pygazpar 1.2.8__py313-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
pygazpar/enum.py ADDED
@@ -0,0 +1,35 @@
1
+ from enum import Enum
2
+
3
+
4
+ # ------------------------------------------------------------------------------------------------------------
5
+ class PropertyName(Enum):
6
+ TIME_PERIOD = "time_period"
7
+ START_INDEX = "start_index_m3"
8
+ END_INDEX = "end_index_m3"
9
+ VOLUME = "volume_m3"
10
+ ENERGY = "energy_kwh"
11
+ CONVERTER_FACTOR = "converter_factor_kwh/m3"
12
+ TEMPERATURE = "temperature_degC"
13
+ TYPE = "type"
14
+ TIMESTAMP = "timestamp"
15
+
16
+ def __str__(self):
17
+ return self.value
18
+
19
+ def __repr__(self):
20
+ return self.__str__()
21
+
22
+
23
+ # ------------------------------------------------------------------------------------------------------------
24
+ class Frequency(Enum):
25
+ HOURLY = "hourly"
26
+ DAILY = "daily"
27
+ WEEKLY = "weekly"
28
+ MONTHLY = "monthly"
29
+ YEARLY = "yearly"
30
+
31
+ def __str__(self):
32
+ return self.value
33
+
34
+ def __repr__(self):
35
+ return self.__str__()
@@ -0,0 +1,138 @@
1
+ import logging
2
+ from datetime import datetime
3
+ from pygazpar.enum import Frequency
4
+ from pygazpar.enum import PropertyName
5
+ from openpyxl.worksheet.worksheet import Worksheet
6
+ from openpyxl.cell.cell import Cell
7
+ from openpyxl import load_workbook
8
+ from typing import Any, List, Dict
9
+
10
+
11
+ FIRST_DATA_LINE_NUMBER = 10
12
+
13
+ Logger = logging.getLogger(__name__)
14
+
15
+
16
+ # ------------------------------------------------------------------------------------------------------------
17
+ class ExcelParser:
18
+
19
+ # ------------------------------------------------------
20
+ @staticmethod
21
+ def parse(dataFilename: str, dataReadingFrequency: Frequency) -> List[Dict[str, Any]]:
22
+
23
+ parseByFrequency = {
24
+ Frequency.HOURLY: ExcelParser.__parseHourly,
25
+ Frequency.DAILY: ExcelParser.__parseDaily,
26
+ Frequency.WEEKLY: ExcelParser.__parseWeekly,
27
+ Frequency.MONTHLY: ExcelParser.__parseMonthly
28
+ }
29
+
30
+ Logger.debug(f"Loading Excel data file '{dataFilename}'...")
31
+
32
+ workbook = load_workbook(filename=dataFilename)
33
+
34
+ worksheet = workbook.active
35
+
36
+ res = parseByFrequency[dataReadingFrequency](worksheet) # type: ignore
37
+
38
+ workbook.close()
39
+
40
+ Logger.debug("Processed Excel %s data: %s", dataReadingFrequency, res)
41
+
42
+ return res
43
+
44
+ # ------------------------------------------------------
45
+ @staticmethod
46
+ def __fillRow(row: Dict, propertyName: str, cell: Cell, isNumber: bool):
47
+
48
+ if cell.value is not None:
49
+ if isNumber:
50
+ if type(cell.value) is str:
51
+ if len(cell.value.strip()) > 0:
52
+ row[propertyName] = float(cell.value.replace(',', '.'))
53
+ else:
54
+ row[propertyName] = cell.value
55
+ else:
56
+ row[propertyName] = cell.value.strip() if type(cell.value) is str else cell.value
57
+
58
+ # ------------------------------------------------------
59
+ @staticmethod
60
+ def __parseHourly(worksheet: Worksheet) -> List[Dict[str, Any]]:
61
+ return []
62
+
63
+ # ------------------------------------------------------
64
+ @staticmethod
65
+ def __parseDaily(worksheet: Worksheet) -> List[Dict[str, Any]]:
66
+
67
+ res = []
68
+
69
+ # Timestamp of the data.
70
+ data_timestamp = datetime.now().isoformat()
71
+
72
+ minRowNum = FIRST_DATA_LINE_NUMBER
73
+ maxRowNum = len(worksheet['B'])
74
+ for rownum in range(minRowNum, maxRowNum + 1):
75
+ row = {}
76
+ if worksheet.cell(column=2, row=rownum).value is not None:
77
+ ExcelParser.__fillRow(row, PropertyName.TIME_PERIOD.value, worksheet.cell(column=2, row=rownum), False) # type: ignore
78
+ ExcelParser.__fillRow(row, PropertyName.START_INDEX.value, worksheet.cell(column=3, row=rownum), True) # type: ignore
79
+ ExcelParser.__fillRow(row, PropertyName.END_INDEX.value, worksheet.cell(column=4, row=rownum), True) # type: ignore
80
+ ExcelParser.__fillRow(row, PropertyName.VOLUME.value, worksheet.cell(column=5, row=rownum), True) # type: ignore
81
+ ExcelParser.__fillRow(row, PropertyName.ENERGY.value, worksheet.cell(column=6, row=rownum), True) # type: ignore
82
+ ExcelParser.__fillRow(row, PropertyName.CONVERTER_FACTOR.value, worksheet.cell(column=7, row=rownum), True) # type: ignore
83
+ ExcelParser.__fillRow(row, PropertyName.TEMPERATURE.value, worksheet.cell(column=8, row=rownum), True) # type: ignore
84
+ ExcelParser.__fillRow(row, PropertyName.TYPE.value, worksheet.cell(column=9, row=rownum), False) # type: ignore
85
+ row[PropertyName.TIMESTAMP.value] = data_timestamp
86
+ res.append(row)
87
+
88
+ Logger.debug(f"Daily data read successfully between row #{minRowNum} and row #{maxRowNum}")
89
+
90
+ return res
91
+
92
+ # ------------------------------------------------------
93
+ @staticmethod
94
+ def __parseWeekly(worksheet: Worksheet) -> List[Dict[str, Any]]:
95
+
96
+ res = []
97
+
98
+ # Timestamp of the data.
99
+ data_timestamp = datetime.now().isoformat()
100
+
101
+ minRowNum = FIRST_DATA_LINE_NUMBER
102
+ maxRowNum = len(worksheet['B'])
103
+ for rownum in range(minRowNum, maxRowNum + 1):
104
+ row = {}
105
+ if worksheet.cell(column=2, row=rownum).value is not None:
106
+ ExcelParser.__fillRow(row, PropertyName.TIME_PERIOD.value, worksheet.cell(column=2, row=rownum), False) # type: ignore
107
+ ExcelParser.__fillRow(row, PropertyName.VOLUME.value, worksheet.cell(column=3, row=rownum), True) # type: ignore
108
+ ExcelParser.__fillRow(row, PropertyName.ENERGY.value, worksheet.cell(column=4, row=rownum), True) # type: ignore
109
+ row[PropertyName.TIMESTAMP.value] = data_timestamp
110
+ res.append(row)
111
+
112
+ Logger.debug(f"Weekly data read successfully between row #{minRowNum} and row #{maxRowNum}")
113
+
114
+ return res
115
+
116
+ # ------------------------------------------------------
117
+ @staticmethod
118
+ def __parseMonthly(worksheet: Worksheet) -> List[Dict[str, Any]]:
119
+
120
+ res = []
121
+
122
+ # Timestamp of the data.
123
+ data_timestamp = datetime.now().isoformat()
124
+
125
+ minRowNum = FIRST_DATA_LINE_NUMBER
126
+ maxRowNum = len(worksheet['B'])
127
+ for rownum in range(minRowNum, maxRowNum + 1):
128
+ row = {}
129
+ if worksheet.cell(column=2, row=rownum).value is not None:
130
+ ExcelParser.__fillRow(row, PropertyName.TIME_PERIOD.value, worksheet.cell(column=2, row=rownum), False) # type: ignore
131
+ ExcelParser.__fillRow(row, PropertyName.VOLUME.value, worksheet.cell(column=3, row=rownum), True) # type: ignore
132
+ ExcelParser.__fillRow(row, PropertyName.ENERGY.value, worksheet.cell(column=4, row=rownum), True) # type: ignore
133
+ row[PropertyName.TIMESTAMP.value] = data_timestamp
134
+ res.append(row)
135
+
136
+ Logger.debug(f"Monthly data read successfully between row #{minRowNum} and row #{maxRowNum}")
137
+
138
+ return res
pygazpar/jsonparser.py ADDED
@@ -0,0 +1,50 @@
1
+ import json
2
+ import logging
3
+ from datetime import datetime
4
+ from pygazpar.enum import PropertyName
5
+ from typing import Any, List, Dict
6
+
7
+ INPUT_DATE_FORMAT = "%Y-%m-%d"
8
+
9
+ OUTPUT_DATE_FORMAT = "%d/%m/%Y"
10
+
11
+ Logger = logging.getLogger(__name__)
12
+
13
+
14
+ # ------------------------------------------------------------------------------------------------------------
15
+ class JsonParser:
16
+
17
+ # ------------------------------------------------------
18
+ @staticmethod
19
+ def parse(jsonStr: str, temperaturesStr: str, pceIdentifier: str) -> List[Dict[str, Any]]:
20
+
21
+ res = []
22
+
23
+ data = json.loads(jsonStr)
24
+
25
+ temperatures = json.loads(temperaturesStr)
26
+
27
+ # Timestamp of the data.
28
+ data_timestamp = datetime.now().isoformat()
29
+
30
+ for releve in data[pceIdentifier]['releves']:
31
+ temperature = releve['temperature']
32
+ if temperature is None and temperatures is not None and len(temperatures) > 0:
33
+ temperature = temperatures.get(releve['journeeGaziere'])
34
+
35
+ item = {}
36
+ item[PropertyName.TIME_PERIOD.value] = datetime.strftime(datetime.strptime(releve['journeeGaziere'], INPUT_DATE_FORMAT), OUTPUT_DATE_FORMAT)
37
+ item[PropertyName.START_INDEX.value] = releve['indexDebut']
38
+ item[PropertyName.END_INDEX.value] = releve['indexFin']
39
+ item[PropertyName.VOLUME.value] = releve['volumeBrutConsomme']
40
+ item[PropertyName.ENERGY.value] = releve['energieConsomme']
41
+ item[PropertyName.CONVERTER_FACTOR.value] = releve['coeffConversion']
42
+ item[PropertyName.TEMPERATURE.value] = temperature
43
+ item[PropertyName.TYPE.value] = releve['qualificationReleve']
44
+ item[PropertyName.TIMESTAMP.value] = data_timestamp
45
+
46
+ res.append(item)
47
+
48
+ Logger.debug("Daily data read successfully from Json")
49
+
50
+ return res