:
|
|
416
|
+
old = memo[model.named_vars[name]]
|
|
417
|
+
rv, _, *dims = old.owner.inputs
|
|
418
|
+
new, lam = vip_reparam_node(
|
|
419
|
+
rv.owner.op,
|
|
420
|
+
rv.owner,
|
|
421
|
+
name=rv.name,
|
|
422
|
+
dims=dims,
|
|
423
|
+
transform=old.owner.op.transform,
|
|
424
|
+
)
|
|
425
|
+
replacements.append((old, new))
|
|
426
|
+
lambda_names.append(lam.name)
|
|
427
|
+
toposort_replace(fmodel, replacements, reverse=True)
|
|
428
|
+
reparam_model = model_from_fgraph(fmodel)
|
|
429
|
+
model_lambdas = {
|
|
430
|
+
var_name: reparam_model[lambda_name]
|
|
431
|
+
for lambda_name, var_name in zip(lambda_names, var_names)
|
|
432
|
+
}
|
|
433
|
+
vip = VIP(model_lambdas)
|
|
434
|
+
return reparam_model, vip
|