pyg-nightly 2.7.0.dev20250702__py3-none-any.whl → 2.7.0.dev20250704__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of pyg-nightly might be problematic. Click here for more details.

@@ -0,0 +1,269 @@
1
+ import json
2
+ import os
3
+ import os.path as osp
4
+ from glob import glob
5
+ from typing import Callable, Dict, List, Optional
6
+
7
+ import numpy as np
8
+ import torch
9
+ from tqdm import tqdm
10
+
11
+ from torch_geometric.data import (
12
+ Data,
13
+ InMemoryDataset,
14
+ download_url,
15
+ extract_zip,
16
+ )
17
+
18
+
19
+ class Teeth3DS(InMemoryDataset):
20
+ r"""The Teeth3DS+ dataset from the `"An Extended Benchmark for Intra-oral
21
+ 3D Scans Analysis" <https://crns-smartvision.github.io/teeth3ds/>`_ paper.
22
+
23
+ This dataset is the first comprehensive public benchmark designed to
24
+ advance the field of intra-oral 3D scan analysis developed as part of the
25
+ 3DTeethSeg 2022 and 3DTeethLand 2024 MICCAI challenges, aiming to drive
26
+ research in teeth identification, segmentation, labeling, 3D modeling,
27
+ and dental landmark identification.
28
+ The dataset includes at least 1,800 intra-oral scans (containing 23,999
29
+ annotated teeth) collected from 900 patients, covering both upper and lower
30
+ jaws separately.
31
+
32
+ Args:
33
+ root (str): Root directory where the dataset should be saved.
34
+ split (str): The split name (one of :obj:`"Teeth3DS"`,
35
+ :obj:`"3DTeethSeg22_challenge"` or :obj:`"3DTeethLand_challenge"`).
36
+ train (bool, optional): If :obj:`True`, loads the training dataset,
37
+ otherwise the test dataset. (default: :obj:`True`)
38
+ num_samples (int, optional): Number of points to sample from each mesh.
39
+ (default: :obj:`30000`)
40
+ transform (callable, optional): A function/transform that takes in an
41
+ :obj:`torch_geometric.data.Data` object and returns a transformed
42
+ version. The data object will be transformed before every access.
43
+ (default: :obj:`None`)
44
+ pre_transform (callable, optional): A function/transform that takes in
45
+ an :obj:`torch_geometric.data.Data` object and returns a
46
+ transformed version. The data object will be transformed before
47
+ being saved to disk. (default: :obj:`None`)
48
+ force_reload (bool, optional): Whether to re-process the dataset.
49
+ (default: :obj:`False`)
50
+ """
51
+ urls = {
52
+ 'data_part_1.zip':
53
+ 'https://osf.io/download/qhprs/',
54
+ 'data_part_2.zip':
55
+ 'https://osf.io/download/4pwnr/',
56
+ 'data_part_3.zip':
57
+ 'https://osf.io/download/frwdp/',
58
+ 'data_part_4.zip':
59
+ 'https://osf.io/download/2arn4/',
60
+ 'data_part_5.zip':
61
+ 'https://osf.io/download/xrz5f/',
62
+ 'data_part_6.zip':
63
+ 'https://osf.io/download/23hgq/',
64
+ 'data_part_7.zip':
65
+ 'https://osf.io/download/u83ad/',
66
+ 'train_test_split':
67
+ 'https://files.de-1.osf.io/v1/'
68
+ 'resources/xctdy/providers/osfstorage/?zip='
69
+ }
70
+
71
+ sample_url = {
72
+ 'teeth3ds_sample': 'https://osf.io/download/vr38s/',
73
+ }
74
+
75
+ landmarks_urls = {
76
+ '3DTeethLand_landmarks_train.zip': 'https://osf.io/download/k5hbj/',
77
+ '3DTeethLand_landmarks_test.zip': 'https://osf.io/download/sqw5e/',
78
+ }
79
+
80
+ def __init__(
81
+ self,
82
+ root: str,
83
+ split:
84
+ str = 'Teeth3DS', # [3DTeethSeg22_challenge, 3DTeethLand_challenge]
85
+ train: bool = True,
86
+ num_samples: int = 30000,
87
+ transform: Optional[Callable] = None,
88
+ pre_transform: Optional[Callable] = None,
89
+ force_reload: bool = False,
90
+ ) -> None:
91
+
92
+ self.mode = 'training' if train else 'testing'
93
+ self.split = split
94
+ self.num_samples = num_samples
95
+
96
+ super().__init__(root, transform, pre_transform,
97
+ force_reload=force_reload)
98
+
99
+ @property
100
+ def processed_dir(self) -> str:
101
+ return os.path.join(self.root, f'processed_{self.split}_{self.mode}')
102
+
103
+ @property
104
+ def raw_file_names(self) -> List[str]:
105
+ return ['license.txt']
106
+
107
+ @property
108
+ def processed_file_names(self) -> List[str]:
109
+ # Directory containing train/test split files:
110
+ split_subdir = 'teeth3ds_sample' if self.split == 'sample' else ''
111
+ split_dir = osp.join(
112
+ self.raw_dir,
113
+ split_subdir,
114
+ f'{self.split}_train_test_split',
115
+ )
116
+
117
+ split_files = glob(osp.join(split_dir, f'{self.mode}*.txt'))
118
+
119
+ # Collect all file names from the split files:
120
+ combined_list = []
121
+ for file_path in split_files:
122
+ with open(file_path) as file:
123
+ combined_list.extend(file.read().splitlines())
124
+
125
+ # Generate the list of processed file paths:
126
+ return [f'{file_name}.pt' for file_name in combined_list]
127
+
128
+ def download(self) -> None:
129
+ if self.split == 'sample':
130
+ for key, url in self.sample_url.items():
131
+ path = download_url(url, self.root, filename=key)
132
+ extract_zip(path, self.raw_dir)
133
+ os.unlink(path)
134
+ else:
135
+ for key, url in self.urls.items():
136
+ path = download_url(url, self.root, filename=key)
137
+ extract_zip(path, self.raw_dir)
138
+ os.unlink(path)
139
+ for key, url in self.landmarks_urls.items():
140
+ path = download_url(url, self.root, filename=key)
141
+ extract_zip(path, self.raw_dir) # Extract each downloaded part
142
+ os.unlink(path)
143
+
144
+ def process_file(self, file_path: str) -> Optional[Data]:
145
+ """Processes the input file path to load mesh data, annotations,
146
+ and prepare the input features for a graph-based deep learning model.
147
+ """
148
+ import trimesh
149
+ from fpsample import bucket_fps_kdline_sampling
150
+
151
+ mesh = trimesh.load_mesh(file_path)
152
+
153
+ if isinstance(mesh, list):
154
+ # Handle the case where a list of Geometry objects is returned
155
+ mesh = mesh[0]
156
+
157
+ vertices = mesh.vertices
158
+ vertex_normals = mesh.vertex_normals
159
+
160
+ # Perform sampling on mesh vertices:
161
+ if len(vertices) < self.num_samples:
162
+ sampled_indices = np.random.choice(
163
+ len(vertices),
164
+ self.num_samples,
165
+ replace=True,
166
+ )
167
+ else:
168
+ sampled_indices = bucket_fps_kdline_sampling(
169
+ vertices,
170
+ self.num_samples,
171
+ h=5,
172
+ start_idx=0,
173
+ )
174
+
175
+ if len(sampled_indices) != self.num_samples:
176
+ raise RuntimeError(f"Sampled points mismatch, expected "
177
+ f"{self.num_samples} points, but got "
178
+ f"{len(sampled_indices)} for '{file_path}'")
179
+
180
+ # Extract features and annotations for the sampled points:
181
+ pos = torch.tensor(vertices[sampled_indices], dtype=torch.float)
182
+ x = torch.tensor(vertex_normals[sampled_indices], dtype=torch.float)
183
+
184
+ # Load segmentation annotations:
185
+ seg_annotation_path = file_path.replace('.obj', '.json')
186
+ if osp.exists(seg_annotation_path):
187
+ with open(seg_annotation_path) as f:
188
+ seg_annotations = json.load(f)
189
+ y = torch.tensor(
190
+ np.asarray(seg_annotations['labels'])[sampled_indices],
191
+ dtype=torch.float)
192
+ instances = torch.tensor(
193
+ np.asarray(seg_annotations['instances'])[sampled_indices],
194
+ dtype=torch.float)
195
+ else:
196
+ y = torch.empty(0, 3)
197
+ instances = torch.empty(0, 3)
198
+
199
+ # Load landmarks annotations:
200
+ landmarks_annotation_path = file_path.replace('.obj', '__kpt.json')
201
+
202
+ # Parse keypoint annotations into structured tensors:
203
+ keypoints_dict: Dict[str, List] = {
204
+ key: []
205
+ for key in [
206
+ 'Mesial', 'Distal', 'Cusp', 'InnerPoint', 'OuterPoint',
207
+ 'FacialPoint'
208
+ ]
209
+ }
210
+ keypoint_tensors: Dict[str, torch.Tensor] = {
211
+ key: torch.empty(0, 3)
212
+ for key in [
213
+ 'Mesial', 'Distal', 'Cusp', 'InnerPoint', 'OuterPoint',
214
+ 'FacialPoint'
215
+ ]
216
+ }
217
+ if osp.exists(landmarks_annotation_path):
218
+ with open(landmarks_annotation_path) as f:
219
+ landmarks_annotations = json.load(f)
220
+
221
+ for keypoint in landmarks_annotations['objects']:
222
+ keypoints_dict[keypoint['class']].extend(keypoint['coord'])
223
+
224
+ keypoint_tensors = {
225
+ k: torch.tensor(np.asarray(v),
226
+ dtype=torch.float).reshape(-1, 3)
227
+ for k, v in keypoints_dict.items()
228
+ }
229
+
230
+ data = Data(
231
+ pos=pos,
232
+ x=x,
233
+ y=y,
234
+ instances=instances,
235
+ jaw=file_path.split('.obj')[0].split('_')[1],
236
+ mesial=keypoint_tensors['Mesial'],
237
+ distal=keypoint_tensors['Distal'],
238
+ cusp=keypoint_tensors['Cusp'],
239
+ inner_point=keypoint_tensors['InnerPoint'],
240
+ outer_point=keypoint_tensors['OuterPoint'],
241
+ facial_point=keypoint_tensors['FacialPoint'],
242
+ )
243
+
244
+ if self.pre_transform is not None:
245
+ data = self.pre_transform(data)
246
+
247
+ return data
248
+
249
+ def process(self) -> None:
250
+ for file in tqdm(self.processed_file_names):
251
+ name = file.split('.')[0]
252
+ path = osp.join(self.raw_dir, '**', '*', name + '.obj')
253
+ paths = glob(path)
254
+ if len(paths) == 1:
255
+ data = self.process_file(paths[0])
256
+ torch.save(data, osp.join(self.processed_dir, file))
257
+
258
+ def len(self) -> int:
259
+ return len(self.processed_file_names)
260
+
261
+ def get(self, idx: int) -> Data:
262
+ return torch.load(
263
+ osp.join(self.processed_dir, self.processed_file_names[idx]),
264
+ weights_only=False,
265
+ )
266
+
267
+ def __repr__(self) -> str:
268
+ return (f'{self.__class__.__name__}({len(self)}, '
269
+ f'mode={self.mode}, split={self.split})')
@@ -1,9 +1,11 @@
1
1
  from .performer import PerformerAttention
2
2
  from .qformer import QFormer
3
3
  from .sgformer import SGFormerAttention
4
+ from .polynormer import PolynormerAttention
4
5
 
5
6
  __all__ = [
6
7
  'PerformerAttention',
7
8
  'QFormer',
8
9
  'SGFormerAttention',
10
+ 'PolynormerAttention',
9
11
  ]
@@ -0,0 +1,107 @@
1
+ from typing import Optional
2
+
3
+ import torch
4
+ import torch.nn.functional as F
5
+ from torch import Tensor
6
+
7
+
8
+ class PolynormerAttention(torch.nn.Module):
9
+ r"""The polynomial-expressive attention mechanism from the
10
+ `"Polynormer: Polynomial-Expressive Graph Transformer in Linear Time"
11
+ <https://arxiv.org/abs/2403.01232>`_ paper.
12
+
13
+ Args:
14
+ channels (int): Size of each input sample.
15
+ heads (int, optional): Number of parallel attention heads.
16
+ head_channels (int, optional): Size of each attention head.
17
+ (default: :obj:`64.`)
18
+ beta (float, optional): Polynormer beta initialization.
19
+ (default: :obj:`0.9`)
20
+ qkv_bias (bool, optional): If specified, add bias to query, key
21
+ and value in the self attention. (default: :obj:`False`)
22
+ qk_shared (bool optional): Whether weight of query and key are shared.
23
+ (default: :obj:`True`)
24
+ dropout (float, optional): Dropout probability of the final
25
+ attention output. (default: :obj:`0.0`)
26
+ """
27
+ def __init__(
28
+ self,
29
+ channels: int,
30
+ heads: int,
31
+ head_channels: int = 64,
32
+ beta: float = 0.9,
33
+ qkv_bias: bool = False,
34
+ qk_shared: bool = True,
35
+ dropout: float = 0.0,
36
+ ) -> None:
37
+ super().__init__()
38
+
39
+ self.head_channels = head_channels
40
+ self.heads = heads
41
+ self.beta = beta
42
+ self.qk_shared = qk_shared
43
+
44
+ inner_channels = heads * head_channels
45
+ self.h_lins = torch.nn.Linear(channels, inner_channels)
46
+ if not self.qk_shared:
47
+ self.q = torch.nn.Linear(channels, inner_channels, bias=qkv_bias)
48
+ self.k = torch.nn.Linear(channels, inner_channels, bias=qkv_bias)
49
+ self.v = torch.nn.Linear(channels, inner_channels, bias=qkv_bias)
50
+ self.lns = torch.nn.LayerNorm(inner_channels)
51
+ self.lin_out = torch.nn.Linear(inner_channels, inner_channels)
52
+ self.dropout = torch.nn.Dropout(dropout)
53
+
54
+ def forward(self, x: Tensor, mask: Optional[Tensor] = None) -> Tensor:
55
+ r"""Forward pass.
56
+
57
+ Args:
58
+ x (torch.Tensor): Node feature tensor
59
+ :math:`\mathbf{X} \in \mathbb{R}^{B \times N \times F}`, with
60
+ batch-size :math:`B`, (maximum) number of nodes :math:`N` for
61
+ each graph, and feature dimension :math:`F`.
62
+ mask (torch.Tensor, optional): Mask matrix
63
+ :math:`\mathbf{M} \in {\{ 0, 1 \}}^{B \times N}` indicating
64
+ the valid nodes for each graph. (default: :obj:`None`)
65
+ """
66
+ B, N, *_ = x.shape
67
+ h = self.h_lins(x)
68
+ k = self.k(x).sigmoid().view(B, N, self.head_channels, self.heads)
69
+ if self.qk_shared:
70
+ q = k
71
+ else:
72
+ q = F.sigmoid(self.q(x)).view(B, N, self.head_channels, self.heads)
73
+ v = self.v(x).view(B, N, self.head_channels, self.heads)
74
+
75
+ if mask is not None:
76
+ mask = mask[:, :, None, None]
77
+ v.masked_fill_(~mask, 0.)
78
+
79
+ # numerator
80
+ kv = torch.einsum('bndh, bnmh -> bdmh', k, v)
81
+ num = torch.einsum('bndh, bdmh -> bnmh', q, kv)
82
+
83
+ # denominator
84
+ k_sum = torch.einsum('bndh -> bdh', k)
85
+ den = torch.einsum('bndh, bdh -> bnh', q, k_sum).unsqueeze(2)
86
+
87
+ # linear global attention based on kernel trick
88
+ x = (num / (den + 1e-6)).reshape(B, N, -1)
89
+ x = self.lns(x) * (h + self.beta)
90
+ x = F.relu(self.lin_out(x))
91
+ x = self.dropout(x)
92
+
93
+ return x
94
+
95
+ def reset_parameters(self) -> None:
96
+ self.h_lins.reset_parameters()
97
+ if not self.qk_shared:
98
+ self.q.reset_parameters()
99
+ self.k.reset_parameters()
100
+ self.v.reset_parameters()
101
+ self.lns.reset_parameters()
102
+ self.lin_out.reset_parameters()
103
+
104
+ def __repr__(self) -> str:
105
+ return (f'{self.__class__.__name__}('
106
+ f'heads={self.heads}, '
107
+ f'head_channels={self.head_channels})')
@@ -1,7 +1,7 @@
1
1
  # The below is to suppress the warning on torch.nn.conv.MeshCNNConv::update
2
2
  # pyright: reportIncompatibleMethodOverride=false
3
+ import warnings
3
4
  from typing import Optional
4
- from warnings import warn
5
5
 
6
6
  import torch
7
7
  from torch.nn import Linear, Module, ModuleList
@@ -456,13 +456,10 @@ class MeshCNNConv(MessagePassing):
456
456
  {type(network)}"
457
457
  if not hasattr(network, "in_channels") and \
458
458
  not hasattr(network, "in_features"):
459
- warn(
460
- f"kernel[{i}] does not have attribute \
461
- 'in_channels' nor 'out_features'. The \
462
- network must take as input a \
463
- {self.in_channels}-dimensional tensor. \
464
- Still, assuming user configured \
465
- correctly. Continuing..", stacklevel=2)
459
+ warnings.warn(
460
+ f"kernel[{i}] does not have attribute 'in_channels' nor "
461
+ f"'out_features'. The network must take as input a "
462
+ f"{self.in_channels}-dimensional tensor.", stacklevel=2)
466
463
  else:
467
464
  input_dimension = getattr(network, "in_channels",
468
465
  network.in_features)
@@ -475,13 +472,10 @@ class MeshCNNConv(MessagePassing):
475
472
 
476
473
  if not hasattr(network, "out_channels") and \
477
474
  not hasattr(network, "out_features"):
478
- warn(
479
- f"kernel[{i}] does not have attribute \
480
- 'in_channels' nor 'out_features'. The \
481
- network must take as input a \
482
- {self.in_channels}-dimensional tensor. \
483
- Still, assuming user configured \
484
- correctly. Continuing..", stacklevel=2)
475
+ warnings.warn(
476
+ f"kernel[{i}] does not have attribute 'in_channels' nor "
477
+ f"'out_features'. The network must take as input a "
478
+ f"{self.in_channels}-dimensional tensor.", stacklevel=2)
485
479
  else:
486
480
  output_dimension = getattr(network, "out_channels",
487
481
  network.out_features)
@@ -32,8 +32,10 @@ from .visnet import ViSNet
32
32
  from .g_retriever import GRetriever
33
33
  from .git_mol import GITMol
34
34
  from .molecule_gpt import MoleculeGPT
35
+ from .protein_mpnn import ProteinMPNN
35
36
  from .glem import GLEM
36
37
  from .sgformer import SGFormer
38
+ from .polynormer import Polynormer
37
39
  # Deprecated:
38
40
  from torch_geometric.explain.algorithm.captum import (to_captum_input,
39
41
  captum_output_to_dicts)
@@ -86,7 +88,9 @@ __all__ = classes = [
86
88
  'GRetriever',
87
89
  'GITMol',
88
90
  'MoleculeGPT',
91
+ 'ProteinMPNN',
89
92
  'GLEM',
90
93
  'SGFormer',
94
+ 'Polynormer',
91
95
  'ARLinkPredictor',
92
96
  ]
@@ -8,6 +8,13 @@ from torch_geometric.loader import DataLoader, NeighborLoader
8
8
  from torch_geometric.nn.models import GraphSAGE, basic_gnn
9
9
 
10
10
 
11
+ def deal_nan(x):
12
+ if isinstance(x, torch.Tensor):
13
+ x = x.clone()
14
+ x[torch.isnan(x)] = 0.0
15
+ return x
16
+
17
+
11
18
  class GLEM(torch.nn.Module):
12
19
  r"""This GNN+LM co-training model is based on GLEM from the `"Learning on
13
20
  Large-scale Text-attributed Graphs via Variational Inference"
@@ -379,9 +386,6 @@ class GLEM(torch.nn.Module):
379
386
  is_augmented: use EM or just train GNN and LM with gold data
380
387
 
381
388
  """
382
- def deal_nan(x):
383
- return 0 if torch.isnan(x) else x
384
-
385
389
  if is_augmented and (sum(~is_gold) > 0):
386
390
  mle_loss = deal_nan(loss_func(logits[is_gold], labels[is_gold]))
387
391
  # all other labels beside from ground truth(gold labels)
@@ -0,0 +1,206 @@
1
+ from typing import Optional
2
+
3
+ import torch
4
+ import torch.nn.functional as F
5
+ from torch import Tensor
6
+
7
+ from torch_geometric.nn import GATConv, GCNConv
8
+ from torch_geometric.nn.attention import PolynormerAttention
9
+ from torch_geometric.utils import to_dense_batch
10
+
11
+
12
+ class Polynormer(torch.nn.Module):
13
+ r"""The polynormer module from the
14
+ `"Polynormer: polynomial-expressive graph
15
+ transformer in linear time"
16
+ <https://arxiv.org/abs/2403.01232>`_ paper.
17
+
18
+ Args:
19
+ in_channels (int): Input channels.
20
+ hidden_channels (int): Hidden channels.
21
+ out_channels (int): Output channels.
22
+ local_layers (int): The number of local attention layers.
23
+ (default: :obj:`7`)
24
+ global_layers (int): The number of global attention layers.
25
+ (default: :obj:`2`)
26
+ in_dropout (float): Input dropout rate.
27
+ (default: :obj:`0.15`)
28
+ dropout (float): Dropout rate.
29
+ (default: :obj:`0.5`)
30
+ global_dropout (float): Global dropout rate.
31
+ (default: :obj:`0.5`)
32
+ heads (int): The number of heads.
33
+ (default: :obj:`1`)
34
+ beta (float): Aggregate type.
35
+ (default: :obj:`0.9`)
36
+ qk_shared (bool optional): Whether weight of query and key are shared.
37
+ (default: :obj:`True`)
38
+ pre_ln (bool): Pre layer normalization.
39
+ (default: :obj:`False`)
40
+ post_bn (bool): Post batch normlization.
41
+ (default: :obj:`True`)
42
+ local_attn (bool): Whether use local attention.
43
+ (default: :obj:`False`)
44
+ """
45
+ def __init__(
46
+ self,
47
+ in_channels: int,
48
+ hidden_channels: int,
49
+ out_channels: int,
50
+ local_layers: int = 7,
51
+ global_layers: int = 2,
52
+ in_dropout: float = 0.15,
53
+ dropout: float = 0.5,
54
+ global_dropout: float = 0.5,
55
+ heads: int = 1,
56
+ beta: float = 0.9,
57
+ qk_shared: bool = False,
58
+ pre_ln: bool = False,
59
+ post_bn: bool = True,
60
+ local_attn: bool = False,
61
+ ) -> None:
62
+ super().__init__()
63
+ self._global = False
64
+ self.in_drop = in_dropout
65
+ self.dropout = dropout
66
+ self.pre_ln = pre_ln
67
+ self.post_bn = post_bn
68
+
69
+ self.beta = beta
70
+
71
+ self.h_lins = torch.nn.ModuleList()
72
+ self.local_convs = torch.nn.ModuleList()
73
+ self.lins = torch.nn.ModuleList()
74
+ self.lns = torch.nn.ModuleList()
75
+ if self.pre_ln:
76
+ self.pre_lns = torch.nn.ModuleList()
77
+ if self.post_bn:
78
+ self.post_bns = torch.nn.ModuleList()
79
+
80
+ # first layer
81
+ inner_channels = heads * hidden_channels
82
+ self.h_lins.append(torch.nn.Linear(in_channels, inner_channels))
83
+ if local_attn:
84
+ self.local_convs.append(
85
+ GATConv(in_channels, hidden_channels, heads=heads, concat=True,
86
+ add_self_loops=False, bias=False))
87
+ else:
88
+ self.local_convs.append(
89
+ GCNConv(in_channels, inner_channels, cached=False,
90
+ normalize=True))
91
+
92
+ self.lins.append(torch.nn.Linear(in_channels, inner_channels))
93
+ self.lns.append(torch.nn.LayerNorm(inner_channels))
94
+ if self.pre_ln:
95
+ self.pre_lns.append(torch.nn.LayerNorm(in_channels))
96
+ if self.post_bn:
97
+ self.post_bns.append(torch.nn.BatchNorm1d(inner_channels))
98
+
99
+ # following layers
100
+ for _ in range(local_layers - 1):
101
+ self.h_lins.append(torch.nn.Linear(inner_channels, inner_channels))
102
+ if local_attn:
103
+ self.local_convs.append(
104
+ GATConv(inner_channels, hidden_channels, heads=heads,
105
+ concat=True, add_self_loops=False, bias=False))
106
+ else:
107
+ self.local_convs.append(
108
+ GCNConv(inner_channels, inner_channels, cached=False,
109
+ normalize=True))
110
+
111
+ self.lins.append(torch.nn.Linear(inner_channels, inner_channels))
112
+ self.lns.append(torch.nn.LayerNorm(inner_channels))
113
+ if self.pre_ln:
114
+ self.pre_lns.append(torch.nn.LayerNorm(heads *
115
+ hidden_channels))
116
+ if self.post_bn:
117
+ self.post_bns.append(torch.nn.BatchNorm1d(inner_channels))
118
+
119
+ self.lin_in = torch.nn.Linear(in_channels, inner_channels)
120
+ self.ln = torch.nn.LayerNorm(inner_channels)
121
+
122
+ self.global_attn = torch.nn.ModuleList()
123
+ for _ in range(global_layers):
124
+ self.global_attn.append(
125
+ PolynormerAttention(
126
+ channels=hidden_channels,
127
+ heads=heads,
128
+ head_channels=hidden_channels,
129
+ beta=beta,
130
+ dropout=global_dropout,
131
+ qk_shared=qk_shared,
132
+ ))
133
+ self.pred_local = torch.nn.Linear(inner_channels, out_channels)
134
+ self.pred_global = torch.nn.Linear(inner_channels, out_channels)
135
+ self.reset_parameters()
136
+
137
+ def reset_parameters(self) -> None:
138
+ for local_conv in self.local_convs:
139
+ local_conv.reset_parameters()
140
+ for attn in self.global_attn:
141
+ attn.reset_parameters()
142
+ for lin in self.lins:
143
+ lin.reset_parameters()
144
+ for h_lin in self.h_lins:
145
+ h_lin.reset_parameters()
146
+ for ln in self.lns:
147
+ ln.reset_parameters()
148
+ if self.pre_ln:
149
+ for p_ln in self.pre_lns:
150
+ p_ln.reset_parameters()
151
+ if self.post_bn:
152
+ for p_bn in self.post_bns:
153
+ p_bn.reset_parameters()
154
+ self.lin_in.reset_parameters()
155
+ self.ln.reset_parameters()
156
+ self.pred_local.reset_parameters()
157
+ self.pred_global.reset_parameters()
158
+
159
+ def forward(
160
+ self,
161
+ x: Tensor,
162
+ edge_index: Tensor,
163
+ batch: Optional[Tensor],
164
+ ) -> Tensor:
165
+ r"""Forward pass.
166
+
167
+ Args:
168
+ x (torch.Tensor): The input node features.
169
+ edge_index (torch.Tensor or SparseTensor): The edge indices.
170
+ batch (torch.Tensor, optional): The batch vector
171
+ :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns
172
+ each element to a specific example.
173
+ """
174
+ x = F.dropout(x, p=self.in_drop, training=self.training)
175
+
176
+ # equivariant local attention
177
+ x_local = 0
178
+ for i, local_conv in enumerate(self.local_convs):
179
+ if self.pre_ln:
180
+ x = self.pre_lns[i](x)
181
+ h = self.h_lins[i](x)
182
+ h = F.relu(h)
183
+ x = local_conv(x, edge_index) + self.lins[i](x)
184
+ if self.post_bn:
185
+ x = self.post_bns[i](x)
186
+ x = F.relu(x)
187
+ x = F.dropout(x, p=self.dropout, training=self.training)
188
+ x = (1 - self.beta) * self.lns[i](h * x) + self.beta * x
189
+ x_local = x_local + x
190
+
191
+ # equivariant global attention
192
+ if self._global:
193
+ batch, indices = batch.sort()
194
+ rev_perm = torch.empty_like(indices)
195
+ rev_perm[indices] = torch.arange(len(indices),
196
+ device=indices.device)
197
+ x_local = self.ln(x_local[indices])
198
+ x_global, mask = to_dense_batch(x_local, batch)
199
+ for attn in self.global_attn:
200
+ x_global = attn(x_global, mask)
201
+ x = x_global[mask][rev_perm]
202
+ x = self.pred_global(x)
203
+ else:
204
+ x = self.pred_local(x_local)
205
+
206
+ return F.log_softmax(x, dim=-1)