pyg-nightly 2.7.0.dev20250525__py3-none-any.whl → 2.7.0.dev20250527__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (33) hide show
  1. {pyg_nightly-2.7.0.dev20250525.dist-info → pyg_nightly-2.7.0.dev20250527.dist-info}/METADATA +1 -1
  2. {pyg_nightly-2.7.0.dev20250525.dist-info → pyg_nightly-2.7.0.dev20250527.dist-info}/RECORD +33 -33
  3. torch_geometric/__init__.py +1 -1
  4. torch_geometric/data/feature_store.py +1 -1
  5. torch_geometric/data/hetero_data.py +1 -1
  6. torch_geometric/data/hypergraph_data.py +1 -1
  7. torch_geometric/datasets/airfrans.py +1 -1
  8. torch_geometric/datasets/tag_dataset.py +1 -1
  9. torch_geometric/distributed/partition.py +2 -2
  10. torch_geometric/explain/algorithm/captum.py +1 -1
  11. torch_geometric/explain/metric/faithfulness.py +1 -1
  12. torch_geometric/graphgym/models/layer.py +1 -1
  13. torch_geometric/graphgym/utils/comp_budget.py +2 -2
  14. torch_geometric/index.py +1 -1
  15. torch_geometric/loader/link_loader.py +1 -1
  16. torch_geometric/loader/link_neighbor_loader.py +1 -1
  17. torch_geometric/loader/rag_loader.py +1 -1
  18. torch_geometric/loader/temporal_dataloader.py +2 -2
  19. torch_geometric/loader/utils.py +2 -2
  20. torch_geometric/nn/aggr/equilibrium.py +1 -1
  21. torch_geometric/nn/conv/dna_conv.py +1 -1
  22. torch_geometric/nn/models/captum.py +1 -1
  23. torch_geometric/nn/models/dimenet.py +2 -2
  24. torch_geometric/nn/models/g_retriever.py +2 -2
  25. torch_geometric/nn/models/gpse.py +3 -3
  26. torch_geometric/nn/models/visnet.py +2 -2
  27. torch_geometric/nn/norm/layer_norm.py +3 -3
  28. torch_geometric/nn/pool/cluster_pool.py +2 -2
  29. torch_geometric/nn/to_hetero_with_bases_transformer.py +1 -1
  30. torch_geometric/testing/decorators.py +1 -1
  31. torch_geometric/utils/nested.py +1 -1
  32. {pyg_nightly-2.7.0.dev20250525.dist-info → pyg_nightly-2.7.0.dev20250527.dist-info}/WHEEL +0 -0
  33. {pyg_nightly-2.7.0.dev20250525.dist-info → pyg_nightly-2.7.0.dev20250527.dist-info}/licenses/LICENSE +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20250525
3
+ Version: 2.7.0.dev20250527
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=_GyUOn2fMfQVe-GJrwtAVPSYHJe0W0BlQDFbdPKWB7Q,2255
1
+ torch_geometric/__init__.py,sha256=Z6WENgckvxPkISvCSG5LmI61rxSsj87TnPfBvqmo2Ek,2255
2
2
  torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
3
3
  torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -11,7 +11,7 @@ torch_geometric/edge_index.py,sha256=jSWrZ77qKKydVDxiXrsBlaoL6Qdems6-HiA_B_qDo2o
11
11
  torch_geometric/experimental.py,sha256=JbtNNEXjFGI8hZ9raM6-qrZURP6Z5nlDK8QicZUIbz0,4756
12
12
  torch_geometric/hash_tensor.py,sha256=WB-aBCJWNWqnlnzQ8Ob4LHeCXm0u1_NPPhmNAEwBpq4,24906
13
13
  torch_geometric/home.py,sha256=EV54B4Dmiv61GDbkCwtCfWGWJ4eFGwZ8s3KOgGjwYgY,790
14
- torch_geometric/index.py,sha256=VZGVSb19biQ-HyvZA6esAPW_23dgmtQLSc3436WjP64,24327
14
+ torch_geometric/index.py,sha256=ZVt69f_EhDqiFccZgKJ2eGUXMxErQ2u_KbJfXT9lIxI,24328
15
15
  torch_geometric/inspector.py,sha256=nKi5o4Mn6xsG0Ex1GudTEQt_EqnF9mcMqGtp7Shh9sQ,19336
16
16
  torch_geometric/isinstance.py,sha256=truZjdU9PxSvjJ6k0d_CLJ2iOpen2o8U-54pbUbNRyE,935
17
17
  torch_geometric/lazy_loader.py,sha256=SM0UcXtIdiFge75MKBAWXedoiSOdFDOV0rm1PfoF9cE,908
@@ -39,10 +39,10 @@ torch_geometric/data/datapipes.py,sha256=9_Cq3j_7LIF4plQFzbLaqyy0LcpKdAic6yiKgMq
39
39
  torch_geometric/data/dataset.py,sha256=rNNAYeJDOQ-a6dqjWg4YKsAz0SvkMZuQK-55sRnmWnk,16769
40
40
  torch_geometric/data/download.py,sha256=kcesTu6jlgmCeePpOxDQOnVhxB_GuZ9iu9ds72KEORc,1889
41
41
  torch_geometric/data/extract.py,sha256=X_f0JEo67DF9hOpIlq3QPWXA9RF8uoVFi195UjstzDc,2324
42
- torch_geometric/data/feature_store.py,sha256=ma65GAHHEoYiZqHs_CkMGAYxeepGc1Bp0TMXmioIfCs,20044
42
+ torch_geometric/data/feature_store.py,sha256=BIMgIWpP1y7OCIQxnkdSWcnm8_BFJXuS_zOqfZZQOjI,20045
43
43
  torch_geometric/data/graph_store.py,sha256=EtIgsyY7RdBHRTCn34VypEBOG8cg8WzsNT_kTFKxJR4,13900
44
- torch_geometric/data/hetero_data.py,sha256=IunNWq2cRDox-imtc7w3yxjLI4KfUGXkmk6wddGGnZ0,48601
45
- torch_geometric/data/hypergraph_data.py,sha256=33hsXW25Yz4Ju8mKajYinZOrkqrUi1SqThG7MlOOYNM,8294
44
+ torch_geometric/data/hetero_data.py,sha256=DRmRannOjOffrVnO23EwCavLzAK2sj_pC_-F8d1l14M,48602
45
+ torch_geometric/data/hypergraph_data.py,sha256=-JG3ZnhXluJungr0ELJuwir19DYb7xY_B42k14REKbw,8293
46
46
  torch_geometric/data/in_memory_dataset.py,sha256=F35hU9Dw3qiJUL5E1CCAfq-1xrlUMstXBmQVEQdtJ1I,13403
47
47
  torch_geometric/data/large_graph_indexer.py,sha256=jSB3St2jT4GUKvmeyr7Hu1ozGk9AQey32Z0XFnkSf4M,25454
48
48
  torch_geometric/data/makedirs.py,sha256=6uOv4y34i947cm4rv7Aj2_YZBq-EOsyPKnlGA188YSw,463
@@ -57,7 +57,7 @@ torch_geometric/data/lightning/__init__.py,sha256=w3En1tJfy3kSqe1MycpOyZpHFO3fxB
57
57
  torch_geometric/data/lightning/datamodule.py,sha256=Bn9iaIfE4NWDDWWMqCvBeZ4bIW1Silx_Ol5CPJCliaQ,29242
58
58
  torch_geometric/datasets/__init__.py,sha256=vIraHnDqD40Num-XwwNivjHQDboK9tmMvlZHjTAuljM,6291
59
59
  torch_geometric/datasets/actor.py,sha256=oUxgJIX8bi5hJr1etWNYIFyVQNDDXi1nyVpHGGMEAGQ,4304
60
- torch_geometric/datasets/airfrans.py,sha256=212gYsk7PvF-qcmvM2YXaOBhFrS79evAGg_sPHXih4w,5439
60
+ torch_geometric/datasets/airfrans.py,sha256=8cCBmHPttrlKY_iwfyr-K-CUX_JEDjrIOg3r9dQSN7o,5439
61
61
  torch_geometric/datasets/airports.py,sha256=b3gkv3gY2JkUpmGiz36Z-g7EcnSfU8lBG1YsCOWdJ6k,3758
62
62
  torch_geometric/datasets/amazon.py,sha256=zLiAgrd_44LAFb8drsrIphRJNyuWa6TMjZgmoWdf97Y,3005
63
63
  torch_geometric/datasets/amazon_book.py,sha256=I-8kRsKgk9M60D4icYDELajlsRwksMLDaHMyn6sBC1Y,3214
@@ -151,7 +151,7 @@ torch_geometric/datasets/shapenet.py,sha256=tn3HiQQAr6lxHrqxfOVaAtl40guwFYTXWCbS
151
151
  torch_geometric/datasets/shrec2016.py,sha256=cTLhctbqE0EUEvKddJFhPzDb1oLKXOth4O_WzsWtyMk,6323
152
152
  torch_geometric/datasets/snap_dataset.py,sha256=r3sC-dHDouyaYoHGdoBY0uO0qOOvD6_Hb96d2ceGMZk,9433
153
153
  torch_geometric/datasets/suite_sparse.py,sha256=eqjH4vAUq872qdk3YdLkZSwlu6r7HHpTgK0vEVGmY1s,3278
154
- torch_geometric/datasets/tag_dataset.py,sha256=0fzOsakR9L9CK6ppGN-USD4-Vq-ssbQ2Xovw2nqqtWo,14759
154
+ torch_geometric/datasets/tag_dataset.py,sha256=MbnVCJcryNys1cjdMzXbuk-Rn-BjLbHWFGHx4QYhhUg,14760
155
155
  torch_geometric/datasets/taobao.py,sha256=CUcZpbWsNTasevflO8zqP0YvENy89P7wpKS4MHaDJ6Q,4170
156
156
  torch_geometric/datasets/tosca.py,sha256=nUSF8NQT1GlkwWQLshjWmr8xORsvRHzzIqhUyDCvABc,4632
157
157
  torch_geometric/datasets/tu_dataset.py,sha256=14OSaXBgVwT1dX2h1wZ3xVIwoo0GQBEfR3yWh6Q0VF0,7847
@@ -189,7 +189,7 @@ torch_geometric/distributed/dist_neighbor_sampler.py,sha256=YrL-NMFOJwHJpF189o4k
189
189
  torch_geometric/distributed/event_loop.py,sha256=wr3iwMYEWOGkBlvC5huD2k5YxisaGE9w1Z-8RcQiIQk,3309
190
190
  torch_geometric/distributed/local_feature_store.py,sha256=CLW37RN0ouDufEs2tY9d2nLLvpxubiT6zgW3LIHAU8k,19058
191
191
  torch_geometric/distributed/local_graph_store.py,sha256=wNHXSS824Kk2HynbtWFXx-W4pl97UUBv6qFHAVqO3W4,8445
192
- torch_geometric/distributed/partition.py,sha256=X0BleuY0ROlUtVXKvvz814pJwglZQ2_6OiMi1K0Hhvo,14731
192
+ torch_geometric/distributed/partition.py,sha256=BgjmhDloaooAXM7onGizrcikZs8oRnz5drQZHPDDO_g,14734
193
193
  torch_geometric/distributed/rpc.py,sha256=rJqiVR6Vbb2mpyVSC0Y5tPApqP-b1ck1Uq3IQpCsNSw,5737
194
194
  torch_geometric/distributed/utils.py,sha256=FGrr3qw7hx7EQaIjjqasurloCFJ9q_0jt8jdSIUjBeM,6567
195
195
  torch_geometric/explain/__init__.py,sha256=pRxVB33zsxhED1StRWdHboQWh3e06__g9N298Hzi42Y,359
@@ -199,7 +199,7 @@ torch_geometric/explain/explanation.py,sha256=5DWNEWhRLptGbnTnMrcugPBHlizUHFlkBx
199
199
  torch_geometric/explain/algorithm/__init__.py,sha256=fE29xbd0bPxg-EfrB2BDmmY9QnyO-7TgvYduGHofm5o,496
200
200
  torch_geometric/explain/algorithm/attention_explainer.py,sha256=65iGLmOt00ERtBDVxAoydIchykdWZU24aXzSzUGzQEI,11304
201
201
  torch_geometric/explain/algorithm/base.py,sha256=lXynh9wMAKWN9tuCkcmsmNPwSUExTtgbNl2Nw39NQD0,6942
202
- torch_geometric/explain/algorithm/captum.py,sha256=k6hNgC5Kn9lVirOYVJzej8-hRuf5C2mPFUXFLd2wWsY,12857
202
+ torch_geometric/explain/algorithm/captum.py,sha256=89nHMC-LNp5Mvs_i0F8s1xT_3gmIxcc8izr_PuGmTcY,12858
203
203
  torch_geometric/explain/algorithm/captum_explainer.py,sha256=oz-c40hvdzii4_chEQPHzQo_dFjHr9HLuJhDLsqRIVU,7346
204
204
  torch_geometric/explain/algorithm/dummy_explainer.py,sha256=jvcVQmfngmUWgoKa5p7CXzju2HM5D5DfieJhZW3gbLc,2872
205
205
  torch_geometric/explain/algorithm/gnn_explainer.py,sha256=CmZZsJEK3PA14NND5CLHmyv37O8VrqHR8Q5faajShVY,24724
@@ -208,7 +208,7 @@ torch_geometric/explain/algorithm/pg_explainer.py,sha256=LMlNcqSqtEP-IzYA7Xix6Fo
208
208
  torch_geometric/explain/algorithm/utils.py,sha256=eh0ARPG41V7piVw5jdMYpV0p7WjTlpehnY-bWqPV_zg,2564
209
209
  torch_geometric/explain/metric/__init__.py,sha256=swLeuWVaM3K7UvowsH7q3BzfTq_W1vhcFY8nEP7vFPQ,301
210
210
  torch_geometric/explain/metric/basic.py,sha256=qN-cho4lxwPlw_X26svJrW5QOnw5GB3lLKf0Js_6rBE,1888
211
- torch_geometric/explain/metric/faithfulness.py,sha256=BzcruNz8M_9zzPCPSBPRTJNrDsWcjNOdv1FpAWsrssc,3063
211
+ torch_geometric/explain/metric/faithfulness.py,sha256=0UPLU_SrGxc3e8VGPE1eP0qkS8nAaKo6fuA3UV-27PM,3063
212
212
  torch_geometric/explain/metric/fidelity.py,sha256=W_bKAWEejudiwDLVCgmnfkmGoduS9ptURncD_lrWtbM,6157
213
213
  torch_geometric/graphgym/__init__.py,sha256=XIw3JTK86ca-F5Hf45K_mruHUhbBDC7UGbC0Nv2qi0c,1815
214
214
  torch_geometric/graphgym/benchmark.py,sha256=52Y8fyMQ5Q0hS0kowBlVfnnk-pkLNQLFc8lFs5kiL5Q,510
@@ -244,13 +244,13 @@ torch_geometric/graphgym/models/act.py,sha256=PU1sRtzwCKvdavgfdqHNwa1u8wADkBtxdm
244
244
  torch_geometric/graphgym/models/encoder.py,sha256=Js8r1i34KIjVfltV1ny8kJO-d0zxn92ms7iRifCwcX0,3034
245
245
  torch_geometric/graphgym/models/gnn.py,sha256=ogFkStPm-iOuj_JVNWFWVGvrMG4akWAKtYzNKSYIIuo,6373
246
246
  torch_geometric/graphgym/models/head.py,sha256=6OWqehRGvVqtpai30O7Zu305uGbGhwSKpUn-N19eFqk,4603
247
- torch_geometric/graphgym/models/layer.py,sha256=GxPHxaQhHIevQDvQ56kzziUkVQBog4jlv4SZvfp6Djs,12500
247
+ torch_geometric/graphgym/models/layer.py,sha256=KIGlWT-BCsbrE68yzcWEiSUI83mllI8X36dSPU58YZU,12499
248
248
  torch_geometric/graphgym/models/pooling.py,sha256=PfZTDn9Jva63f72lkq1dPYvhBlbKtHNIMZ1dsOXULbE,288
249
249
  torch_geometric/graphgym/models/transform.py,sha256=lbvGYQE0sRx-P5_eTgKbgx2PYWV1kgg3sEMrnG_NVzQ,1383
250
250
  torch_geometric/graphgym/utils/LICENSE,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
251
251
  torch_geometric/graphgym/utils/__init__.py,sha256=an9dcDvVAgT3naLq5-Jv5gh2ZkuTlIvaullJIFMbprQ,641
252
252
  torch_geometric/graphgym/utils/agg_runs.py,sha256=TGuArA50WcCT8twMVTLyPDRvV3OX8lXMaOKVceGOkPM,9301
253
- torch_geometric/graphgym/utils/comp_budget.py,sha256=qGpiZQ4YOb8LopeM9XkbnycfU3wtvUr2OpfFiUIQH2Q,3045
253
+ torch_geometric/graphgym/utils/comp_budget.py,sha256=tU5QefRGl3Y9h6fTbnFeqNjJF_cHO_okhwd-bTjxIGY,3047
254
254
  torch_geometric/graphgym/utils/device.py,sha256=B5lgc3KizEHja3q3Fz22SOENAUXRE8ufCx3aNepBAGk,1342
255
255
  torch_geometric/graphgym/utils/epoch.py,sha256=cIlX0Oipx2s4Q8rPJgbLRFQbPqKKNeOynUtGyeyjoFI,690
256
256
  torch_geometric/graphgym/utils/io.py,sha256=gqcAXncTCcM9tJpai0LoCokHLoCftnpIgYTPBKARvFY,2049
@@ -278,18 +278,18 @@ torch_geometric/loader/graph_saint.py,sha256=TLNKmMSE1mekMW_k-wcaWICGx_NONsPe7Di
278
278
  torch_geometric/loader/hgt_loader.py,sha256=1gjYFzn3rU4BlAozRWI0eefUfmi5XC5y6YXqo0VzMw8,6012
279
279
  torch_geometric/loader/ibmb_loader.py,sha256=11sg918nIbybr2hoFEO-HA1wYNkL6GFMK9yd8qN6quc,31444
280
280
  torch_geometric/loader/imbalanced_sampler.py,sha256=clPERglHRk5SyeFevDrgezYFl7ir975OVFMyJwOV090,3754
281
- torch_geometric/loader/link_loader.py,sha256=xX9C6c3K5oWAcjMygeDOdxv1mzkP8ePideehsLaDu-w,16207
282
- torch_geometric/loader/link_neighbor_loader.py,sha256=CWv1lO_1Anml8kB60-WG4m_AK1rvqP1jwROV6tHWivo,14383
281
+ torch_geometric/loader/link_loader.py,sha256=XIYgwo5do_70r-wKQLTKTpET85DMCrEeC3fuKH5xOVQ,16208
282
+ torch_geometric/loader/link_neighbor_loader.py,sha256=HdZifaJI3b0M11Og8m7ztY9YobkE_7fz8aY-dc4QyaM,14384
283
283
  torch_geometric/loader/mixin.py,sha256=XX2tIXoFj0dYexUiUhTfVCXAQyL63fpk5bS5FqkXo5U,10946
284
284
  torch_geometric/loader/neighbor_loader.py,sha256=vnLn_RhBKTux5h8pi0vzj0d7JPoOpLA3n3vjyIWv9lo,12452
285
285
  torch_geometric/loader/neighbor_sampler.py,sha256=mraVFXIIGctYot4Xr2VOAhCKAOQyW2gP9KROf7g6tcc,8497
286
286
  torch_geometric/loader/node_loader.py,sha256=g_kV5N0tO6eMSFPc5fdbzfHr4COAeKVJi7FEq52f4zc,11848
287
287
  torch_geometric/loader/prefetch.py,sha256=p1mr54TL4nx3Ea0fBy0JulGYJ8Hq4_9rsiNioZsIW-4,3211
288
- torch_geometric/loader/rag_loader.py,sha256=8hBmccelYOf7HJfdfKLNCpOJYnJ9bFAHeKLkTOuc4CM,4642
288
+ torch_geometric/loader/rag_loader.py,sha256=Q2YvFTe4qoThUvsmCQa-4icRvtjBwbTOkWOAQDOhhG4,4642
289
289
  torch_geometric/loader/random_node_loader.py,sha256=rCmRXYv70SPxBo-Oh049eFEWEZDV7FmlRPzmjcoirXQ,2196
290
290
  torch_geometric/loader/shadow.py,sha256=_hCspYf9SlJYX0lqEjxFec9e9t1iMScNThOoWR1wQGM,4173
291
- torch_geometric/loader/temporal_dataloader.py,sha256=AQ2QFeiXKbPp6I8sUeE8H7br-1_yndivXt7Z6_w62zI,2248
292
- torch_geometric/loader/utils.py,sha256=f27mczQ7fEP2HpTsJGJxKS0slPu0j8zTba3jP8ViNck,14901
291
+ torch_geometric/loader/temporal_dataloader.py,sha256=Z7L_rYdl6SYBQXAgtr18FVcmfMH9kP1fBWrc2W63g2c,2250
292
+ torch_geometric/loader/utils.py,sha256=3hzKzIgB52QIZu7Jdn4JeXZaegIJinIQfIUP9DrUWUQ,14903
293
293
  torch_geometric/loader/zip_loader.py,sha256=3lt10fD15Rxm1WhWzypswGzCEwUz4h8OLCD1nE15yNg,3843
294
294
  torch_geometric/metrics/__init__.py,sha256=3krvDobW6vV5yHTjq2S2pmOXxNfysNG26muq7z48e94,699
295
295
  torch_geometric/metrics/link_pred.py,sha256=dtaI39JB-WqE1B-raiElns6xySRwmkbb9izbcyt6xHI,30886
@@ -311,13 +311,13 @@ torch_geometric/nn/summary.py,sha256=Rs59Sr5xMlCROsRNDP-1BuEZOmkvDw1deV7uD-vWXJ8
311
311
  torch_geometric/nn/to_fixed_size_transformer.py,sha256=ZjJrWxI0YnoyRjVR7wiOcXZJNnTurt-M6FX6MaVZ0sM,1282
312
312
  torch_geometric/nn/to_hetero_module.py,sha256=J2_ZWMnBjsVtwoN5SpykhUHCmhf1qLnBsqngzepprXQ,6519
313
313
  torch_geometric/nn/to_hetero_transformer.py,sha256=YS4gFOhnMuDstFTPvR18FDyXNaTxxeDIGaRS9Ubvr6M,18407
314
- torch_geometric/nn/to_hetero_with_bases_transformer.py,sha256=ErWnsgYYHlQgzwdg0eUlgR6fauWPdnddS7XB5ji3OVk,22974
314
+ torch_geometric/nn/to_hetero_with_bases_transformer.py,sha256=p6A79eQG1bgOll_mPN-1ptQ6xL3bmC1_hoqQTomnsPQ,22976
315
315
  torch_geometric/nn/aggr/__init__.py,sha256=_a01GujVyoRSE6-2driodMhC8-jJss4WNIhairYmhHY,1645
316
316
  torch_geometric/nn/aggr/attention.py,sha256=ZaZQijQGDx7Mfsk-kDlxJSCDjN1Vp02YyblR5-3SmnY,2952
317
317
  torch_geometric/nn/aggr/base.py,sha256=vcWHJlS51mfdYHWmnWEN8b1D57mPM5Y8nqqdVnFm82M,8225
318
318
  torch_geometric/nn/aggr/basic.py,sha256=5CRXpm0VVZb22fMPbMMdqQgh97RYiKiUgZGq3hr7Gbw,11011
319
319
  torch_geometric/nn/aggr/deep_sets.py,sha256=2LSxJJZaWuxRJew-pubmMYc2ynLYWeTyVK47k6OUhq0,2650
320
- torch_geometric/nn/aggr/equilibrium.py,sha256=ACGzBR55DeLAeibvGnLH89jCDANn9ET0vDFdgqtzVEs,6639
320
+ torch_geometric/nn/aggr/equilibrium.py,sha256=6yY9kelCi1qiSUJPpssR5liGIwS2A9nqi-7K7p8QSfI,6639
321
321
  torch_geometric/nn/aggr/fused.py,sha256=AXL8JO47gBIwktfikwGgLmE-OkQ_tKEAuhNP2lOl1nU,12276
322
322
  torch_geometric/nn/aggr/gmt.py,sha256=1JKXHGooA8q_ufGBbfzOhWt693ojuIGJp0lZRqyVNU4,3801
323
323
  torch_geometric/nn/aggr/gru.py,sha256=LCLdJWq3xZjJCTxyO3gD8tX6uITQD9U5nCzj8JU4BCA,2193
@@ -347,7 +347,7 @@ torch_geometric/nn/conv/cheb_conv.py,sha256=5skDmnURkGk0qYYKwefe6kkj_ZSoivUgk_UQ
347
347
  torch_geometric/nn/conv/cluster_gcn_conv.py,sha256=cbaL-k9t6ne4qa5dlGpwR7XeLuN5vNQ1o9tuJ0x-ac4,5255
348
348
  torch_geometric/nn/conv/collect.jinja,sha256=ekJinVPDXisg4UnP7jYOi9yUbqhf7_McgPggnk6qzUI,5752
349
349
  torch_geometric/nn/conv/dir_gnn_conv.py,sha256=QWtmSDYKAHSlvRQF4XKhsIw7TFqUNTJS6GdOxbloSU8,2440
350
- torch_geometric/nn/conv/dna_conv.py,sha256=pAWamxXJ0dLsmh8J6eyP1LzW34ljqpUtZv9M8aoF-Dc,12241
350
+ torch_geometric/nn/conv/dna_conv.py,sha256=i4SiBRzZ9a_f1NF_43UCvxd881gfKX1rfxVRWqWWY-g,12242
351
351
  torch_geometric/nn/conv/edge_conv.py,sha256=HFcsyOYueRAkkoh6Ifvgj63XcXKkNE3lj4WmKvC9C54,5446
352
352
  torch_geometric/nn/conv/edge_updater.jinja,sha256=sCAQMr88Whl4qLqPJ2lGVnBFjllavbHx5N02In81mfk,2216
353
353
  torch_geometric/nn/conv/eg_conv.py,sha256=aOKw-ygu8WIhQywiS6tFeNrvPe1W67slhCHa93J3ChQ,10742
@@ -433,17 +433,17 @@ torch_geometric/nn/models/attentive_fp.py,sha256=tkgvw28wg9-JqHIfBllfCwTHrZIUiv8
433
433
  torch_geometric/nn/models/attract_repel.py,sha256=h9OyogT0NY0xiT0DkpJHMxH6ZUmo8R-CmwZdKEwq8Ek,5277
434
434
  torch_geometric/nn/models/autoencoder.py,sha256=nGje-zty78Y3hxOJ9o0_6QziJjOvBlknk6z0_fDQwQU,10770
435
435
  torch_geometric/nn/models/basic_gnn.py,sha256=PGa0RUMyvrNy_5yRI2jX_zwPsmZXwOQWfsWvxOiHsSk,31225
436
- torch_geometric/nn/models/captum.py,sha256=kV3lsIM7QdP9MDXmBOTq0Sf1jTEcK-_9LnwLYm2aVzw,3971
436
+ torch_geometric/nn/models/captum.py,sha256=vPN85_HDMTNcw-rKXAtYY-vT2SbHdf4CFtkseqYsnHg,3972
437
437
  torch_geometric/nn/models/correct_and_smooth.py,sha256=wmq-US2r4ocd0a661R8YeDiBeVtILOjdN-4swIth9BQ,6827
438
438
  torch_geometric/nn/models/deep_graph_infomax.py,sha256=u6j-5-iHBASDCZ776dyfCI1N8wuvIMjeff8kthiX3Q4,4137
439
439
  torch_geometric/nn/models/deepgcn.py,sha256=tIgT03cj8MghYlxEozpoGvGG_CwpJrGDxv1Z0CVIUts,4339
440
- torch_geometric/nn/models/dimenet.py,sha256=Kc5p-rB5q-0e8lY22l-OdQTscTxJh2lTEpeRFMdL4RY,36186
440
+ torch_geometric/nn/models/dimenet.py,sha256=O2rqEx5HWs_lMwRD8eq6WMkbqJaCLL5zgWUJ27qh9Bc,36188
441
441
  torch_geometric/nn/models/dimenet_utils.py,sha256=Eyn_EiJqwKvuYj6BtRpSxrzMG3v4Gk98X9MxZ7uvwm4,5069
442
- torch_geometric/nn/models/g_retriever.py,sha256=CdSOasnPiMvq5AjduNTpz-LIZiNp3X0xM5sx5MEW8Ok,8258
442
+ torch_geometric/nn/models/g_retriever.py,sha256=tVibbqM_r-1LnA3R3oVyzp0bpuN3qPoYqcU6LZ8dYEk,8260
443
443
  torch_geometric/nn/models/git_mol.py,sha256=Wc6Hx6RDDR7sDWRWHfA5eK9e9gFsrTZ9OLmpMfoj3pE,12676
444
444
  torch_geometric/nn/models/glem.py,sha256=sT0XM4klVlci9wduvUoXupATUw9p25uXtaJBrmv3yvs,16431
445
445
  torch_geometric/nn/models/gnnff.py,sha256=15dkiLgy0LmH1hnUrpeoHioIp4BPTfjpVATpnGRt9E0,7860
446
- torch_geometric/nn/models/gpse.py,sha256=NSN7yL98a9KzPjhwEpqOyx4RVtEfOPhFc0opejpTGVk,41981
446
+ torch_geometric/nn/models/gpse.py,sha256=3tKzVPkvntAtj13qSPJO1rittr8X1Q_7OqVTOaSpp2s,41982
447
447
  torch_geometric/nn/models/graph_mixer.py,sha256=mthMeCOikR8gseEsu4oJ3Cd9C35zHSv1p32ROwnG-6s,9246
448
448
  torch_geometric/nn/models/graph_unet.py,sha256=N8TSmJo8AlbZjjcame0xW_jZvMOirL5ahw6qv5Yjpbs,5586
449
449
  torch_geometric/nn/models/jumping_knowledge.py,sha256=9JR2EoViXKjcDSLb8tjJm-UHfv1mQCJvZAAEsYa0Ocw,5496
@@ -465,7 +465,7 @@ torch_geometric/nn/models/schnet.py,sha256=0aaHrVtxApdvn3RHCGLQJW1MbIb--CSYUrx9O
465
465
  torch_geometric/nn/models/sgformer.py,sha256=3NDzkEVRtM1QmeJsXSq7FBhGGchyUvyX1SDPKYg9F70,6875
466
466
  torch_geometric/nn/models/signed_gcn.py,sha256=J40CnedFIqtKI1LhW1ITSEFRbA_XiJZL6lASrKwUEAI,9841
467
467
  torch_geometric/nn/models/tgn.py,sha256=kEGdfLJybkbMT4UMoAh2nCzfX3_nDjfm1cicuPHEwAM,11878
468
- torch_geometric/nn/models/visnet.py,sha256=97OFMCsPDEI5BCSi7RhoRcU2CNRp7zck2tEzrltFZj4,43192
468
+ torch_geometric/nn/models/visnet.py,sha256=-ABewG-3BzChboHAvoiO3bbi3d_46x8egyvTwxBD5WE,43194
469
469
  torch_geometric/nn/nlp/__init__.py,sha256=q6CPUiJHcc9bXw90lyj-ID4F3kfW8uPM-SOxW9uCMHs,213
470
470
  torch_geometric/nn/nlp/llm.py,sha256=uVPoIB2_nU0s3N_Z3oVW2Q7XGsAisW1QGaaLe2Y__hw,12227
471
471
  torch_geometric/nn/nlp/sentence_transformer.py,sha256=q5M7SGtrUzoSiNhKCGFb7JatWiukdhNF6zdq2yiqxwE,4475
@@ -476,7 +476,7 @@ torch_geometric/nn/norm/diff_group_norm.py,sha256=b57XvNekrUYGDjNJlGeqvaMGNJmHwo
476
476
  torch_geometric/nn/norm/graph_norm.py,sha256=Tld_9_dzst4yEw58DZo4U--4QryA6pP2bsNfmqEDgrY,2727
477
477
  torch_geometric/nn/norm/graph_size_norm.py,sha256=sh5Nue1Ix2jC1T7o7KqOw0_TAOcpZ4VbYzhADWE97-M,1491
478
478
  torch_geometric/nn/norm/instance_norm.py,sha256=lUCZccuQNY8gfYUz-YRrNeSVckYuIJSFaW_m2HMp3iY,4685
479
- torch_geometric/nn/norm/layer_norm.py,sha256=pWo5q8rLNSaU2fECpP7L8T_airtaukjOztLyFs2Kvfw,7831
479
+ torch_geometric/nn/norm/layer_norm.py,sha256=m7a7Uoyx0zZhAxJ6Kj5N5DOg4zQnojO1FA1i661wW80,7835
480
480
  torch_geometric/nn/norm/mean_subtraction_norm.py,sha256=KVHOp413mw7obwAN09Le6XdgobtCXpi4UKpjpG1M550,1322
481
481
  torch_geometric/nn/norm/msg_norm.py,sha256=zaQtqhs55LU-e6KPC4ylaSdge4KvEoseqOt7pmAzi2s,1662
482
482
  torch_geometric/nn/norm/pair_norm.py,sha256=IfHMiVYw_xsy035NakbPGdQVaVC-Ue3Oxwo651Vc47I,2824
@@ -484,7 +484,7 @@ torch_geometric/nn/pool/__init__.py,sha256=2Bi-_xlsGIUUKDeOO7BhaTqCc5n6_ixbu_MO9
484
484
  torch_geometric/nn/pool/approx_knn.py,sha256=n7C8Cbar6o5tJcuAbzhM5hqMK26hW8dm5DopuocidO0,3967
485
485
  torch_geometric/nn/pool/asap.py,sha256=p8fwpMOeCUyJrdvMmLoTMzr0tI9YCTnefMx8ylIv5xE,6683
486
486
  torch_geometric/nn/pool/avg_pool.py,sha256=pwiQh14BCVsT-iULqVAFW-Dxt7DjFOu8CQX_Hu34vZc,3966
487
- torch_geometric/nn/pool/cluster_pool.py,sha256=et2YaFu1kf-o6Eg9XpqHGp_Cqv68DndWbE88VJHOSPQ,5227
487
+ torch_geometric/nn/pool/cluster_pool.py,sha256=XSwZa9wvbJppvCqHAhGky0MzQwNkXNVcnIKdI6ZYuwM,5225
488
488
  torch_geometric/nn/pool/consecutive.py,sha256=7dMiMd5IybNeml1RqZq436FI6sod5ZUxTuDWJjr5syo,273
489
489
  torch_geometric/nn/pool/decimation.py,sha256=AjbU2h_Gl_EQcfkhF977EnrLJ2kait_e4HyCNKRyxPw,1601
490
490
  torch_geometric/nn/pool/edge_pool.py,sha256=cXgcN5xF8z5NeycYMX9m1zoAk1jtSdyK42YiNNHTeow,8571
@@ -520,7 +520,7 @@ torch_geometric/sampler/utils.py,sha256=RJtasO6Q7Pp3oYEOWrbf2DEYuSfuKZOsF2I7-eJD
520
520
  torch_geometric/testing/__init__.py,sha256=m3yp_5UnCAxVgzTFofpiVt0vdbl5GwVAve8WTrAaNxo,1319
521
521
  torch_geometric/testing/asserts.py,sha256=DLC9HnBgFWuTIiQs2OalsQcXGhOVG-e6R99IWhkO32c,4606
522
522
  torch_geometric/testing/data.py,sha256=O1qo8FyNxt6RGf63Ys3eXBfa5RvYydeZLk74szrez3c,2604
523
- torch_geometric/testing/decorators.py,sha256=k7QtPWz-8Ft89cvKmZt8y1h00j2BB1yhEHwmGzTcol0,9075
523
+ torch_geometric/testing/decorators.py,sha256=jW2d9qxT7DgWEYFdes2cB-IhnTGg_qjmGufEtHuMX14,9076
524
524
  torch_geometric/testing/distributed.py,sha256=ZZCCXqiQC4-m1ExSjDZhS_a1qPXnHEwhJGTmACxNnVI,2227
525
525
  torch_geometric/testing/feature_store.py,sha256=J6JBIt2XK-t8yG8B4JzXp-aJcVl5jaCS1m2H7d6OUxs,2158
526
526
  torch_geometric/testing/graph_store.py,sha256=00B7QToCIspYmgN7svQKp1iU-qAzEtrt3VQRFxkHfuk,1044
@@ -626,7 +626,7 @@ torch_geometric/utils/map.py,sha256=urEpmpf7SB4875nL7zR1Nc89wYMIcvzgBVfDgi3AHFc,
626
626
  torch_geometric/utils/mask.py,sha256=WOsfZLOMf1bunlwI6RH3evptbu0eOwNg19t6VOYboIo,2340
627
627
  torch_geometric/utils/mesh_laplacian.py,sha256=dqUEp7sOCBhWZPnUMAqa93OAj30dTDshcUpstt2iZDc,4387
628
628
  torch_geometric/utils/mixin.py,sha256=h4r5acaeEZ2azvwBcUbybevuoyhLE8qLBiERU7V9w20,699
629
- torch_geometric/utils/nested.py,sha256=-F67Np73ZtBpePqd6qQ2oH5gN9jLW-mHeFX3ZDiK2fA,3310
629
+ torch_geometric/utils/nested.py,sha256=QZtxG65MEAQp7BN7oY-O1U0WpI0_x7cqsKEU13K9AGA,3311
630
630
  torch_geometric/utils/noise_scheduler.py,sha256=SFn_IFGGZquyxM_wzDpmq6BWJU8MFLREJVuPDrk-8Bc,3750
631
631
  torch_geometric/utils/num_nodes.py,sha256=F15ciTFOe8AxjkUh1wKH7RLmJvQYYpz-l3pPPvQZzOw,2176
632
632
  torch_geometric/utils/ppr.py,sha256=ebiHbQqRJsQbGUI5xu-IkzQSQsgIaC71vgO0KcXIKAk,4055
@@ -638,7 +638,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
638
638
  torch_geometric/visualization/__init__.py,sha256=b-HnVesXjyJ_L1N-DnjiRiRVf7lhwKaBQF_2i5YMVSU,208
639
639
  torch_geometric/visualization/graph.py,sha256=mfZHXYfiU-CWMtfawYc80IxVwVmtK9hbIkSKhM_j7oI,14311
640
640
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
641
- pyg_nightly-2.7.0.dev20250525.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
642
- pyg_nightly-2.7.0.dev20250525.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
643
- pyg_nightly-2.7.0.dev20250525.dist-info/METADATA,sha256=Ut6Omc87Ml75xX-qb2yg5zagLqylNIi2oWwghNWurTQ,62952
644
- pyg_nightly-2.7.0.dev20250525.dist-info/RECORD,,
641
+ pyg_nightly-2.7.0.dev20250527.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
642
+ pyg_nightly-2.7.0.dev20250527.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
643
+ pyg_nightly-2.7.0.dev20250527.dist-info/METADATA,sha256=LD47bEQqXq7LIbIIf3TIfRLDGpcKM6mVL2f2HYDrUdE,62952
644
+ pyg_nightly-2.7.0.dev20250527.dist-info/RECORD,,
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
31
31
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
32
32
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
33
33
 
34
- __version__ = '2.7.0.dev20250525'
34
+ __version__ = '2.7.0.dev20250527'
35
35
 
36
36
  __all__ = [
37
37
  'Index',
@@ -409,7 +409,7 @@ class FeatureStore(ABC):
409
409
  def update_tensor(self, tensor: FeatureTensorType, *args,
410
410
  **kwargs) -> bool:
411
411
  r"""Updates a :obj:`tensor` in the :class:`FeatureStore` with a new
412
- value. Returns whether the update was succesful.
412
+ value. Returns whether the update was successful.
413
413
 
414
414
  .. note::
415
415
  Implementor classes can choose to define more efficient update
@@ -566,7 +566,7 @@ class HeteroData(BaseData, FeatureStore, GraphStore):
566
566
  This is equivalent to writing :obj:`data.x_dict`.
567
567
 
568
568
  Args:
569
- key (str): The attribute to collect from all node and ege types.
569
+ key (str): The attribute to collect from all node and edge types.
570
570
  allow_empty (bool, optional): If set to :obj:`True`, will not raise
571
571
  an error in case the attribute does not exit in any node or
572
572
  edge type. (default: :obj:`False`)
@@ -39,7 +39,7 @@ class HyperGraphData(Data):
39
39
  edge_index (LongTensor, optional): Hyperedge tensor
40
40
  with shape :obj:`[2, num_edges*num_nodes_per_edge]`.
41
41
  Where `edge_index[1]` denotes the hyperedge index and
42
- `edge_index[0]` denotes the node indicies that are connected
42
+ `edge_index[0]` denotes the node indices that are connected
43
43
  by the hyperedge. (default: :obj:`None`)
44
44
  (default: :obj:`None`)
45
45
  edge_attr (torch.Tensor, optional): Edge feature matrix with shape
@@ -25,7 +25,7 @@ class AirfRANS(InMemoryDataset):
25
25
  features: the inlet velocity (two components in meter per second), the
26
26
  distance to the airfoil (one component in meter), and the normals (two
27
27
  components in meter, set to :obj:`0` if the point is not on the airfoil).
28
- Each point is given a target of 4 components for the underyling regression
28
+ Each point is given a target of 4 components for the underlying regression
29
29
  task: the velocity (two components in meter per second), the pressure
30
30
  divided by the specific mass (one component in meter squared per second
31
31
  squared), the turbulent kinematic viscosity (one component in meter squared
@@ -277,7 +277,7 @@ class TAGDataset(InMemoryDataset):
277
277
  for k, tensor in all_encoded_token.items():
278
278
  torch.save(tensor, os.path.join(path, f'{k}.pt'))
279
279
  print('Token saved:', os.path.join(path, f'{k}.pt'))
280
- os.environ["TOKENIZERS_PARALLELISM"] = 'true' # supressing warning
280
+ os.environ["TOKENIZERS_PARALLELISM"] = 'true' # suppressing warning
281
281
  return all_encoded_token
282
282
 
283
283
  def __repr__(self) -> str:
@@ -304,7 +304,7 @@ class Partitioner:
304
304
  elif self.is_node_level_time:
305
305
  node_time = data.time
306
306
 
307
- # Sort by column to avoid keeping track of permuations in
307
+ # Sort by column to avoid keeping track of permutations in
308
308
  # `NeighborSampler` when converting to CSC format:
309
309
  global_row, global_col, perm = sort_csc(
310
310
  global_row, global_col, node_time, edge_time)
@@ -361,7 +361,7 @@ class Partitioner:
361
361
  'edge_types': self.edge_types,
362
362
  'node_offset': list(node_offset.values()) if node_offset else None,
363
363
  'is_hetero': self.is_hetero,
364
- 'is_sorted': True, # Based on colum/destination.
364
+ 'is_sorted': True, # Based on columnn/destination.
365
365
  }
366
366
  with open(osp.join(self.root, 'META.json'), 'w') as f:
367
367
  json.dump(meta, f)
@@ -190,7 +190,7 @@ def to_captum_input(
190
190
 
191
191
  Args:
192
192
  x (torch.Tensor or Dict[NodeType, torch.Tensor]): The node features.
193
- For heterogeneous graphs this is a dictionary holding node featues
193
+ For heterogeneous graphs this is a dictionary holding node features
194
194
  for each node type.
195
195
  edge_index(torch.Tensor or Dict[EdgeType, torch.Tensor]): The edge
196
196
  indices. For heterogeneous graphs this is a dictionary holding the
@@ -13,7 +13,7 @@ def unfaithfulness(
13
13
  top_k: Optional[int] = None,
14
14
  ) -> float:
15
15
  r"""Evaluates how faithful an :class:`~torch_geometric.explain.Explanation`
16
- is to an underyling GNN predictor, as described in the
16
+ is to an underlying GNN predictor, as described in the
17
17
  `"Evaluating Explainability for Graph Neural Networks"
18
18
  <https://arxiv.org/abs/2208.09339>`_ paper.
19
19
 
@@ -52,7 +52,7 @@ def new_layer_config(
52
52
  has_bias: bool,
53
53
  cfg,
54
54
  ) -> LayerConfig:
55
- r"""Createa a layer configuration for a GNN layer.
55
+ r"""Create a layer configuration for a GNN layer.
56
56
 
57
57
  Args:
58
58
  dim_in (int): The input feature dimension.
@@ -67,12 +67,12 @@ def dict_to_stats(cfg_dict):
67
67
 
68
68
  def match_baseline_cfg(cfg_dict, cfg_dict_baseline, verbose=True):
69
69
  """Match the computational budget of a given baseline model. The current
70
- configuration dictionary will be modifed and returned.
70
+ configuration dictionary will be modified and returned.
71
71
 
72
72
  Args:
73
73
  cfg_dict (dict): Current experiment's configuration
74
74
  cfg_dict_baseline (dict): Baseline configuration
75
- verbose (str, optional): If printing matched paramter conunts
75
+ verbose (str, optional): If printing matched parameter conunts
76
76
  """
77
77
  from yacs.config import CfgNode as CN
78
78
  stats_baseline = dict_to_stats(cfg_dict_baseline)
torch_geometric/index.py CHANGED
@@ -104,7 +104,7 @@ class Index(Tensor):
104
104
  conversion in case its representation is sorted.
105
105
  Caches are filled based on demand (*e.g.*, when calling
106
106
  :meth:`Index.get_indptr`), or when explicitly requested via
107
- :meth:`Index.fill_cache_`, and are maintaned and adjusted over its
107
+ :meth:`Index.fill_cache_`, and are maintained and adjusted over its
108
108
  lifespan.
109
109
 
110
110
  This representation ensures optimal computation in GNN message passing
@@ -70,7 +70,7 @@ class LinkLoader(
70
70
  :obj:`edge_label_index`. If set, temporal sampling will be
71
71
  used such that neighbors are guaranteed to fulfill temporal
72
72
  constraints, *i.e.*, neighbors have an earlier timestamp than
73
- the ouput edge. The :obj:`time_attr` needs to be set for this
73
+ the output edge. The :obj:`time_attr` needs to be set for this
74
74
  to work. (default: :obj:`None`)
75
75
  neg_sampling (NegativeSampling, optional): The negative sampling
76
76
  configuration.
@@ -117,7 +117,7 @@ class LinkNeighborLoader(LinkLoader):
117
117
  :obj:`edge_label_index`. If set, temporal sampling will be
118
118
  used such that neighbors are guaranteed to fulfill temporal
119
119
  constraints, *i.e.*, neighbors have an earlier timestamp than
120
- the ouput edge. The :obj:`time_attr` needs to be set for this
120
+ the output edge. The :obj:`time_attr` needs to be set for this
121
121
  to work. (default: :obj:`None`)
122
122
  replace (bool, optional): If set to :obj:`True`, will sample with
123
123
  replacement. (default: :obj:`False`)
@@ -68,7 +68,7 @@ class RAGQueryLoader:
68
68
  local_filter (Optional[Callable[[Data, Any], Data]], optional):
69
69
  Optional local transform to apply to data after retrieval.
70
70
  Defaults to None.
71
- seed_nodes_kwargs (Optional[Dict[str, Any]], optional): Paramaters
71
+ seed_nodes_kwargs (Optional[Dict[str, Any]], optional): Parameters
72
72
  to pass into process for fetching seed nodes. Defaults to None.
73
73
  seed_edges_kwargs (Optional[Dict[str, Any]], optional): Parameters
74
74
  to pass into process for fetching seed edges. Defaults to None.
@@ -6,7 +6,7 @@ from torch_geometric.data import TemporalData
6
6
 
7
7
 
8
8
  class TemporalDataLoader(torch.utils.data.DataLoader):
9
- r"""A data loader which merges succesive events of a
9
+ r"""A data loader which merges successive events of a
10
10
  :class:`torch_geometric.data.TemporalData` to a mini-batch.
11
11
 
12
12
  Args:
@@ -15,7 +15,7 @@ class TemporalDataLoader(torch.utils.data.DataLoader):
15
15
  batch_size (int, optional): How many samples per batch to load.
16
16
  (default: :obj:`1`)
17
17
  neg_sampling_ratio (float, optional): The ratio of sampled negative
18
- destination nodes to the number of postive destination nodes.
18
+ destination nodes to the number of positive destination nodes.
19
19
  (default: :obj:`0.0`)
20
20
  **kwargs (optional): Additional arguments of
21
21
  :class:`torch.utils.data.DataLoader`.
@@ -178,7 +178,7 @@ def filter_hetero_data(
178
178
  out = copy.copy(data)
179
179
 
180
180
  for node_type in out.node_types:
181
- # Handle the case of disconneted graph sampling:
181
+ # Handle the case of disconnected graph sampling:
182
182
  if node_type not in node_dict:
183
183
  node_dict[node_type] = torch.empty(0, dtype=torch.long)
184
184
 
@@ -186,7 +186,7 @@ def filter_hetero_data(
186
186
  node_dict[node_type])
187
187
 
188
188
  for edge_type in out.edge_types:
189
- # Handle the case of disconneted graph sampling:
189
+ # Handle the case of disconnected graph sampling:
190
190
  if edge_type not in row_dict:
191
191
  row_dict[edge_type] = torch.empty(0, dtype=torch.long)
192
192
  if edge_type not in col_dict:
@@ -52,7 +52,7 @@ class MomentumOptimizer(torch.nn.Module):
52
52
  layer. It is based on an unrolled Nesterov momentum algorithm.
53
53
 
54
54
  Args:
55
- learning_rate (flaot): learning rate for optimizer.
55
+ learning_rate (float): learning rate for optimizer.
56
56
  momentum (float): momentum for optimizer.
57
57
  learnable (bool): If :obj:`True` then the :obj:`learning_rate` and
58
58
  :obj:`momentum` will be learnable parameters. If False they
@@ -163,7 +163,7 @@ class MultiHead(Attention):
163
163
  def __repr__(self) -> str: # pragma: no cover
164
164
  return (f'{self.__class__.__name__}({self.in_channels}, '
165
165
  f'{self.out_channels}, heads={self.heads}, '
166
- f'groups={self.groups}, dropout={self.droput}, '
166
+ f'groups={self.groups}, dropout={self.dropout}, '
167
167
  f'bias={self.bias})')
168
168
 
169
169
 
@@ -94,7 +94,7 @@ def to_captum_model(
94
94
  function will return the output of the model for the element at
95
95
  the index specified. (default: :obj:`None`)
96
96
  metadata (Metadata, optional): The metadata of the heterogeneous graph.
97
- Only required if explaning a
97
+ Only required if explaining a
98
98
  :class:`~torch_geometric.data.HeteroData` object.
99
99
  (default: :obj:`None`)
100
100
  """
@@ -755,7 +755,7 @@ class DimeNetPlusPlus(DimeNet):
755
755
  interaction blocks after the skip connection. (default: :obj:`2`)
756
756
  num_output_layers: (int, optional): Number of linear layers for the
757
757
  output blocks. (default: :obj:`3`)
758
- act: (str or Callable, optional): The activation funtion.
758
+ act: (str or Callable, optional): The activation function.
759
759
  (default: :obj:`"swish"`)
760
760
  output_initializer (str, optional): The initialization method for the
761
761
  output layer (:obj:`"zeros"`, :obj:`"glorot_orthogonal"`).
@@ -805,7 +805,7 @@ class DimeNetPlusPlus(DimeNet):
805
805
 
806
806
  # We are re-using the RBF, SBF and embedding layers of `DimeNet` and
807
807
  # redefine output_block and interaction_block in DimeNet++.
808
- # Hence, it is to be noted that in the above initalization, the
808
+ # Hence, it is to be noted that in the above initialization, the
809
809
  # variable `num_bilinear` does not have any purpose as it is used
810
810
  # solely in the `OutputBlock` of DimeNet:
811
811
  self.output_blocks = torch.nn.ModuleList([
@@ -131,7 +131,7 @@ class GRetriever(torch.nn.Module):
131
131
  x = self.projector(x)
132
132
  xs = x.split(1, dim=0)
133
133
 
134
- # Handle case where theres more than one embedding for each sample
134
+ # Handle case where there's more than one embedding for each sample
135
135
  xs = [x.squeeze(0) for x in xs]
136
136
 
137
137
  # Handle questions without node features:
@@ -190,7 +190,7 @@ class GRetriever(torch.nn.Module):
190
190
  x = self.projector(x)
191
191
  xs = x.split(1, dim=0)
192
192
 
193
- # Handle case where theres more than one embedding for each sample
193
+ # Handle case where there's more than one embedding for each sample
194
194
  xs = [x.squeeze(0) for x in xs]
195
195
 
196
196
  # Handle questions without node features:
@@ -283,7 +283,7 @@ class GNNInductiveHybridMultiHead(torch.nn.Module):
283
283
  (default: :obj:`add`)
284
284
  has_bn (bool, optional): Whether to apply batch normalization to layer
285
285
  outputs. (default: :obj:`True`)
286
- has_l2norm (bool, optional): Wheter to apply L2 normalization to the
286
+ has_l2norm (bool, optional): Whether to apply L2 normalization to the
287
287
  layer outputs. (default: :obj:`True`)
288
288
  dropout (float, optional): Dropout ratio at layer output.
289
289
  (default: :obj:`0.2`)
@@ -951,7 +951,7 @@ def precompute_GPSE(model: GPSE, dataset: Dataset, use_vn: bool = True,
951
951
  **kwargs)
952
952
 
953
953
  batch_out = batch_out.to('cpu', non_blocking=True)
954
- # Need to wait for batch_ptr to finish transfering so that start and
954
+ # Need to wait for batch_ptr to finish transferring so that start and
955
955
  # end indices are ready to use
956
956
  batch_ptr = batch_ptr.to('cpu', non_blocking=False)
957
957
 
@@ -966,7 +966,7 @@ def precompute_GPSE(model: GPSE, dataset: Dataset, use_vn: bool = True,
966
966
  pbar.update(len(batch_ptr) - 1)
967
967
  pbar.close()
968
968
 
969
- # Collate dataset and reset indicies and data list
969
+ # Collate dataset and reset indices and data list
970
970
  dataset.transform = orig_dataset_transform
971
971
  dataset._indices = None
972
972
  dataset._data_list = data_list
@@ -11,7 +11,7 @@ from torch_geometric.utils import scatter
11
11
 
12
12
 
13
13
  class CosineCutoff(torch.nn.Module):
14
- r"""Appies a cosine cutoff to the input distances.
14
+ r"""Applies a cosine cutoff to the input distances.
15
15
 
16
16
  .. math::
17
17
  \text{cutoffs} =
@@ -572,7 +572,7 @@ class ViS_MP(MessagePassing):
572
572
  d_ij: Tensor,
573
573
  ) -> Tuple[Tensor, Tensor, Optional[Tensor]]:
574
574
  r"""Computes the residual scalar and vector features of the nodes and
575
- scalar featues of the edges.
575
+ scalar features of the edges.
576
576
 
577
577
  Args:
578
578
  x (torch.Tensor): The scalar features of the nodes.
@@ -30,7 +30,7 @@ class LayerNorm(torch.nn.Module):
30
30
  affine (bool, optional): If set to :obj:`True`, this module has
31
31
  learnable affine parameters :math:`\gamma` and :math:`\beta`.
32
32
  (default: :obj:`True`)
33
- mode (str, optinal): The normalization mode to use for layer
33
+ mode (str, optional): The normalization mode to use for layer
34
34
  normalization (:obj:`"graph"` or :obj:`"node"`). If :obj:`"graph"`
35
35
  is used, each graph will be considered as an element to be
36
36
  normalized. If `"node"` is used, each node will be considered as
@@ -108,7 +108,7 @@ class LayerNorm(torch.nn.Module):
108
108
  return F.layer_norm(x, (self.in_channels, ), self.weight,
109
109
  self.bias, self.eps)
110
110
 
111
- raise ValueError(f"Unknow normalization mode: {self.mode}")
111
+ raise ValueError(f"Unknownn normalization mode: {self.mode}")
112
112
 
113
113
  def __repr__(self):
114
114
  return (f'{self.__class__.__name__}({self.in_channels}, '
@@ -130,7 +130,7 @@ class HeteroLayerNorm(torch.nn.Module):
130
130
  affine (bool, optional): If set to :obj:`True`, this module has
131
131
  learnable affine parameters :math:`\gamma` and :math:`\beta`.
132
132
  (default: :obj:`True`)
133
- mode (str, optinal): The normalization mode to use for layer
133
+ mode (str, optional): The normalization mode to use for layer
134
134
  normalization (:obj:`"node"`). If `"node"` is used, each node will
135
135
  be considered as an element to be normalized.
136
136
  (default: :obj:`"node"`)
@@ -55,7 +55,7 @@ class ClusterPooling(torch.nn.Module):
55
55
  self.in_channels = in_channels
56
56
  self.edge_score_method = edge_score_method
57
57
  self.dropout = dropout
58
- self.threshhold = threshold
58
+ self.threshold = threshold
59
59
 
60
60
  self.lin = torch.nn.Linear(2 * in_channels, 1)
61
61
 
@@ -116,7 +116,7 @@ class ClusterPooling(torch.nn.Module):
116
116
 
117
117
  from scipy.sparse.csgraph import connected_components
118
118
 
119
- edge_contract = edge_index[:, edge_score > self.threshhold]
119
+ edge_contract = edge_index[:, edge_score > self.threshold]
120
120
 
121
121
  adj = to_scipy_sparse_matrix(edge_contract, num_nodes=x.size(0))
122
122
  _, cluster_np = connected_components(adj, directed=True,
@@ -380,7 +380,7 @@ class HeteroBasisConv(torch.nn.Module):
380
380
 
381
381
 
382
382
  class LinearAlign(torch.nn.Module):
383
- # Aligns representions to the same dimensionality. Note that this will
383
+ # Aligns representations to the same dimensionality. Note that this will
384
384
  # create lazy modules, and as such requires a forward pass in order to
385
385
  # initialize parameters.
386
386
  def __init__(self, keys: List[Union[NodeType, EdgeType]],
@@ -268,7 +268,7 @@ def withMETIS(func: Callable) -> Callable:
268
268
  with_metis = WITH_METIS
269
269
 
270
270
  if with_metis:
271
- try: # Test that METIS can succesfully execute:
271
+ try: # Test that METIS can successfully execute:
272
272
  # TODO Using `pyg-lib` metis partitioning leads to some weird bugs
273
273
  # in the # CI. As such, we require `torch-sparse` for now.
274
274
  rowptr = torch.tensor([0, 2, 4, 6])
@@ -43,7 +43,7 @@ def to_nested_tensor(
43
43
  xs = [x]
44
44
 
45
45
  # This currently copies the data, although `x` is already contiguous.
46
- # Sadly, there does not exist any (public) API to preven this :(
46
+ # Sadly, there does not exist any (public) API to prevent this :(
47
47
  return torch.nested.as_nested_tensor(xs)
48
48
 
49
49