pygazpar 1.2.8__py313-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- pygazpar/__init__.py +4 -0
- pygazpar/__main__.py +83 -0
- pygazpar/client.py +59 -0
- pygazpar/datasource.py +528 -0
- pygazpar/enum.py +35 -0
- pygazpar/excelparser.py +138 -0
- pygazpar/jsonparser.py +50 -0
- pygazpar/resources/daily_data_sample.json +7802 -0
- pygazpar/resources/hourly_data_sample.json +1 -0
- pygazpar/resources/monthly_data_sample.json +146 -0
- pygazpar/resources/weekly_data_sample.json +614 -0
- pygazpar/resources/yearly_data_sample.json +18 -0
- pygazpar/version.py +1 -0
- pygazpar-1.2.8.dist-info/LICENSE.md +21 -0
- pygazpar-1.2.8.dist-info/METADATA +481 -0
- pygazpar-1.2.8.dist-info/RECORD +27 -0
- pygazpar-1.2.8.dist-info/WHEEL +5 -0
- pygazpar-1.2.8.dist-info/entry_points.txt +2 -0
- pygazpar-1.2.8.dist-info/top_level.txt +3 -0
- samples/__init__.py +0 -0
- samples/excelSample.py +31 -0
- samples/jsonSample.py +30 -0
- samples/testSample.py +18 -0
- tests/__init__.py +0 -0
- tests/test_client.py +159 -0
- tests/test_datafileparser.py +20 -0
- tests/test_datasource.py +166 -0
pygazpar/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
1
|
+
from pygazpar.enum import PropertyName, Frequency # noqa: F401
|
2
|
+
from pygazpar.client import Client # noqa: F401
|
3
|
+
from pygazpar.datasource import JsonWebDataSource, ExcelFileDataSource, JsonFileDataSource, ExcelWebDataSource, TestDataSource # noqa: F401
|
4
|
+
from pygazpar.version import __version__ # noqa: F401
|
pygazpar/__main__.py
ADDED
@@ -0,0 +1,83 @@
|
|
1
|
+
import argparse
|
2
|
+
import sys
|
3
|
+
import json
|
4
|
+
import traceback
|
5
|
+
import os
|
6
|
+
import logging
|
7
|
+
import pygazpar
|
8
|
+
|
9
|
+
|
10
|
+
def main():
|
11
|
+
"""Main function"""
|
12
|
+
parser = argparse.ArgumentParser()
|
13
|
+
parser.add_argument("-v", "--version",
|
14
|
+
action="version",
|
15
|
+
version=f"PyGazpar {pygazpar.__version__}")
|
16
|
+
parser.add_argument("-u", "--username",
|
17
|
+
required=True,
|
18
|
+
help="GRDF username (email)")
|
19
|
+
parser.add_argument("-p", "--password",
|
20
|
+
required=True,
|
21
|
+
help="GRDF password")
|
22
|
+
parser.add_argument("-c", "--pce",
|
23
|
+
required=True,
|
24
|
+
help="GRDF PCE identifier")
|
25
|
+
parser.add_argument("-t", "--tmpdir",
|
26
|
+
required=False,
|
27
|
+
default="/tmp",
|
28
|
+
help="tmp directory (default is /tmp)")
|
29
|
+
parser.add_argument("-f", "--frequency",
|
30
|
+
required=False,
|
31
|
+
type=lambda frequency: pygazpar.Frequency[frequency], choices=list(pygazpar.Frequency),
|
32
|
+
default="DAILY",
|
33
|
+
help="Meter reading frequency (DAILY, WEEKLY, MONTHLY, YEARLY)")
|
34
|
+
parser.add_argument("-d", "--lastNDays",
|
35
|
+
required=False,
|
36
|
+
type=int,
|
37
|
+
default=365,
|
38
|
+
help="Get only the last N days of records (default: 365 days)")
|
39
|
+
parser.add_argument("--datasource",
|
40
|
+
required=False,
|
41
|
+
default="json",
|
42
|
+
help="Datasource: json | excel | test")
|
43
|
+
|
44
|
+
args = parser.parse_args()
|
45
|
+
|
46
|
+
# We create the tmp directory if not already exists.
|
47
|
+
if not os.path.exists(args.tmpdir):
|
48
|
+
os.mkdir(args.tmpdir)
|
49
|
+
|
50
|
+
# We remove the pygazpar log file.
|
51
|
+
pygazparLogFile = f"{args.tmpdir}/pygazpar.log"
|
52
|
+
if os.path.isfile(pygazparLogFile):
|
53
|
+
os.remove(pygazparLogFile)
|
54
|
+
|
55
|
+
# Setup logging.
|
56
|
+
logging.basicConfig(filename=f"{pygazparLogFile}", level=logging.DEBUG, format="%(asctime)s %(levelname)s [%(name)s] %(message)s")
|
57
|
+
|
58
|
+
logging.info(f"PyGazpar {pygazpar.__version__}")
|
59
|
+
logging.info(f"--tmpdir {args.tmpdir}")
|
60
|
+
logging.info(f"--frequency {args.frequency}")
|
61
|
+
logging.info(f"--lastNDays {args.lastNDays}")
|
62
|
+
logging.info(f"--datasource {bool(args.datasource)}")
|
63
|
+
|
64
|
+
if args.datasource == "json":
|
65
|
+
client = pygazpar.Client(pygazpar.JsonWebDataSource(args.username, args.password))
|
66
|
+
elif args.datasource == "excel":
|
67
|
+
client = pygazpar.Client(pygazpar.ExcelWebDataSource(args.username, args.password, args.tmpdir))
|
68
|
+
elif args.datasource == "test":
|
69
|
+
client = pygazpar.Client(pygazpar.TestDataSource())
|
70
|
+
else:
|
71
|
+
raise Exception("Invalid datasource: (json | excel | test) is expected")
|
72
|
+
|
73
|
+
try:
|
74
|
+
data = client.loadSince(args.pce, int(args.lastNDays), [args.frequency])
|
75
|
+
except BaseException:
|
76
|
+
print('An error occured while querying PyGazpar library : %s', traceback.format_exc())
|
77
|
+
return 1
|
78
|
+
|
79
|
+
print(json.dumps(data, indent=2))
|
80
|
+
|
81
|
+
|
82
|
+
if __name__ == '__main__':
|
83
|
+
sys.exit(main())
|
pygazpar/client.py
ADDED
@@ -0,0 +1,59 @@
|
|
1
|
+
import logging
|
2
|
+
from datetime import date, timedelta
|
3
|
+
from pygazpar.enum import Frequency
|
4
|
+
from pygazpar.datasource import IDataSource, MeterReadingsByFrequency
|
5
|
+
from typing import List, Optional
|
6
|
+
|
7
|
+
AUTH_NONCE_URL = "https://monespace.grdf.fr/client/particulier/accueil"
|
8
|
+
LOGIN_URL = "https://login.monespace.grdf.fr/sofit-account-api/api/v1/auth"
|
9
|
+
LOGIN_HEADER = {"domain": "grdf.fr"}
|
10
|
+
LOGIN_PAYLOAD = """{{
|
11
|
+
"email": "{0}",
|
12
|
+
"password": "{1}",
|
13
|
+
"capp": "meg",
|
14
|
+
"goto": "https://sofa-connexion.grdf.fr:443/openam/oauth2/externeGrdf/authorize?response_type=code&scope=openid%20profile%20email%20infotravaux%20%2Fv1%2Faccreditation%20%2Fv1%2Faccreditations%20%2Fdigiconso%2Fv1%20%2Fdigiconso%2Fv1%2Fconsommations%20new_meg&client_id=prod_espaceclient&state=0&redirect_uri=https%3A%2F%2Fmonespace.grdf.fr%2F_codexch&nonce={2}&by_pass_okta=1&capp=meg"}}"""
|
15
|
+
DATA_URL = "https://monespace.grdf.fr/api/e-conso/pce/consommation/informatives/telecharger?dateDebut={1}&dateFin={2}&frequence={0}&pceList%5B%5D={3}"
|
16
|
+
DATA_FILENAME = 'Donnees_informatives_*.xlsx'
|
17
|
+
|
18
|
+
DEFAULT_TMP_DIRECTORY = '/tmp'
|
19
|
+
DEFAULT_LAST_N_DAYS = 365
|
20
|
+
|
21
|
+
|
22
|
+
Logger = logging.getLogger(__name__)
|
23
|
+
|
24
|
+
|
25
|
+
# ------------------------------------------------------------------------------------------------------------
|
26
|
+
class Client:
|
27
|
+
|
28
|
+
# ------------------------------------------------------
|
29
|
+
def __init__(self, dataSource: IDataSource):
|
30
|
+
self.__dataSource = dataSource
|
31
|
+
|
32
|
+
# ------------------------------------------------------
|
33
|
+
def loadSince(self, pceIdentifier: str, lastNDays: int = DEFAULT_LAST_N_DAYS, frequencies: Optional[List[Frequency]] = None) -> MeterReadingsByFrequency:
|
34
|
+
|
35
|
+
try:
|
36
|
+
endDate = date.today()
|
37
|
+
startDate = endDate + timedelta(days=-lastNDays)
|
38
|
+
|
39
|
+
res = self.loadDateRange(pceIdentifier, startDate, endDate, frequencies)
|
40
|
+
except Exception:
|
41
|
+
Logger.error("An unexpected error occured while loading the data", exc_info=True)
|
42
|
+
raise
|
43
|
+
|
44
|
+
return res
|
45
|
+
|
46
|
+
# ------------------------------------------------------
|
47
|
+
def loadDateRange(self, pceIdentifier: str, startDate: date, endDate: date, frequencies: Optional[List[Frequency]] = None) -> MeterReadingsByFrequency:
|
48
|
+
|
49
|
+
Logger.debug("Start loading the data...")
|
50
|
+
|
51
|
+
try:
|
52
|
+
res = self.__dataSource.load(pceIdentifier, startDate, endDate, frequencies)
|
53
|
+
|
54
|
+
Logger.debug("The data load terminates normally")
|
55
|
+
except Exception:
|
56
|
+
Logger.error("An unexpected error occured while loading the data", exc_info=True)
|
57
|
+
raise
|
58
|
+
|
59
|
+
return res
|
pygazpar/datasource.py
ADDED
@@ -0,0 +1,528 @@
|
|
1
|
+
import logging
|
2
|
+
import glob
|
3
|
+
import os
|
4
|
+
import json
|
5
|
+
import time
|
6
|
+
import pandas as pd
|
7
|
+
import http.cookiejar
|
8
|
+
from abc import ABC, abstractmethod
|
9
|
+
from typing import Any, List, Dict, cast, Optional
|
10
|
+
from requests import Session
|
11
|
+
from datetime import date, timedelta
|
12
|
+
from pygazpar.enum import Frequency, PropertyName
|
13
|
+
from pygazpar.excelparser import ExcelParser
|
14
|
+
from pygazpar.jsonparser import JsonParser
|
15
|
+
|
16
|
+
SESSION_TOKEN_URL = "https://connexion.grdf.fr/api/v1/authn"
|
17
|
+
SESSION_TOKEN_PAYLOAD = """{{
|
18
|
+
"username": "{0}",
|
19
|
+
"password": "{1}",
|
20
|
+
"options": {{
|
21
|
+
"multiOptionalFactorEnroll": "false",
|
22
|
+
"warnBeforePasswordExpired": "false"
|
23
|
+
}}
|
24
|
+
}}"""
|
25
|
+
|
26
|
+
AUTH_TOKEN_URL = "https://connexion.grdf.fr/login/sessionCookieRedirect"
|
27
|
+
AUTH_TOKEN_PARAMS = """{{
|
28
|
+
"checkAccountSetupComplete": "true",
|
29
|
+
"token": "{0}",
|
30
|
+
"redirectUrl": "https://monespace.grdf.fr"
|
31
|
+
}}"""
|
32
|
+
|
33
|
+
Logger = logging.getLogger(__name__)
|
34
|
+
|
35
|
+
MeterReading = Dict[str, Any]
|
36
|
+
|
37
|
+
MeterReadings = List[MeterReading]
|
38
|
+
|
39
|
+
MeterReadingsByFrequency = Dict[str, MeterReadings]
|
40
|
+
|
41
|
+
|
42
|
+
# ------------------------------------------------------------------------------------------------------------
|
43
|
+
class IDataSource(ABC):
|
44
|
+
|
45
|
+
@abstractmethod
|
46
|
+
def load(self, pceIdentifier: str, startDate: date, endDate: date, frequencies: Optional[List[Frequency]] = None) -> MeterReadingsByFrequency:
|
47
|
+
pass
|
48
|
+
|
49
|
+
|
50
|
+
# ------------------------------------------------------------------------------------------------------------
|
51
|
+
class WebDataSource(IDataSource):
|
52
|
+
|
53
|
+
# ------------------------------------------------------
|
54
|
+
def __init__(self, username: str, password: str):
|
55
|
+
|
56
|
+
self.__username = username
|
57
|
+
self.__password = password
|
58
|
+
|
59
|
+
# ------------------------------------------------------
|
60
|
+
def load(self, pceIdentifier: str, startDate: date, endDate: date, frequencies: Optional[List[Frequency]] = None) -> MeterReadingsByFrequency:
|
61
|
+
|
62
|
+
self._login(self.__username, self.__password) # We ignore the return value.
|
63
|
+
|
64
|
+
res = self._loadFromSession(pceIdentifier, startDate, endDate, frequencies)
|
65
|
+
|
66
|
+
Logger.debug("The data update terminates normally")
|
67
|
+
|
68
|
+
return res
|
69
|
+
|
70
|
+
# ------------------------------------------------------
|
71
|
+
def _login(self, username: str, password: str) -> str:
|
72
|
+
|
73
|
+
session = Session()
|
74
|
+
session.headers.update({"domain": "grdf.fr"})
|
75
|
+
session.headers.update({"Content-Type": "application/json"})
|
76
|
+
session.headers.update({"X-Requested-With": "XMLHttpRequest"})
|
77
|
+
|
78
|
+
payload = SESSION_TOKEN_PAYLOAD.format(username, password)
|
79
|
+
|
80
|
+
response = session.post(SESSION_TOKEN_URL, data=payload)
|
81
|
+
|
82
|
+
if response.status_code != 200:
|
83
|
+
raise Exception(f"An error occurred while logging in. Status code: {response.status_code} - {response.text}")
|
84
|
+
|
85
|
+
session_token = response.json().get("sessionToken")
|
86
|
+
|
87
|
+
Logger.debug("Session token: %s", session_token)
|
88
|
+
|
89
|
+
jar = http.cookiejar.CookieJar()
|
90
|
+
|
91
|
+
self._session = Session()
|
92
|
+
self._session.headers.update({"Content-Type": "application/json"})
|
93
|
+
self._session.headers.update({"X-Requested-With": "XMLHttpRequest"})
|
94
|
+
|
95
|
+
params = json.loads(AUTH_TOKEN_PARAMS.format(session_token))
|
96
|
+
|
97
|
+
response = self._session.get(AUTH_TOKEN_URL, params=params, allow_redirects=True, cookies=jar) # type: ignore
|
98
|
+
|
99
|
+
if response.status_code != 200:
|
100
|
+
raise Exception(f"An error occurred while getting the auth token. Status code: {response.status_code} - {response.text}")
|
101
|
+
|
102
|
+
auth_token = self._session.cookies.get("auth_token", domain="monespace.grdf.fr")
|
103
|
+
|
104
|
+
return auth_token # type: ignore
|
105
|
+
|
106
|
+
@abstractmethod
|
107
|
+
def _loadFromSession(self, pceIdentifier: str, startDate: date, endDate: date, frequencies: Optional[List[Frequency]] = None) -> MeterReadingsByFrequency:
|
108
|
+
pass
|
109
|
+
|
110
|
+
|
111
|
+
# ------------------------------------------------------------------------------------------------------------
|
112
|
+
class ExcelWebDataSource(WebDataSource):
|
113
|
+
|
114
|
+
DATA_URL = "https://monespace.grdf.fr/api/e-conso/pce/consommation/informatives/telecharger?dateDebut={0}&dateFin={1}&frequence={3}&pceList[]={2}"
|
115
|
+
|
116
|
+
DATE_FORMAT = "%Y-%m-%d"
|
117
|
+
|
118
|
+
FREQUENCY_VALUES = {
|
119
|
+
Frequency.HOURLY: "Horaire",
|
120
|
+
Frequency.DAILY: "Journalier",
|
121
|
+
Frequency.WEEKLY: "Hebdomadaire",
|
122
|
+
Frequency.MONTHLY: "Mensuel",
|
123
|
+
Frequency.YEARLY: "Journalier"
|
124
|
+
}
|
125
|
+
|
126
|
+
DATA_FILENAME = 'Donnees_informatives_*.xlsx'
|
127
|
+
|
128
|
+
# ------------------------------------------------------
|
129
|
+
def __init__(self, username: str, password: str, tmpDirectory: str):
|
130
|
+
|
131
|
+
super().__init__(username, password)
|
132
|
+
|
133
|
+
self.__tmpDirectory = tmpDirectory
|
134
|
+
|
135
|
+
# ------------------------------------------------------
|
136
|
+
def _loadFromSession(self, pceIdentifier: str, startDate: date, endDate: date, frequencies: Optional[List[Frequency]] = None) -> MeterReadingsByFrequency:
|
137
|
+
|
138
|
+
res = {}
|
139
|
+
|
140
|
+
# XLSX is in the TMP directory
|
141
|
+
data_file_path_pattern = self.__tmpDirectory + '/' + ExcelWebDataSource.DATA_FILENAME
|
142
|
+
|
143
|
+
# We remove an eventual existing data file (from a previous run that has not deleted it).
|
144
|
+
file_list = glob.glob(data_file_path_pattern)
|
145
|
+
for filename in file_list:
|
146
|
+
if os.path.isfile(filename):
|
147
|
+
try:
|
148
|
+
os.remove(filename)
|
149
|
+
except PermissionError:
|
150
|
+
pass
|
151
|
+
|
152
|
+
if frequencies is None:
|
153
|
+
# Transform Enum in List.
|
154
|
+
frequencyList = [frequency for frequency in Frequency]
|
155
|
+
else:
|
156
|
+
# Get unique values.
|
157
|
+
frequencyList = set(frequencies)
|
158
|
+
|
159
|
+
for frequency in frequencyList:
|
160
|
+
# Inject parameters.
|
161
|
+
downloadUrl = ExcelWebDataSource.DATA_URL.format(startDate.strftime(ExcelWebDataSource.DATE_FORMAT), endDate.strftime(ExcelWebDataSource.DATE_FORMAT), pceIdentifier, ExcelWebDataSource.FREQUENCY_VALUES[frequency])
|
162
|
+
|
163
|
+
Logger.debug(f"Loading data of frequency {ExcelWebDataSource.FREQUENCY_VALUES[frequency]} from {startDate.strftime(ExcelWebDataSource.DATE_FORMAT)} to {endDate.strftime(ExcelWebDataSource.DATE_FORMAT)}")
|
164
|
+
|
165
|
+
# Retry mechanism.
|
166
|
+
retry = 10
|
167
|
+
while retry > 0:
|
168
|
+
|
169
|
+
try:
|
170
|
+
self.__downloadFile(self._session, downloadUrl, self.__tmpDirectory)
|
171
|
+
break
|
172
|
+
except Exception as e:
|
173
|
+
|
174
|
+
if retry == 1:
|
175
|
+
raise e
|
176
|
+
|
177
|
+
Logger.error("An error occurred while loading data. Retry in 3 seconds.")
|
178
|
+
time.sleep(3)
|
179
|
+
retry -= 1
|
180
|
+
|
181
|
+
# Load the XLSX file into the data structure
|
182
|
+
file_list = glob.glob(data_file_path_pattern)
|
183
|
+
|
184
|
+
if len(file_list) == 0:
|
185
|
+
Logger.warning(f"Not any data file has been found in '{self.__tmpDirectory}' directory")
|
186
|
+
|
187
|
+
for filename in file_list:
|
188
|
+
res[frequency.value] = ExcelParser.parse(filename, frequency if frequency != Frequency.YEARLY else Frequency.DAILY)
|
189
|
+
try:
|
190
|
+
# openpyxl does not close the file properly.
|
191
|
+
os.remove(filename)
|
192
|
+
except PermissionError:
|
193
|
+
pass
|
194
|
+
|
195
|
+
# We compute yearly from daily data.
|
196
|
+
if frequency == Frequency.YEARLY:
|
197
|
+
res[frequency.value] = FrequencyConverter.computeYearly(res[frequency.value])
|
198
|
+
|
199
|
+
return res
|
200
|
+
|
201
|
+
# ------------------------------------------------------
|
202
|
+
def __downloadFile(self, session: Session, url: str, path: str):
|
203
|
+
|
204
|
+
response = session.get(url)
|
205
|
+
|
206
|
+
if "text/html" in response.headers.get("Content-Type"): # type: ignore
|
207
|
+
raise Exception("An error occurred while loading data. Please check your credentials.")
|
208
|
+
|
209
|
+
if response.status_code != 200:
|
210
|
+
raise Exception(f"An error occurred while loading data. Status code: {response.status_code} - {response.text}")
|
211
|
+
|
212
|
+
response.raise_for_status()
|
213
|
+
|
214
|
+
filename = response.headers["Content-Disposition"].split("filename=")[1]
|
215
|
+
|
216
|
+
open(f"{path}/{filename}", "wb").write(response.content)
|
217
|
+
|
218
|
+
|
219
|
+
# ------------------------------------------------------------------------------------------------------------
|
220
|
+
class ExcelFileDataSource(IDataSource):
|
221
|
+
|
222
|
+
def __init__(self, excelFile: str):
|
223
|
+
|
224
|
+
self.__excelFile = excelFile
|
225
|
+
|
226
|
+
def load(self, pceIdentifier: str, startDate: date, endDate: date, frequencies: Optional[List[Frequency]] = None) -> MeterReadingsByFrequency:
|
227
|
+
|
228
|
+
res = {}
|
229
|
+
|
230
|
+
if frequencies is None:
|
231
|
+
# Transform Enum in List.
|
232
|
+
frequencyList = [frequency for frequency in Frequency]
|
233
|
+
else:
|
234
|
+
# Get unique values.
|
235
|
+
frequencyList = set(frequencies)
|
236
|
+
|
237
|
+
for frequency in frequencyList:
|
238
|
+
if frequency != Frequency.YEARLY:
|
239
|
+
res[frequency.value] = ExcelParser.parse(self.__excelFile, frequency)
|
240
|
+
else:
|
241
|
+
daily = ExcelParser.parse(self.__excelFile, Frequency.DAILY)
|
242
|
+
res[frequency.value] = FrequencyConverter.computeYearly(daily)
|
243
|
+
|
244
|
+
return res
|
245
|
+
|
246
|
+
|
247
|
+
# ------------------------------------------------------------------------------------------------------------
|
248
|
+
class JsonWebDataSource(WebDataSource):
|
249
|
+
|
250
|
+
DATA_URL = "https://monespace.grdf.fr/api/e-conso/pce/consommation/informatives?dateDebut={0}&dateFin={1}&pceList[]={2}"
|
251
|
+
|
252
|
+
TEMPERATURES_URL = "https://monespace.grdf.fr/api/e-conso/pce/{0}/meteo?dateFinPeriode={1}&nbJours={2}"
|
253
|
+
|
254
|
+
INPUT_DATE_FORMAT = "%Y-%m-%d"
|
255
|
+
|
256
|
+
OUTPUT_DATE_FORMAT = "%d/%m/%Y"
|
257
|
+
|
258
|
+
def __init__(self, username: str, password: str):
|
259
|
+
|
260
|
+
super().__init__(username, password)
|
261
|
+
|
262
|
+
def _loadFromSession(self, pceIdentifier: str, startDate: date, endDate: date, frequencies: Optional[List[Frequency]] = None) -> MeterReadingsByFrequency:
|
263
|
+
|
264
|
+
res = {}
|
265
|
+
|
266
|
+
computeByFrequency = {
|
267
|
+
Frequency.HOURLY: FrequencyConverter.computeHourly,
|
268
|
+
Frequency.DAILY: FrequencyConverter.computeDaily,
|
269
|
+
Frequency.WEEKLY: FrequencyConverter.computeWeekly,
|
270
|
+
Frequency.MONTHLY: FrequencyConverter.computeMonthly,
|
271
|
+
Frequency.YEARLY: FrequencyConverter.computeYearly
|
272
|
+
}
|
273
|
+
|
274
|
+
# Data URL: Inject parameters.
|
275
|
+
downloadUrl = JsonWebDataSource.DATA_URL.format(startDate.strftime(JsonWebDataSource.INPUT_DATE_FORMAT), endDate.strftime(JsonWebDataSource.INPUT_DATE_FORMAT), pceIdentifier)
|
276
|
+
|
277
|
+
# Retry mechanism.
|
278
|
+
retry = 10
|
279
|
+
while retry > 0:
|
280
|
+
|
281
|
+
try:
|
282
|
+
response = self._session.get(downloadUrl)
|
283
|
+
|
284
|
+
if "text/html" in response.headers.get("Content-Type"): # type: ignore
|
285
|
+
raise Exception("An error occurred while loading data. Please check your credentials.")
|
286
|
+
|
287
|
+
if response.status_code != 200:
|
288
|
+
raise Exception(f"An error occurred while loading data. Status code: {response.status_code} - {response.text}")
|
289
|
+
|
290
|
+
break
|
291
|
+
except Exception as e:
|
292
|
+
|
293
|
+
if retry == 1:
|
294
|
+
raise e
|
295
|
+
|
296
|
+
Logger.error("An error occurred while loading data. Retry in 3 seconds.")
|
297
|
+
time.sleep(3)
|
298
|
+
retry -= 1
|
299
|
+
|
300
|
+
data = response.text
|
301
|
+
|
302
|
+
Logger.debug("Json meter data: %s", data)
|
303
|
+
|
304
|
+
# Temperatures URL: Inject parameters.
|
305
|
+
endDate = date.today() - timedelta(days=1) if endDate >= date.today() else endDate
|
306
|
+
days = min((endDate - startDate).days, 730)
|
307
|
+
temperaturesUrl = JsonWebDataSource.TEMPERATURES_URL.format(pceIdentifier, endDate.strftime(JsonWebDataSource.INPUT_DATE_FORMAT), days)
|
308
|
+
|
309
|
+
# Get weather data.
|
310
|
+
temperatures = self._session.get(temperaturesUrl).text
|
311
|
+
|
312
|
+
Logger.debug("Json temperature data: %s", temperatures)
|
313
|
+
|
314
|
+
# Transform all the data into the target structure.
|
315
|
+
daily = JsonParser.parse(data, temperatures, pceIdentifier)
|
316
|
+
|
317
|
+
Logger.debug("Processed daily data: %s", daily)
|
318
|
+
|
319
|
+
if frequencies is None:
|
320
|
+
# Transform Enum in List.
|
321
|
+
frequencyList = [frequency for frequency in Frequency]
|
322
|
+
else:
|
323
|
+
# Get unique values.
|
324
|
+
frequencyList = set(frequencies)
|
325
|
+
|
326
|
+
for frequency in frequencyList:
|
327
|
+
res[frequency.value] = computeByFrequency[frequency](daily)
|
328
|
+
|
329
|
+
return res
|
330
|
+
|
331
|
+
|
332
|
+
# ------------------------------------------------------------------------------------------------------------
|
333
|
+
class JsonFileDataSource(IDataSource):
|
334
|
+
|
335
|
+
def __init__(self, consumptionJsonFile: str, temperatureJsonFile):
|
336
|
+
|
337
|
+
self.__consumptionJsonFile = consumptionJsonFile
|
338
|
+
self.__temperatureJsonFile = temperatureJsonFile
|
339
|
+
|
340
|
+
def load(self, pceIdentifier: str, startDate: date, endDate: date, frequencies: Optional[List[Frequency]] = None) -> MeterReadingsByFrequency:
|
341
|
+
|
342
|
+
res = {}
|
343
|
+
|
344
|
+
with open(self.__consumptionJsonFile) as consumptionJsonFile:
|
345
|
+
with open(self.__temperatureJsonFile) as temperatureJsonFile:
|
346
|
+
daily = JsonParser.parse(consumptionJsonFile.read(), temperatureJsonFile.read(), pceIdentifier)
|
347
|
+
|
348
|
+
computeByFrequency = {
|
349
|
+
Frequency.HOURLY: FrequencyConverter.computeHourly,
|
350
|
+
Frequency.DAILY: FrequencyConverter.computeDaily,
|
351
|
+
Frequency.WEEKLY: FrequencyConverter.computeWeekly,
|
352
|
+
Frequency.MONTHLY: FrequencyConverter.computeMonthly,
|
353
|
+
Frequency.YEARLY: FrequencyConverter.computeYearly
|
354
|
+
}
|
355
|
+
|
356
|
+
if frequencies is None:
|
357
|
+
# Transform Enum in List.
|
358
|
+
frequencyList = [frequency for frequency in Frequency]
|
359
|
+
else:
|
360
|
+
# Get unique values.
|
361
|
+
frequencyList = set(frequencies)
|
362
|
+
|
363
|
+
for frequency in frequencyList:
|
364
|
+
res[frequency.value] = computeByFrequency[frequency](daily)
|
365
|
+
|
366
|
+
return res
|
367
|
+
|
368
|
+
|
369
|
+
# ------------------------------------------------------------------------------------------------------------
|
370
|
+
class TestDataSource(IDataSource):
|
371
|
+
|
372
|
+
def __init__(self):
|
373
|
+
|
374
|
+
pass
|
375
|
+
|
376
|
+
def load(self, pceIdentifier: str, startDate: date, endDate: date, frequencies: Optional[List[Frequency]] = None) -> MeterReadingsByFrequency:
|
377
|
+
|
378
|
+
res = {}
|
379
|
+
|
380
|
+
dataSampleFilenameByFrequency = {
|
381
|
+
Frequency.HOURLY: "hourly_data_sample.json",
|
382
|
+
Frequency.DAILY: "daily_data_sample.json",
|
383
|
+
Frequency.WEEKLY: "weekly_data_sample.json",
|
384
|
+
Frequency.MONTHLY: "monthly_data_sample.json",
|
385
|
+
Frequency.YEARLY: "yearly_data_sample.json"
|
386
|
+
}
|
387
|
+
|
388
|
+
if frequencies is None:
|
389
|
+
# Transform Enum in List.
|
390
|
+
frequencyList = [frequency for frequency in Frequency]
|
391
|
+
else:
|
392
|
+
# Get unique values.
|
393
|
+
frequencyList = set(frequencies)
|
394
|
+
|
395
|
+
for frequency in frequencyList:
|
396
|
+
dataSampleFilename = f"{os.path.dirname(os.path.abspath(__file__))}/resources/{dataSampleFilenameByFrequency[frequency]}"
|
397
|
+
|
398
|
+
with open(dataSampleFilename) as jsonFile:
|
399
|
+
res[frequency.value] = cast(List[Dict[PropertyName, Any]], json.load(jsonFile))
|
400
|
+
|
401
|
+
return res
|
402
|
+
|
403
|
+
|
404
|
+
# ------------------------------------------------------------------------------------------------------------
|
405
|
+
class FrequencyConverter:
|
406
|
+
|
407
|
+
MONTHS = [
|
408
|
+
"Janvier",
|
409
|
+
"Février",
|
410
|
+
"Mars",
|
411
|
+
"Avril",
|
412
|
+
"Mai",
|
413
|
+
"Juin",
|
414
|
+
"Juillet",
|
415
|
+
"Août",
|
416
|
+
"Septembre",
|
417
|
+
"Octobre",
|
418
|
+
"Novembre",
|
419
|
+
"Décembre"
|
420
|
+
]
|
421
|
+
|
422
|
+
# ------------------------------------------------------
|
423
|
+
@staticmethod
|
424
|
+
def computeHourly(daily: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
425
|
+
|
426
|
+
return []
|
427
|
+
|
428
|
+
# ------------------------------------------------------
|
429
|
+
@staticmethod
|
430
|
+
def computeDaily(daily: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
431
|
+
|
432
|
+
return daily
|
433
|
+
|
434
|
+
# ------------------------------------------------------
|
435
|
+
@staticmethod
|
436
|
+
def computeWeekly(daily: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
437
|
+
|
438
|
+
df = pd.DataFrame(daily)
|
439
|
+
|
440
|
+
# Trimming head and trailing spaces and convert to datetime.
|
441
|
+
df["date_time"] = pd.to_datetime(df["time_period"].str.strip(), format=JsonWebDataSource.OUTPUT_DATE_FORMAT)
|
442
|
+
|
443
|
+
# Get the first day of week.
|
444
|
+
df["first_day_of_week"] = pd.to_datetime(df["date_time"].dt.strftime("%W %Y 1"), format="%W %Y %w")
|
445
|
+
|
446
|
+
# Get the last day of week.
|
447
|
+
df["last_day_of_week"] = pd.to_datetime(df["date_time"].dt.strftime("%W %Y 0"), format="%W %Y %w")
|
448
|
+
|
449
|
+
# Reformat the time period.
|
450
|
+
df["time_period"] = "Du " + df["first_day_of_week"].dt.strftime(JsonWebDataSource.OUTPUT_DATE_FORMAT).astype(str) + " au " + df["last_day_of_week"].dt.strftime(JsonWebDataSource.OUTPUT_DATE_FORMAT).astype(str)
|
451
|
+
|
452
|
+
# Aggregate rows by month_year.
|
453
|
+
df = df[["first_day_of_week", "time_period", "start_index_m3", "end_index_m3", "volume_m3", "energy_kwh", "timestamp"]].groupby("time_period").agg(first_day_of_week=('first_day_of_week', 'min'), start_index_m3=('start_index_m3', 'min'), end_index_m3=('end_index_m3', 'max'), volume_m3=('volume_m3', 'sum'), energy_kwh=('energy_kwh', 'sum'), timestamp=('timestamp', 'min'), count=('energy_kwh', 'count')).reset_index()
|
454
|
+
|
455
|
+
# Sort rows by month ascending.
|
456
|
+
df = df.sort_values(by=['first_day_of_week'])
|
457
|
+
|
458
|
+
# Select rows where we have a full week (7 days) except for the current week.
|
459
|
+
df = pd.concat([df[(df["count"] >= 7)], df.tail(1)[df.tail(1)["count"] < 7]])
|
460
|
+
|
461
|
+
# Select target columns.
|
462
|
+
df = df[["time_period", "start_index_m3", "end_index_m3", "volume_m3", "energy_kwh", "timestamp"]]
|
463
|
+
|
464
|
+
res = cast(List[Dict[str, Any]], df.to_dict('records'))
|
465
|
+
|
466
|
+
return res
|
467
|
+
|
468
|
+
# ------------------------------------------------------
|
469
|
+
@staticmethod
|
470
|
+
def computeMonthly(daily: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
471
|
+
|
472
|
+
df = pd.DataFrame(daily)
|
473
|
+
|
474
|
+
# Trimming head and trailing spaces and convert to datetime.
|
475
|
+
df["date_time"] = pd.to_datetime(df["time_period"].str.strip(), format=JsonWebDataSource.OUTPUT_DATE_FORMAT)
|
476
|
+
|
477
|
+
# Get the corresponding month-year.
|
478
|
+
df["month_year"] = df["date_time"].apply(lambda x: FrequencyConverter.MONTHS[x.month - 1]).astype(str) + " " + df["date_time"].dt.strftime("%Y").astype(str)
|
479
|
+
|
480
|
+
# Aggregate rows by month_year.
|
481
|
+
df = df[["date_time", "month_year", "start_index_m3", "end_index_m3", "volume_m3", "energy_kwh", "timestamp"]].groupby("month_year").agg(first_day_of_month=('date_time', 'min'), start_index_m3=('start_index_m3', 'min'), end_index_m3=('end_index_m3', 'max'), volume_m3=('volume_m3', 'sum'), energy_kwh=('energy_kwh', 'sum'), timestamp=('timestamp', 'min'), count=('energy_kwh', 'count')).reset_index()
|
482
|
+
|
483
|
+
# Sort rows by month ascending.
|
484
|
+
df = df.sort_values(by=['first_day_of_month'])
|
485
|
+
|
486
|
+
# Select rows where we have a full month (more than 27 days) except for the current month.
|
487
|
+
df = pd.concat([df[(df["count"] >= 28)], df.tail(1)[df.tail(1)["count"] < 28]])
|
488
|
+
|
489
|
+
# Rename columns for their target names.
|
490
|
+
df = df.rename(columns={"month_year": "time_period"})
|
491
|
+
|
492
|
+
# Select target columns.
|
493
|
+
df = df[["time_period", "start_index_m3", "end_index_m3", "volume_m3", "energy_kwh", "timestamp"]]
|
494
|
+
|
495
|
+
res = cast(List[Dict[str, Any]], df.to_dict('records'))
|
496
|
+
|
497
|
+
return res
|
498
|
+
|
499
|
+
# ------------------------------------------------------
|
500
|
+
@staticmethod
|
501
|
+
def computeYearly(daily: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
502
|
+
|
503
|
+
df = pd.DataFrame(daily)
|
504
|
+
|
505
|
+
# Trimming head and trailing spaces and convert to datetime.
|
506
|
+
df["date_time"] = pd.to_datetime(df["time_period"].str.strip(), format=JsonWebDataSource.OUTPUT_DATE_FORMAT)
|
507
|
+
|
508
|
+
# Get the corresponding year.
|
509
|
+
df["year"] = df["date_time"].dt.strftime("%Y")
|
510
|
+
|
511
|
+
# Aggregate rows by month_year.
|
512
|
+
df = df[["year", "start_index_m3", "end_index_m3", "volume_m3", "energy_kwh", "timestamp"]].groupby("year").agg(start_index_m3=('start_index_m3', 'min'), end_index_m3=('end_index_m3', 'max'), volume_m3=('volume_m3', 'sum'), energy_kwh=('energy_kwh', 'sum'), timestamp=('timestamp', 'min'), count=('energy_kwh', 'count')).reset_index()
|
513
|
+
|
514
|
+
# Sort rows by month ascending.
|
515
|
+
df = df.sort_values(by=['year'])
|
516
|
+
|
517
|
+
# Select rows where we have almost a full year (more than 360) except for the current year.
|
518
|
+
df = pd.concat([df[(df["count"] >= 360)], df.tail(1)[df.tail(1)["count"] < 360]])
|
519
|
+
|
520
|
+
# Rename columns for their target names.
|
521
|
+
df = df.rename(columns={"year": "time_period"})
|
522
|
+
|
523
|
+
# Select target columns.
|
524
|
+
df = df[["time_period", "start_index_m3", "end_index_m3", "volume_m3", "energy_kwh", "timestamp"]]
|
525
|
+
|
526
|
+
res = cast(List[Dict[str, Any]], df.to_dict('records'))
|
527
|
+
|
528
|
+
return res
|