pyg-nightly 2.7.0.dev20250702__py3-none-any.whl → 2.7.0.dev20250704__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of pyg-nightly might be problematic. Click here for more details.
- {pyg_nightly-2.7.0.dev20250702.dist-info → pyg_nightly-2.7.0.dev20250704.dist-info}/METADATA +1 -1
- {pyg_nightly-2.7.0.dev20250702.dist-info → pyg_nightly-2.7.0.dev20250704.dist-info}/RECORD +20 -15
- torch_geometric/__init__.py +1 -1
- torch_geometric/datasets/__init__.py +4 -0
- torch_geometric/datasets/git_mol_dataset.py +1 -1
- torch_geometric/datasets/molecule_gpt_dataset.py +1 -1
- torch_geometric/datasets/protein_mpnn_dataset.py +451 -0
- torch_geometric/datasets/qm9.py +1 -1
- torch_geometric/datasets/teeth3ds.py +269 -0
- torch_geometric/nn/attention/__init__.py +2 -0
- torch_geometric/nn/attention/polynormer.py +107 -0
- torch_geometric/nn/conv/meshcnn_conv.py +9 -15
- torch_geometric/nn/models/__init__.py +4 -0
- torch_geometric/nn/models/glem.py +7 -3
- torch_geometric/nn/models/polynormer.py +206 -0
- torch_geometric/nn/models/protein_mpnn.py +304 -0
- torch_geometric/utils/convert.py +15 -8
- torch_geometric/utils/smiles.py +1 -1
- {pyg_nightly-2.7.0.dev20250702.dist-info → pyg_nightly-2.7.0.dev20250704.dist-info}/WHEEL +0 -0
- {pyg_nightly-2.7.0.dev20250702.dist-info → pyg_nightly-2.7.0.dev20250704.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,304 @@
|
|
|
1
|
+
from itertools import product
|
|
2
|
+
from typing import Tuple
|
|
3
|
+
|
|
4
|
+
import torch
|
|
5
|
+
import torch.nn.functional as F
|
|
6
|
+
|
|
7
|
+
from torch_geometric.nn import knn_graph
|
|
8
|
+
from torch_geometric.nn.conv import MessagePassing
|
|
9
|
+
from torch_geometric.utils import to_dense_adj, to_dense_batch
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class PositionWiseFeedForward(torch.nn.Module):
|
|
13
|
+
def __init__(self, in_channels: int, hidden_channels: int) -> None:
|
|
14
|
+
super().__init__()
|
|
15
|
+
self.out = torch.nn.Sequential(
|
|
16
|
+
torch.nn.Linear(in_channels, hidden_channels),
|
|
17
|
+
torch.nn.GELU(),
|
|
18
|
+
torch.nn.Linear(hidden_channels, in_channels),
|
|
19
|
+
)
|
|
20
|
+
|
|
21
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
22
|
+
return self.out(x)
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
class PositionalEncoding(torch.nn.Module):
|
|
26
|
+
def __init__(self, hidden_channels: int,
|
|
27
|
+
max_relative_feature: int = 32) -> None:
|
|
28
|
+
super().__init__()
|
|
29
|
+
self.max_relative_feature = max_relative_feature
|
|
30
|
+
self.emb = torch.nn.Embedding(2 * max_relative_feature + 2,
|
|
31
|
+
hidden_channels)
|
|
32
|
+
|
|
33
|
+
def forward(self, offset, mask) -> torch.Tensor:
|
|
34
|
+
d = torch.clip(offset + self.max_relative_feature, 0,
|
|
35
|
+
2 * self.max_relative_feature) * mask + (1 - mask) * (
|
|
36
|
+
2 * self.max_relative_feature + 1) # noqa: E501
|
|
37
|
+
return self.emb(d.long())
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
class Encoder(MessagePassing):
|
|
41
|
+
def __init__(
|
|
42
|
+
self,
|
|
43
|
+
in_channels: int,
|
|
44
|
+
hidden_channels: int,
|
|
45
|
+
dropout: float = 0.1,
|
|
46
|
+
scale: float = 30,
|
|
47
|
+
) -> None:
|
|
48
|
+
super().__init__()
|
|
49
|
+
self.out_v = torch.nn.Sequential(
|
|
50
|
+
torch.nn.Linear(in_channels, hidden_channels),
|
|
51
|
+
torch.nn.GELU(),
|
|
52
|
+
torch.nn.Linear(hidden_channels, hidden_channels),
|
|
53
|
+
torch.nn.GELU(),
|
|
54
|
+
torch.nn.Linear(hidden_channels, hidden_channels),
|
|
55
|
+
)
|
|
56
|
+
self.out_e = torch.nn.Sequential(
|
|
57
|
+
torch.nn.Linear(in_channels, hidden_channels),
|
|
58
|
+
torch.nn.GELU(),
|
|
59
|
+
torch.nn.Linear(hidden_channels, hidden_channels),
|
|
60
|
+
torch.nn.GELU(),
|
|
61
|
+
torch.nn.Linear(hidden_channels, hidden_channels),
|
|
62
|
+
)
|
|
63
|
+
self.dropout1 = torch.nn.Dropout(dropout)
|
|
64
|
+
self.dropout2 = torch.nn.Dropout(dropout)
|
|
65
|
+
self.dropout3 = torch.nn.Dropout(dropout)
|
|
66
|
+
self.norm1 = torch.nn.LayerNorm(hidden_channels)
|
|
67
|
+
self.norm2 = torch.nn.LayerNorm(hidden_channels)
|
|
68
|
+
self.norm3 = torch.nn.LayerNorm(hidden_channels)
|
|
69
|
+
self.scale = scale
|
|
70
|
+
self.dense = PositionWiseFeedForward(hidden_channels,
|
|
71
|
+
hidden_channels * 4)
|
|
72
|
+
|
|
73
|
+
def forward(
|
|
74
|
+
self,
|
|
75
|
+
x: torch.Tensor,
|
|
76
|
+
edge_index: torch.Tensor,
|
|
77
|
+
edge_attr: torch.Tensor,
|
|
78
|
+
) -> torch.Tensor:
|
|
79
|
+
# x: [N, d_v]
|
|
80
|
+
# edge_index: [2, E]
|
|
81
|
+
# edge_attr: [E, d_e]
|
|
82
|
+
# update node features
|
|
83
|
+
h_message = self.propagate(x=x, edge_index=edge_index,
|
|
84
|
+
edge_attr=edge_attr)
|
|
85
|
+
dh = h_message / self.scale
|
|
86
|
+
x = self.norm1(x + self.dropout1(dh))
|
|
87
|
+
dh = self.dense(x)
|
|
88
|
+
x = self.norm2(x + self.dropout2(dh))
|
|
89
|
+
# update edge features
|
|
90
|
+
row, col = edge_index
|
|
91
|
+
x_i, x_j = x[row], x[col]
|
|
92
|
+
h_e = torch.cat([x_i, x_j, edge_attr], dim=-1)
|
|
93
|
+
h_e = self.out_e(h_e)
|
|
94
|
+
edge_attr = self.norm3(edge_attr + self.dropout3(h_e))
|
|
95
|
+
return x, edge_attr
|
|
96
|
+
|
|
97
|
+
def message(self, x_i: torch.Tensor, x_j: torch.Tensor,
|
|
98
|
+
edge_attr: torch.Tensor) -> torch.Tensor:
|
|
99
|
+
h = torch.cat([x_i, x_j, edge_attr], dim=-1) # [E, 2*d_v + d_e]
|
|
100
|
+
h = self.out_e(h) # [E, d_e]
|
|
101
|
+
return h
|
|
102
|
+
|
|
103
|
+
|
|
104
|
+
class Decoder(MessagePassing):
|
|
105
|
+
def __init__(
|
|
106
|
+
self,
|
|
107
|
+
in_channels: int,
|
|
108
|
+
hidden_channels: int,
|
|
109
|
+
dropout: float = 0.1,
|
|
110
|
+
scale: float = 30,
|
|
111
|
+
) -> None:
|
|
112
|
+
super().__init__()
|
|
113
|
+
self.out_v = torch.nn.Sequential(
|
|
114
|
+
torch.nn.Linear(in_channels, hidden_channels),
|
|
115
|
+
torch.nn.GELU(),
|
|
116
|
+
torch.nn.Linear(hidden_channels, hidden_channels),
|
|
117
|
+
torch.nn.GELU(),
|
|
118
|
+
torch.nn.Linear(hidden_channels, hidden_channels),
|
|
119
|
+
)
|
|
120
|
+
self.dropout1 = torch.nn.Dropout(dropout)
|
|
121
|
+
self.dropout2 = torch.nn.Dropout(dropout)
|
|
122
|
+
self.norm1 = torch.nn.LayerNorm(hidden_channels)
|
|
123
|
+
self.norm2 = torch.nn.LayerNorm(hidden_channels)
|
|
124
|
+
self.scale = scale
|
|
125
|
+
self.dense = PositionWiseFeedForward(hidden_channels,
|
|
126
|
+
hidden_channels * 4)
|
|
127
|
+
|
|
128
|
+
def forward(
|
|
129
|
+
self,
|
|
130
|
+
x: torch.Tensor,
|
|
131
|
+
edge_index: torch.Tensor,
|
|
132
|
+
edge_attr: torch.Tensor,
|
|
133
|
+
x_label: torch.Tensor,
|
|
134
|
+
mask: torch.Tensor,
|
|
135
|
+
) -> torch.Tensor:
|
|
136
|
+
# x: [N, d_v]
|
|
137
|
+
# edge_index: [2, E]
|
|
138
|
+
# edge_attr: [E, d_e]
|
|
139
|
+
h_message = self.propagate(x=x, x_label=x_label, edge_index=edge_index,
|
|
140
|
+
edge_attr=edge_attr, mask=mask)
|
|
141
|
+
dh = h_message / self.scale
|
|
142
|
+
x = self.norm1(x + self.dropout1(dh))
|
|
143
|
+
dh = self.dense(x)
|
|
144
|
+
x = self.norm2(x + self.dropout2(dh))
|
|
145
|
+
return x
|
|
146
|
+
|
|
147
|
+
def message(self, x_i: torch.Tensor, x_j: torch.Tensor,
|
|
148
|
+
x_label_j: torch.Tensor, edge_attr: torch.Tensor,
|
|
149
|
+
mask: torch.Tensor) -> torch.Tensor:
|
|
150
|
+
h_1 = torch.cat([x_j, edge_attr, x_label_j], dim=-1)
|
|
151
|
+
h_0 = torch.cat([x_j, edge_attr, torch.zeros_like(x_label_j)], dim=-1)
|
|
152
|
+
h = h_1 * mask + h_0 * (1 - mask)
|
|
153
|
+
h = torch.concat([x_i, h], dim=-1)
|
|
154
|
+
h = self.out_v(h)
|
|
155
|
+
return h
|
|
156
|
+
|
|
157
|
+
|
|
158
|
+
class ProteinMPNN(torch.nn.Module):
|
|
159
|
+
def __init__(
|
|
160
|
+
self,
|
|
161
|
+
hidden_dim: int = 128,
|
|
162
|
+
num_encoder_layers: int = 3,
|
|
163
|
+
num_decoder_layers: int = 3,
|
|
164
|
+
num_neighbors: int = 30,
|
|
165
|
+
num_rbf: int = 16,
|
|
166
|
+
dropout: float = 0.1,
|
|
167
|
+
augment_eps: float = 0.2,
|
|
168
|
+
num_positional_embedding: int = 16,
|
|
169
|
+
vocab_size: int = 21,
|
|
170
|
+
) -> None:
|
|
171
|
+
super().__init__()
|
|
172
|
+
self.augment_eps = augment_eps
|
|
173
|
+
self.hidden_dim = hidden_dim
|
|
174
|
+
self.num_neighbors = num_neighbors
|
|
175
|
+
self.num_rbf = num_rbf
|
|
176
|
+
self.embedding = PositionalEncoding(num_positional_embedding)
|
|
177
|
+
self.edge_mlp = torch.nn.Sequential(
|
|
178
|
+
torch.nn.Linear(num_positional_embedding + 400, hidden_dim),
|
|
179
|
+
torch.nn.LayerNorm(hidden_dim),
|
|
180
|
+
torch.nn.Linear(hidden_dim, hidden_dim),
|
|
181
|
+
)
|
|
182
|
+
self.label_embedding = torch.nn.Embedding(vocab_size, hidden_dim)
|
|
183
|
+
self.encoder_layers = torch.nn.ModuleList([
|
|
184
|
+
Encoder(hidden_dim * 3, hidden_dim, dropout)
|
|
185
|
+
for _ in range(num_encoder_layers)
|
|
186
|
+
])
|
|
187
|
+
|
|
188
|
+
self.decoder_layers = torch.nn.ModuleList([
|
|
189
|
+
Decoder(hidden_dim * 4, hidden_dim, dropout)
|
|
190
|
+
for _ in range(num_decoder_layers)
|
|
191
|
+
])
|
|
192
|
+
self.output = torch.nn.Linear(hidden_dim, vocab_size)
|
|
193
|
+
|
|
194
|
+
self.reset_parameters()
|
|
195
|
+
|
|
196
|
+
def reset_parameters(self):
|
|
197
|
+
for p in self.parameters():
|
|
198
|
+
if p.dim() > 1:
|
|
199
|
+
torch.nn.init.xavier_uniform_(p)
|
|
200
|
+
|
|
201
|
+
def _featurize(
|
|
202
|
+
self,
|
|
203
|
+
x: torch.Tensor,
|
|
204
|
+
mask: torch.Tensor,
|
|
205
|
+
batch: torch.Tensor,
|
|
206
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
207
|
+
N, Ca, C, O = (x[:, i, :] for i in range(4)) # noqa: E741
|
|
208
|
+
b = Ca - N
|
|
209
|
+
c = C - Ca
|
|
210
|
+
a = torch.cross(b, c, dim=-1)
|
|
211
|
+
Cb = -0.58273431 * a + 0.56802827 * b - 0.54067466 * c + Ca
|
|
212
|
+
|
|
213
|
+
valid_mask = mask.bool()
|
|
214
|
+
valid_Ca = Ca[valid_mask]
|
|
215
|
+
valid_batch = batch[valid_mask]
|
|
216
|
+
|
|
217
|
+
edge_index = knn_graph(valid_Ca, k=self.num_neighbors,
|
|
218
|
+
batch=valid_batch, loop=True)
|
|
219
|
+
|
|
220
|
+
row, col = edge_index
|
|
221
|
+
original_indices = torch.arange(Ca.size(0),
|
|
222
|
+
device=x.device)[valid_mask]
|
|
223
|
+
edge_index_original = torch.stack(
|
|
224
|
+
[original_indices[row], original_indices[col]], dim=0)
|
|
225
|
+
row, col = edge_index_original
|
|
226
|
+
|
|
227
|
+
rbf_all = []
|
|
228
|
+
for A, B in list(product([N, Ca, C, O, Cb], repeat=2)):
|
|
229
|
+
distances = torch.sqrt(torch.sum((A[row] - B[col])**2, 1) + 1e-6)
|
|
230
|
+
rbf = self._rbf(distances)
|
|
231
|
+
rbf_all.append(rbf)
|
|
232
|
+
|
|
233
|
+
return edge_index_original, torch.cat(rbf_all, dim=-1)
|
|
234
|
+
|
|
235
|
+
def _rbf(self, D: torch.Tensor) -> torch.Tensor:
|
|
236
|
+
D_min, D_max, D_count = 2., 22., self.num_rbf
|
|
237
|
+
D_mu = torch.linspace(D_min, D_max, D_count, device=D.device)
|
|
238
|
+
D_mu = D_mu.view([1, -1])
|
|
239
|
+
D_sigma = (D_max - D_min) / D_count
|
|
240
|
+
D_expand = torch.unsqueeze(D, -1)
|
|
241
|
+
RBF = torch.exp(-((D_expand - D_mu) / D_sigma)**2)
|
|
242
|
+
return RBF
|
|
243
|
+
|
|
244
|
+
def forward(
|
|
245
|
+
self,
|
|
246
|
+
x: torch.Tensor,
|
|
247
|
+
chain_seq_label: torch.Tensor,
|
|
248
|
+
mask: torch.Tensor,
|
|
249
|
+
chain_mask_all: torch.Tensor,
|
|
250
|
+
residue_idx: torch.Tensor,
|
|
251
|
+
chain_encoding_all: torch.Tensor,
|
|
252
|
+
batch: torch.Tensor,
|
|
253
|
+
) -> torch.Tensor:
|
|
254
|
+
device = x.device
|
|
255
|
+
if self.training and self.augment_eps > 0:
|
|
256
|
+
x = x + self.augment_eps * torch.randn_like(x)
|
|
257
|
+
|
|
258
|
+
edge_index, edge_attr = self._featurize(x, mask, batch)
|
|
259
|
+
|
|
260
|
+
row, col = edge_index
|
|
261
|
+
offset = residue_idx[row] - residue_idx[col]
|
|
262
|
+
# find self vs non-self interaction
|
|
263
|
+
e_chains = ((chain_encoding_all[row] -
|
|
264
|
+
chain_encoding_all[col]) == 0).long()
|
|
265
|
+
e_pos = self.embedding(offset, e_chains)
|
|
266
|
+
h_e = self.edge_mlp(torch.cat([edge_attr, e_pos], dim=-1))
|
|
267
|
+
h_v = torch.zeros(x.size(0), self.hidden_dim, device=x.device)
|
|
268
|
+
|
|
269
|
+
# encoder
|
|
270
|
+
for encoder in self.encoder_layers:
|
|
271
|
+
h_v, h_e = encoder(h_v, edge_index, h_e)
|
|
272
|
+
|
|
273
|
+
# mask
|
|
274
|
+
h_label = self.label_embedding(chain_seq_label)
|
|
275
|
+
batch_chain_mask_all, _ = to_dense_batch(chain_mask_all * mask,
|
|
276
|
+
batch) # [B, N]
|
|
277
|
+
# 0 - visible - encoder, 1 - masked - decoder
|
|
278
|
+
decoding_order = torch.argsort(
|
|
279
|
+
(batch_chain_mask_all + 1e-4) * (torch.abs(
|
|
280
|
+
torch.randn(batch_chain_mask_all.shape, device=device))))
|
|
281
|
+
mask_size = batch_chain_mask_all.size(1)
|
|
282
|
+
permutation_matrix_reverse = F.one_hot(decoding_order,
|
|
283
|
+
num_classes=mask_size).float()
|
|
284
|
+
order_mask_backward = torch.einsum(
|
|
285
|
+
'ij, biq, bjp->bqp',
|
|
286
|
+
1 - torch.triu(torch.ones(mask_size, mask_size, device=device)),
|
|
287
|
+
permutation_matrix_reverse,
|
|
288
|
+
permutation_matrix_reverse,
|
|
289
|
+
)
|
|
290
|
+
adj = to_dense_adj(edge_index, batch)
|
|
291
|
+
mask_attend = order_mask_backward[adj.bool()].unsqueeze(-1)
|
|
292
|
+
|
|
293
|
+
# decoder
|
|
294
|
+
for decoder in self.decoder_layers:
|
|
295
|
+
h_v = decoder(
|
|
296
|
+
h_v,
|
|
297
|
+
edge_index,
|
|
298
|
+
h_e,
|
|
299
|
+
h_label,
|
|
300
|
+
mask_attend,
|
|
301
|
+
)
|
|
302
|
+
|
|
303
|
+
logits = self.output(h_v)
|
|
304
|
+
return F.log_softmax(logits, dim=-1)
|
torch_geometric/utils/convert.py
CHANGED
|
@@ -452,15 +452,22 @@ def to_cugraph(
|
|
|
452
452
|
g = cugraph.Graph(directed=directed)
|
|
453
453
|
df = cudf.from_dlpack(to_dlpack(edge_index.t()))
|
|
454
454
|
|
|
455
|
+
df = cudf.DataFrame({
|
|
456
|
+
'source':
|
|
457
|
+
cudf.from_dlpack(to_dlpack(edge_index[0])),
|
|
458
|
+
'destination':
|
|
459
|
+
cudf.from_dlpack(to_dlpack(edge_index[1])),
|
|
460
|
+
})
|
|
461
|
+
|
|
455
462
|
if edge_weight is not None:
|
|
456
463
|
assert edge_weight.dim() == 1
|
|
457
|
-
df['
|
|
464
|
+
df['weight'] = cudf.from_dlpack(to_dlpack(edge_weight))
|
|
458
465
|
|
|
459
466
|
g.from_cudf_edgelist(
|
|
460
467
|
df,
|
|
461
|
-
source=
|
|
462
|
-
destination=
|
|
463
|
-
edge_attr='
|
|
468
|
+
source='source',
|
|
469
|
+
destination='destination',
|
|
470
|
+
edge_attr='weight' if edge_weight is not None else None,
|
|
464
471
|
renumber=relabel_nodes,
|
|
465
472
|
)
|
|
466
473
|
|
|
@@ -476,13 +483,13 @@ def from_cugraph(g: Any) -> Tuple[Tensor, Optional[Tensor]]:
|
|
|
476
483
|
"""
|
|
477
484
|
df = g.view_edge_list()
|
|
478
485
|
|
|
479
|
-
src = from_dlpack(df[
|
|
480
|
-
dst = from_dlpack(df[
|
|
486
|
+
src = from_dlpack(df[g.source_columns].to_dlpack()).long()
|
|
487
|
+
dst = from_dlpack(df[g.destination_columns].to_dlpack()).long()
|
|
481
488
|
edge_index = torch.stack([src, dst], dim=0)
|
|
482
489
|
|
|
483
490
|
edge_weight = None
|
|
484
|
-
if
|
|
485
|
-
edge_weight = from_dlpack(df[
|
|
491
|
+
if g.weight_column is not None:
|
|
492
|
+
edge_weight = from_dlpack(df[g.weight_column].to_dlpack())
|
|
486
493
|
|
|
487
494
|
return edge_index, edge_weight
|
|
488
495
|
|
torch_geometric/utils/smiles.py
CHANGED
|
File without changes
|
{pyg_nightly-2.7.0.dev20250702.dist-info → pyg_nightly-2.7.0.dev20250704.dist-info}/licenses/LICENSE
RENAMED
|
File without changes
|