pyg-nightly 2.7.0.dev20250811__py3-none-any.whl → 2.7.0.dev20250813__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pyg_nightly-2.7.0.dev20250811.dist-info → pyg_nightly-2.7.0.dev20250813.dist-info}/METADATA +17 -1
- {pyg_nightly-2.7.0.dev20250811.dist-info → pyg_nightly-2.7.0.dev20250813.dist-info}/RECORD +9 -9
- torch_geometric/__init__.py +1 -1
- torch_geometric/edge_index.py +1 -1
- torch_geometric/hash_tensor.py +1 -1
- torch_geometric/index.py +1 -1
- torch_geometric/metrics/link_pred.py +14 -5
- {pyg_nightly-2.7.0.dev20250811.dist-info → pyg_nightly-2.7.0.dev20250813.dist-info}/WHEEL +0 -0
- {pyg_nightly-2.7.0.dev20250811.dist-info → pyg_nightly-2.7.0.dev20250813.dist-info}/licenses/LICENSE +0 -0
{pyg_nightly-2.7.0.dev20250811.dist-info → pyg_nightly-2.7.0.dev20250813.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20250813
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -445,6 +445,22 @@ We recommend to start with a minimal installation, and install additional depend
|
|
445
445
|
|
446
446
|
For ease of installation of these extensions, we provide `pip` wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl).
|
447
447
|
|
448
|
+
#### PyTorch 2.8
|
449
|
+
|
450
|
+
To install the binaries for PyTorch 2.8.0, simply run
|
451
|
+
|
452
|
+
```
|
453
|
+
pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.8.0+${CUDA}.html
|
454
|
+
```
|
455
|
+
|
456
|
+
where `${CUDA}` should be replaced by either `cpu`, `cu126`, `cu128`, or `cu129` depending on your PyTorch installation.
|
457
|
+
|
458
|
+
| | `cpu` | `cu126` | `cu128` | `cu129` |
|
459
|
+
| ----------- | ----- | ------- | ------- | ------- |
|
460
|
+
| **Linux** | ✅ | ✅ | ✅ | ✅ |
|
461
|
+
| **Windows** | ✅ | ✅ | ✅ | ✅ |
|
462
|
+
| **macOS** | ✅ | | | |
|
463
|
+
|
448
464
|
#### PyTorch 2.7
|
449
465
|
|
450
466
|
To install the binaries for PyTorch 2.7.0, simply run
|
@@ -1,4 +1,4 @@
|
|
1
|
-
torch_geometric/__init__.py,sha256=
|
1
|
+
torch_geometric/__init__.py,sha256=5OUi4MV3nk3AM7b-HpvH2PojxIosOGNudgCDwtO136s,2250
|
2
2
|
torch_geometric/_compile.py,sha256=9yqMTBKatZPr40WavJz9FjNi7pQj8YZAZOyZmmRGXgc,1351
|
3
3
|
torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
|
4
4
|
torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
|
@@ -7,11 +7,11 @@ torch_geometric/config_store.py,sha256=zdMzlgBpUmBkPovpYQh5fMNwTZLDq2OneqX47QEx7
|
|
7
7
|
torch_geometric/debug.py,sha256=cLyH9OaL2v7POyW-80b19w-ctA7a_5EZsS4aUF1wc2U,1295
|
8
8
|
torch_geometric/deprecation.py,sha256=gN65uX23c3miRPOpQzxcRS_QDUpD3B-qVKD6y6GX8Yw,872
|
9
9
|
torch_geometric/device.py,sha256=tU5-_lBNVbVHl_kUmWPwiG5mQ1pyapwMF4JkmtNN3MM,1224
|
10
|
-
torch_geometric/edge_index.py,sha256=
|
10
|
+
torch_geometric/edge_index.py,sha256=pnOv8yGJYaaaKPQbQ3VQ-DTukX84UfQeNnw0Gw9NhCA,70078
|
11
11
|
torch_geometric/experimental.py,sha256=JbtNNEXjFGI8hZ9raM6-qrZURP6Z5nlDK8QicZUIbz0,4756
|
12
|
-
torch_geometric/hash_tensor.py,sha256=
|
12
|
+
torch_geometric/hash_tensor.py,sha256=uB32qj_zp4XfKXIsd5qCnrIaT4Hjd1i6wUglGCvQizg,24903
|
13
13
|
torch_geometric/home.py,sha256=EV54B4Dmiv61GDbkCwtCfWGWJ4eFGwZ8s3KOgGjwYgY,790
|
14
|
-
torch_geometric/index.py,sha256=
|
14
|
+
torch_geometric/index.py,sha256=I0MXlwUeYM8ttf_IiteLxq_cFHvAcDJh639uh5qPWao,24344
|
15
15
|
torch_geometric/inspector.py,sha256=nKi5o4Mn6xsG0Ex1GudTEQt_EqnF9mcMqGtp7Shh9sQ,19336
|
16
16
|
torch_geometric/isinstance.py,sha256=truZjdU9PxSvjJ6k0d_CLJ2iOpen2o8U-54pbUbNRyE,935
|
17
17
|
torch_geometric/lazy_loader.py,sha256=SM0UcXtIdiFge75MKBAWXedoiSOdFDOV0rm1PfoF9cE,908
|
@@ -294,7 +294,7 @@ torch_geometric/loader/temporal_dataloader.py,sha256=Z7L_rYdl6SYBQXAgtr18FVcmfMH
|
|
294
294
|
torch_geometric/loader/utils.py,sha256=3hzKzIgB52QIZu7Jdn4JeXZaegIJinIQfIUP9DrUWUQ,14903
|
295
295
|
torch_geometric/loader/zip_loader.py,sha256=3lt10fD15Rxm1WhWzypswGzCEwUz4h8OLCD1nE15yNg,3843
|
296
296
|
torch_geometric/metrics/__init__.py,sha256=3krvDobW6vV5yHTjq2S2pmOXxNfysNG26muq7z48e94,699
|
297
|
-
torch_geometric/metrics/link_pred.py,sha256=
|
297
|
+
torch_geometric/metrics/link_pred.py,sha256=mRQTSYYJgLKXFCelZHMKVOSbPED11JVhbryp7ajjxDU,31137
|
298
298
|
torch_geometric/nn/__init__.py,sha256=kQHHHUxFDht2ztD-XFQuv98TvC8MdodaFsIjAvltJBw,874
|
299
299
|
torch_geometric/nn/data_parallel.py,sha256=YiybTWoSFyfSzlXAamZ_-y1f7B6tvDEFHOuy_AyJz9Q,4761
|
300
300
|
torch_geometric/nn/encoding.py,sha256=3DCOCO-XFt-lMb97sHWGN-4KeGUFY5lVo9P00SzrCNk,3559
|
@@ -645,7 +645,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
|
|
645
645
|
torch_geometric/visualization/__init__.py,sha256=b-HnVesXjyJ_L1N-DnjiRiRVf7lhwKaBQF_2i5YMVSU,208
|
646
646
|
torch_geometric/visualization/graph.py,sha256=mfZHXYfiU-CWMtfawYc80IxVwVmtK9hbIkSKhM_j7oI,14311
|
647
647
|
torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
|
648
|
-
pyg_nightly-2.7.0.
|
649
|
-
pyg_nightly-2.7.0.
|
650
|
-
pyg_nightly-2.7.0.
|
651
|
-
pyg_nightly-2.7.0.
|
648
|
+
pyg_nightly-2.7.0.dev20250813.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
|
649
|
+
pyg_nightly-2.7.0.dev20250813.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
|
650
|
+
pyg_nightly-2.7.0.dev20250813.dist-info/METADATA,sha256=WhUqzOZIg7BJlAQo6JphSxLn8cOuAxpAiUtBYWNd6_c,64100
|
651
|
+
pyg_nightly-2.7.0.dev20250813.dist-info/RECORD,,
|
torch_geometric/__init__.py
CHANGED
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
|
|
31
31
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
32
32
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
33
33
|
|
34
|
-
__version__ = '2.7.0.
|
34
|
+
__version__ = '2.7.0.dev20250813'
|
35
35
|
|
36
36
|
__all__ = [
|
37
37
|
'Index',
|
torch_geometric/edge_index.py
CHANGED
@@ -325,7 +325,7 @@ class EdgeIndex(Tensor):
|
|
325
325
|
elif sparse_size[0] is None and sparse_size[1] is not None:
|
326
326
|
sparse_size = (sparse_size[1], sparse_size[1])
|
327
327
|
|
328
|
-
out = Tensor._make_wrapper_subclass(
|
328
|
+
out = Tensor._make_wrapper_subclass(
|
329
329
|
cls,
|
330
330
|
size=data.size(),
|
331
331
|
strides=data.stride(),
|
torch_geometric/hash_tensor.py
CHANGED
torch_geometric/index.py
CHANGED
@@ -332,7 +332,10 @@ class LinkPredMetricCollection(torch.nn.ModuleDict):
|
|
332
332
|
r"""The maximum number of top-:math:`k` predictions to evaluate
|
333
333
|
against.
|
334
334
|
"""
|
335
|
-
return max([
|
335
|
+
return max([
|
336
|
+
metric.k # type: ignore[return-value]
|
337
|
+
for metric in self.values()
|
338
|
+
]) # type: ignore[type-var]
|
336
339
|
|
337
340
|
@property
|
338
341
|
def weighted(self) -> bool:
|
@@ -402,17 +405,23 @@ class LinkPredMetricCollection(torch.nn.ModuleDict):
|
|
402
405
|
|
403
406
|
for metric in self.values():
|
404
407
|
if not isinstance(metric, LinkPredMetric):
|
405
|
-
metric.update(
|
406
|
-
|
408
|
+
metric.update( # type: ignore[operator]
|
409
|
+
pred_index_mat,
|
410
|
+
edge_label_index,
|
411
|
+
edge_label_weight,
|
412
|
+
)
|
407
413
|
|
408
414
|
def compute(self) -> Dict[str, Tensor]:
|
409
415
|
r"""Computes the final metric values."""
|
410
|
-
return {
|
416
|
+
return {
|
417
|
+
name: metric.compute() # type: ignore[operator]
|
418
|
+
for name, metric in self.items()
|
419
|
+
}
|
411
420
|
|
412
421
|
def reset(self) -> None:
|
413
422
|
r"""Reset metric state variables to their default value."""
|
414
423
|
for metric in self.values():
|
415
|
-
metric.reset()
|
424
|
+
metric.reset() # type: ignore[operator]
|
416
425
|
|
417
426
|
def __repr__(self) -> str:
|
418
427
|
names = [f' {name}: {metric},\n' for name, metric in self.items()]
|
File without changes
|
{pyg_nightly-2.7.0.dev20250811.dist-info → pyg_nightly-2.7.0.dev20250813.dist-info}/licenses/LICENSE
RENAMED
File without changes
|