pyg-nightly 2.7.0.dev20250811__py3-none-any.whl → 2.7.0.dev20250813__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20250811
3
+ Version: 2.7.0.dev20250813
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -445,6 +445,22 @@ We recommend to start with a minimal installation, and install additional depend
445
445
 
446
446
  For ease of installation of these extensions, we provide `pip` wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl).
447
447
 
448
+ #### PyTorch 2.8
449
+
450
+ To install the binaries for PyTorch 2.8.0, simply run
451
+
452
+ ```
453
+ pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.8.0+${CUDA}.html
454
+ ```
455
+
456
+ where `${CUDA}` should be replaced by either `cpu`, `cu126`, `cu128`, or `cu129` depending on your PyTorch installation.
457
+
458
+ | | `cpu` | `cu126` | `cu128` | `cu129` |
459
+ | ----------- | ----- | ------- | ------- | ------- |
460
+ | **Linux** | ✅ | ✅ | ✅ | ✅ |
461
+ | **Windows** | ✅ | ✅ | ✅ | ✅ |
462
+ | **macOS** | ✅ | | | |
463
+
448
464
  #### PyTorch 2.7
449
465
 
450
466
  To install the binaries for PyTorch 2.7.0, simply run
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=eOn-xi_uILg90CqcIXdvAj2EE0r9bSAPQ1Md4f9o4iw,2250
1
+ torch_geometric/__init__.py,sha256=5OUi4MV3nk3AM7b-HpvH2PojxIosOGNudgCDwtO136s,2250
2
2
  torch_geometric/_compile.py,sha256=9yqMTBKatZPr40WavJz9FjNi7pQj8YZAZOyZmmRGXgc,1351
3
3
  torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -7,11 +7,11 @@ torch_geometric/config_store.py,sha256=zdMzlgBpUmBkPovpYQh5fMNwTZLDq2OneqX47QEx7
7
7
  torch_geometric/debug.py,sha256=cLyH9OaL2v7POyW-80b19w-ctA7a_5EZsS4aUF1wc2U,1295
8
8
  torch_geometric/deprecation.py,sha256=gN65uX23c3miRPOpQzxcRS_QDUpD3B-qVKD6y6GX8Yw,872
9
9
  torch_geometric/device.py,sha256=tU5-_lBNVbVHl_kUmWPwiG5mQ1pyapwMF4JkmtNN3MM,1224
10
- torch_geometric/edge_index.py,sha256=RbIwLhtoLXmkQ_DqThBCwi1JH7zNRTsuVj0X-sTYlWE,70094
10
+ torch_geometric/edge_index.py,sha256=pnOv8yGJYaaaKPQbQ3VQ-DTukX84UfQeNnw0Gw9NhCA,70078
11
11
  torch_geometric/experimental.py,sha256=JbtNNEXjFGI8hZ9raM6-qrZURP6Z5nlDK8QicZUIbz0,4756
12
- torch_geometric/hash_tensor.py,sha256=ItpMOBtD62zirrNeigZxql0EXofrEcThHX6ZJ50yDYc,24919
12
+ torch_geometric/hash_tensor.py,sha256=uB32qj_zp4XfKXIsd5qCnrIaT4Hjd1i6wUglGCvQizg,24903
13
13
  torch_geometric/home.py,sha256=EV54B4Dmiv61GDbkCwtCfWGWJ4eFGwZ8s3KOgGjwYgY,790
14
- torch_geometric/index.py,sha256=FSP-Tkfw6d7P5U8ua8BO2IoEPJSnJT0L2IKyAfIqJR0,24360
14
+ torch_geometric/index.py,sha256=I0MXlwUeYM8ttf_IiteLxq_cFHvAcDJh639uh5qPWao,24344
15
15
  torch_geometric/inspector.py,sha256=nKi5o4Mn6xsG0Ex1GudTEQt_EqnF9mcMqGtp7Shh9sQ,19336
16
16
  torch_geometric/isinstance.py,sha256=truZjdU9PxSvjJ6k0d_CLJ2iOpen2o8U-54pbUbNRyE,935
17
17
  torch_geometric/lazy_loader.py,sha256=SM0UcXtIdiFge75MKBAWXedoiSOdFDOV0rm1PfoF9cE,908
@@ -294,7 +294,7 @@ torch_geometric/loader/temporal_dataloader.py,sha256=Z7L_rYdl6SYBQXAgtr18FVcmfMH
294
294
  torch_geometric/loader/utils.py,sha256=3hzKzIgB52QIZu7Jdn4JeXZaegIJinIQfIUP9DrUWUQ,14903
295
295
  torch_geometric/loader/zip_loader.py,sha256=3lt10fD15Rxm1WhWzypswGzCEwUz4h8OLCD1nE15yNg,3843
296
296
  torch_geometric/metrics/__init__.py,sha256=3krvDobW6vV5yHTjq2S2pmOXxNfysNG26muq7z48e94,699
297
- torch_geometric/metrics/link_pred.py,sha256=dtaI39JB-WqE1B-raiElns6xySRwmkbb9izbcyt6xHI,30886
297
+ torch_geometric/metrics/link_pred.py,sha256=mRQTSYYJgLKXFCelZHMKVOSbPED11JVhbryp7ajjxDU,31137
298
298
  torch_geometric/nn/__init__.py,sha256=kQHHHUxFDht2ztD-XFQuv98TvC8MdodaFsIjAvltJBw,874
299
299
  torch_geometric/nn/data_parallel.py,sha256=YiybTWoSFyfSzlXAamZ_-y1f7B6tvDEFHOuy_AyJz9Q,4761
300
300
  torch_geometric/nn/encoding.py,sha256=3DCOCO-XFt-lMb97sHWGN-4KeGUFY5lVo9P00SzrCNk,3559
@@ -645,7 +645,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
645
645
  torch_geometric/visualization/__init__.py,sha256=b-HnVesXjyJ_L1N-DnjiRiRVf7lhwKaBQF_2i5YMVSU,208
646
646
  torch_geometric/visualization/graph.py,sha256=mfZHXYfiU-CWMtfawYc80IxVwVmtK9hbIkSKhM_j7oI,14311
647
647
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
648
- pyg_nightly-2.7.0.dev20250811.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
649
- pyg_nightly-2.7.0.dev20250811.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
650
- pyg_nightly-2.7.0.dev20250811.dist-info/METADATA,sha256=IdOb3DTp4CwTA83ekfMt97r_JHMA8YohNYvl5YyJ9ko,63484
651
- pyg_nightly-2.7.0.dev20250811.dist-info/RECORD,,
648
+ pyg_nightly-2.7.0.dev20250813.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
649
+ pyg_nightly-2.7.0.dev20250813.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
650
+ pyg_nightly-2.7.0.dev20250813.dist-info/METADATA,sha256=WhUqzOZIg7BJlAQo6JphSxLn8cOuAxpAiUtBYWNd6_c,64100
651
+ pyg_nightly-2.7.0.dev20250813.dist-info/RECORD,,
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
31
31
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
32
32
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
33
33
 
34
- __version__ = '2.7.0.dev20250811'
34
+ __version__ = '2.7.0.dev20250813'
35
35
 
36
36
  __all__ = [
37
37
  'Index',
@@ -325,7 +325,7 @@ class EdgeIndex(Tensor):
325
325
  elif sparse_size[0] is None and sparse_size[1] is not None:
326
326
  sparse_size = (sparse_size[1], sparse_size[1])
327
327
 
328
- out = Tensor._make_wrapper_subclass( # type: ignore
328
+ out = Tensor._make_wrapper_subclass(
329
329
  cls,
330
330
  size=data.size(),
331
331
  strides=data.stride(),
@@ -241,7 +241,7 @@ class HashTensor(Tensor):
241
241
  layout = torch.strided
242
242
  requires_grad = False
243
243
 
244
- out = Tensor._make_wrapper_subclass( # type: ignore
244
+ out = Tensor._make_wrapper_subclass(
245
245
  cls,
246
246
  size=size,
247
247
  strides=stride,
torch_geometric/index.py CHANGED
@@ -182,7 +182,7 @@ class Index(Tensor):
182
182
  assert_one_dimensional(data)
183
183
  assert_contiguous(data)
184
184
 
185
- out = Tensor._make_wrapper_subclass( # type: ignore
185
+ out = Tensor._make_wrapper_subclass(
186
186
  cls,
187
187
  size=data.size(),
188
188
  strides=data.stride(),
@@ -332,7 +332,10 @@ class LinkPredMetricCollection(torch.nn.ModuleDict):
332
332
  r"""The maximum number of top-:math:`k` predictions to evaluate
333
333
  against.
334
334
  """
335
- return max([metric.k for metric in self.values()])
335
+ return max([
336
+ metric.k # type: ignore[return-value]
337
+ for metric in self.values()
338
+ ]) # type: ignore[type-var]
336
339
 
337
340
  @property
338
341
  def weighted(self) -> bool:
@@ -402,17 +405,23 @@ class LinkPredMetricCollection(torch.nn.ModuleDict):
402
405
 
403
406
  for metric in self.values():
404
407
  if not isinstance(metric, LinkPredMetric):
405
- metric.update(pred_index_mat, edge_label_index,
406
- edge_label_weight)
408
+ metric.update( # type: ignore[operator]
409
+ pred_index_mat,
410
+ edge_label_index,
411
+ edge_label_weight,
412
+ )
407
413
 
408
414
  def compute(self) -> Dict[str, Tensor]:
409
415
  r"""Computes the final metric values."""
410
- return {name: metric.compute() for name, metric in self.items()}
416
+ return {
417
+ name: metric.compute() # type: ignore[operator]
418
+ for name, metric in self.items()
419
+ }
411
420
 
412
421
  def reset(self) -> None:
413
422
  r"""Reset metric state variables to their default value."""
414
423
  for metric in self.values():
415
- metric.reset()
424
+ metric.reset() # type: ignore[operator]
416
425
 
417
426
  def __repr__(self) -> str:
418
427
  names = [f' {name}: {metric},\n' for name, metric in self.items()]