pyg-nightly 2.7.0.dev20250525__py3-none-any.whl → 2.7.0.dev20250527__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pyg_nightly-2.7.0.dev20250525.dist-info → pyg_nightly-2.7.0.dev20250527.dist-info}/METADATA +1 -1
- {pyg_nightly-2.7.0.dev20250525.dist-info → pyg_nightly-2.7.0.dev20250527.dist-info}/RECORD +33 -33
- torch_geometric/__init__.py +1 -1
- torch_geometric/data/feature_store.py +1 -1
- torch_geometric/data/hetero_data.py +1 -1
- torch_geometric/data/hypergraph_data.py +1 -1
- torch_geometric/datasets/airfrans.py +1 -1
- torch_geometric/datasets/tag_dataset.py +1 -1
- torch_geometric/distributed/partition.py +2 -2
- torch_geometric/explain/algorithm/captum.py +1 -1
- torch_geometric/explain/metric/faithfulness.py +1 -1
- torch_geometric/graphgym/models/layer.py +1 -1
- torch_geometric/graphgym/utils/comp_budget.py +2 -2
- torch_geometric/index.py +1 -1
- torch_geometric/loader/link_loader.py +1 -1
- torch_geometric/loader/link_neighbor_loader.py +1 -1
- torch_geometric/loader/rag_loader.py +1 -1
- torch_geometric/loader/temporal_dataloader.py +2 -2
- torch_geometric/loader/utils.py +2 -2
- torch_geometric/nn/aggr/equilibrium.py +1 -1
- torch_geometric/nn/conv/dna_conv.py +1 -1
- torch_geometric/nn/models/captum.py +1 -1
- torch_geometric/nn/models/dimenet.py +2 -2
- torch_geometric/nn/models/g_retriever.py +2 -2
- torch_geometric/nn/models/gpse.py +3 -3
- torch_geometric/nn/models/visnet.py +2 -2
- torch_geometric/nn/norm/layer_norm.py +3 -3
- torch_geometric/nn/pool/cluster_pool.py +2 -2
- torch_geometric/nn/to_hetero_with_bases_transformer.py +1 -1
- torch_geometric/testing/decorators.py +1 -1
- torch_geometric/utils/nested.py +1 -1
- {pyg_nightly-2.7.0.dev20250525.dist-info → pyg_nightly-2.7.0.dev20250527.dist-info}/WHEEL +0 -0
- {pyg_nightly-2.7.0.dev20250525.dist-info → pyg_nightly-2.7.0.dev20250527.dist-info}/licenses/LICENSE +0 -0
{pyg_nightly-2.7.0.dev20250525.dist-info → pyg_nightly-2.7.0.dev20250527.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20250527
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -1,4 +1,4 @@
|
|
1
|
-
torch_geometric/__init__.py,sha256=
|
1
|
+
torch_geometric/__init__.py,sha256=Z6WENgckvxPkISvCSG5LmI61rxSsj87TnPfBvqmo2Ek,2255
|
2
2
|
torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
|
3
3
|
torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
|
4
4
|
torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
|
@@ -11,7 +11,7 @@ torch_geometric/edge_index.py,sha256=jSWrZ77qKKydVDxiXrsBlaoL6Qdems6-HiA_B_qDo2o
|
|
11
11
|
torch_geometric/experimental.py,sha256=JbtNNEXjFGI8hZ9raM6-qrZURP6Z5nlDK8QicZUIbz0,4756
|
12
12
|
torch_geometric/hash_tensor.py,sha256=WB-aBCJWNWqnlnzQ8Ob4LHeCXm0u1_NPPhmNAEwBpq4,24906
|
13
13
|
torch_geometric/home.py,sha256=EV54B4Dmiv61GDbkCwtCfWGWJ4eFGwZ8s3KOgGjwYgY,790
|
14
|
-
torch_geometric/index.py,sha256=
|
14
|
+
torch_geometric/index.py,sha256=ZVt69f_EhDqiFccZgKJ2eGUXMxErQ2u_KbJfXT9lIxI,24328
|
15
15
|
torch_geometric/inspector.py,sha256=nKi5o4Mn6xsG0Ex1GudTEQt_EqnF9mcMqGtp7Shh9sQ,19336
|
16
16
|
torch_geometric/isinstance.py,sha256=truZjdU9PxSvjJ6k0d_CLJ2iOpen2o8U-54pbUbNRyE,935
|
17
17
|
torch_geometric/lazy_loader.py,sha256=SM0UcXtIdiFge75MKBAWXedoiSOdFDOV0rm1PfoF9cE,908
|
@@ -39,10 +39,10 @@ torch_geometric/data/datapipes.py,sha256=9_Cq3j_7LIF4plQFzbLaqyy0LcpKdAic6yiKgMq
|
|
39
39
|
torch_geometric/data/dataset.py,sha256=rNNAYeJDOQ-a6dqjWg4YKsAz0SvkMZuQK-55sRnmWnk,16769
|
40
40
|
torch_geometric/data/download.py,sha256=kcesTu6jlgmCeePpOxDQOnVhxB_GuZ9iu9ds72KEORc,1889
|
41
41
|
torch_geometric/data/extract.py,sha256=X_f0JEo67DF9hOpIlq3QPWXA9RF8uoVFi195UjstzDc,2324
|
42
|
-
torch_geometric/data/feature_store.py,sha256=
|
42
|
+
torch_geometric/data/feature_store.py,sha256=BIMgIWpP1y7OCIQxnkdSWcnm8_BFJXuS_zOqfZZQOjI,20045
|
43
43
|
torch_geometric/data/graph_store.py,sha256=EtIgsyY7RdBHRTCn34VypEBOG8cg8WzsNT_kTFKxJR4,13900
|
44
|
-
torch_geometric/data/hetero_data.py,sha256=
|
45
|
-
torch_geometric/data/hypergraph_data.py,sha256
|
44
|
+
torch_geometric/data/hetero_data.py,sha256=DRmRannOjOffrVnO23EwCavLzAK2sj_pC_-F8d1l14M,48602
|
45
|
+
torch_geometric/data/hypergraph_data.py,sha256=-JG3ZnhXluJungr0ELJuwir19DYb7xY_B42k14REKbw,8293
|
46
46
|
torch_geometric/data/in_memory_dataset.py,sha256=F35hU9Dw3qiJUL5E1CCAfq-1xrlUMstXBmQVEQdtJ1I,13403
|
47
47
|
torch_geometric/data/large_graph_indexer.py,sha256=jSB3St2jT4GUKvmeyr7Hu1ozGk9AQey32Z0XFnkSf4M,25454
|
48
48
|
torch_geometric/data/makedirs.py,sha256=6uOv4y34i947cm4rv7Aj2_YZBq-EOsyPKnlGA188YSw,463
|
@@ -57,7 +57,7 @@ torch_geometric/data/lightning/__init__.py,sha256=w3En1tJfy3kSqe1MycpOyZpHFO3fxB
|
|
57
57
|
torch_geometric/data/lightning/datamodule.py,sha256=Bn9iaIfE4NWDDWWMqCvBeZ4bIW1Silx_Ol5CPJCliaQ,29242
|
58
58
|
torch_geometric/datasets/__init__.py,sha256=vIraHnDqD40Num-XwwNivjHQDboK9tmMvlZHjTAuljM,6291
|
59
59
|
torch_geometric/datasets/actor.py,sha256=oUxgJIX8bi5hJr1etWNYIFyVQNDDXi1nyVpHGGMEAGQ,4304
|
60
|
-
torch_geometric/datasets/airfrans.py,sha256=
|
60
|
+
torch_geometric/datasets/airfrans.py,sha256=8cCBmHPttrlKY_iwfyr-K-CUX_JEDjrIOg3r9dQSN7o,5439
|
61
61
|
torch_geometric/datasets/airports.py,sha256=b3gkv3gY2JkUpmGiz36Z-g7EcnSfU8lBG1YsCOWdJ6k,3758
|
62
62
|
torch_geometric/datasets/amazon.py,sha256=zLiAgrd_44LAFb8drsrIphRJNyuWa6TMjZgmoWdf97Y,3005
|
63
63
|
torch_geometric/datasets/amazon_book.py,sha256=I-8kRsKgk9M60D4icYDELajlsRwksMLDaHMyn6sBC1Y,3214
|
@@ -151,7 +151,7 @@ torch_geometric/datasets/shapenet.py,sha256=tn3HiQQAr6lxHrqxfOVaAtl40guwFYTXWCbS
|
|
151
151
|
torch_geometric/datasets/shrec2016.py,sha256=cTLhctbqE0EUEvKddJFhPzDb1oLKXOth4O_WzsWtyMk,6323
|
152
152
|
torch_geometric/datasets/snap_dataset.py,sha256=r3sC-dHDouyaYoHGdoBY0uO0qOOvD6_Hb96d2ceGMZk,9433
|
153
153
|
torch_geometric/datasets/suite_sparse.py,sha256=eqjH4vAUq872qdk3YdLkZSwlu6r7HHpTgK0vEVGmY1s,3278
|
154
|
-
torch_geometric/datasets/tag_dataset.py,sha256=
|
154
|
+
torch_geometric/datasets/tag_dataset.py,sha256=MbnVCJcryNys1cjdMzXbuk-Rn-BjLbHWFGHx4QYhhUg,14760
|
155
155
|
torch_geometric/datasets/taobao.py,sha256=CUcZpbWsNTasevflO8zqP0YvENy89P7wpKS4MHaDJ6Q,4170
|
156
156
|
torch_geometric/datasets/tosca.py,sha256=nUSF8NQT1GlkwWQLshjWmr8xORsvRHzzIqhUyDCvABc,4632
|
157
157
|
torch_geometric/datasets/tu_dataset.py,sha256=14OSaXBgVwT1dX2h1wZ3xVIwoo0GQBEfR3yWh6Q0VF0,7847
|
@@ -189,7 +189,7 @@ torch_geometric/distributed/dist_neighbor_sampler.py,sha256=YrL-NMFOJwHJpF189o4k
|
|
189
189
|
torch_geometric/distributed/event_loop.py,sha256=wr3iwMYEWOGkBlvC5huD2k5YxisaGE9w1Z-8RcQiIQk,3309
|
190
190
|
torch_geometric/distributed/local_feature_store.py,sha256=CLW37RN0ouDufEs2tY9d2nLLvpxubiT6zgW3LIHAU8k,19058
|
191
191
|
torch_geometric/distributed/local_graph_store.py,sha256=wNHXSS824Kk2HynbtWFXx-W4pl97UUBv6qFHAVqO3W4,8445
|
192
|
-
torch_geometric/distributed/partition.py,sha256=
|
192
|
+
torch_geometric/distributed/partition.py,sha256=BgjmhDloaooAXM7onGizrcikZs8oRnz5drQZHPDDO_g,14734
|
193
193
|
torch_geometric/distributed/rpc.py,sha256=rJqiVR6Vbb2mpyVSC0Y5tPApqP-b1ck1Uq3IQpCsNSw,5737
|
194
194
|
torch_geometric/distributed/utils.py,sha256=FGrr3qw7hx7EQaIjjqasurloCFJ9q_0jt8jdSIUjBeM,6567
|
195
195
|
torch_geometric/explain/__init__.py,sha256=pRxVB33zsxhED1StRWdHboQWh3e06__g9N298Hzi42Y,359
|
@@ -199,7 +199,7 @@ torch_geometric/explain/explanation.py,sha256=5DWNEWhRLptGbnTnMrcugPBHlizUHFlkBx
|
|
199
199
|
torch_geometric/explain/algorithm/__init__.py,sha256=fE29xbd0bPxg-EfrB2BDmmY9QnyO-7TgvYduGHofm5o,496
|
200
200
|
torch_geometric/explain/algorithm/attention_explainer.py,sha256=65iGLmOt00ERtBDVxAoydIchykdWZU24aXzSzUGzQEI,11304
|
201
201
|
torch_geometric/explain/algorithm/base.py,sha256=lXynh9wMAKWN9tuCkcmsmNPwSUExTtgbNl2Nw39NQD0,6942
|
202
|
-
torch_geometric/explain/algorithm/captum.py,sha256=
|
202
|
+
torch_geometric/explain/algorithm/captum.py,sha256=89nHMC-LNp5Mvs_i0F8s1xT_3gmIxcc8izr_PuGmTcY,12858
|
203
203
|
torch_geometric/explain/algorithm/captum_explainer.py,sha256=oz-c40hvdzii4_chEQPHzQo_dFjHr9HLuJhDLsqRIVU,7346
|
204
204
|
torch_geometric/explain/algorithm/dummy_explainer.py,sha256=jvcVQmfngmUWgoKa5p7CXzju2HM5D5DfieJhZW3gbLc,2872
|
205
205
|
torch_geometric/explain/algorithm/gnn_explainer.py,sha256=CmZZsJEK3PA14NND5CLHmyv37O8VrqHR8Q5faajShVY,24724
|
@@ -208,7 +208,7 @@ torch_geometric/explain/algorithm/pg_explainer.py,sha256=LMlNcqSqtEP-IzYA7Xix6Fo
|
|
208
208
|
torch_geometric/explain/algorithm/utils.py,sha256=eh0ARPG41V7piVw5jdMYpV0p7WjTlpehnY-bWqPV_zg,2564
|
209
209
|
torch_geometric/explain/metric/__init__.py,sha256=swLeuWVaM3K7UvowsH7q3BzfTq_W1vhcFY8nEP7vFPQ,301
|
210
210
|
torch_geometric/explain/metric/basic.py,sha256=qN-cho4lxwPlw_X26svJrW5QOnw5GB3lLKf0Js_6rBE,1888
|
211
|
-
torch_geometric/explain/metric/faithfulness.py,sha256=
|
211
|
+
torch_geometric/explain/metric/faithfulness.py,sha256=0UPLU_SrGxc3e8VGPE1eP0qkS8nAaKo6fuA3UV-27PM,3063
|
212
212
|
torch_geometric/explain/metric/fidelity.py,sha256=W_bKAWEejudiwDLVCgmnfkmGoduS9ptURncD_lrWtbM,6157
|
213
213
|
torch_geometric/graphgym/__init__.py,sha256=XIw3JTK86ca-F5Hf45K_mruHUhbBDC7UGbC0Nv2qi0c,1815
|
214
214
|
torch_geometric/graphgym/benchmark.py,sha256=52Y8fyMQ5Q0hS0kowBlVfnnk-pkLNQLFc8lFs5kiL5Q,510
|
@@ -244,13 +244,13 @@ torch_geometric/graphgym/models/act.py,sha256=PU1sRtzwCKvdavgfdqHNwa1u8wADkBtxdm
|
|
244
244
|
torch_geometric/graphgym/models/encoder.py,sha256=Js8r1i34KIjVfltV1ny8kJO-d0zxn92ms7iRifCwcX0,3034
|
245
245
|
torch_geometric/graphgym/models/gnn.py,sha256=ogFkStPm-iOuj_JVNWFWVGvrMG4akWAKtYzNKSYIIuo,6373
|
246
246
|
torch_geometric/graphgym/models/head.py,sha256=6OWqehRGvVqtpai30O7Zu305uGbGhwSKpUn-N19eFqk,4603
|
247
|
-
torch_geometric/graphgym/models/layer.py,sha256=
|
247
|
+
torch_geometric/graphgym/models/layer.py,sha256=KIGlWT-BCsbrE68yzcWEiSUI83mllI8X36dSPU58YZU,12499
|
248
248
|
torch_geometric/graphgym/models/pooling.py,sha256=PfZTDn9Jva63f72lkq1dPYvhBlbKtHNIMZ1dsOXULbE,288
|
249
249
|
torch_geometric/graphgym/models/transform.py,sha256=lbvGYQE0sRx-P5_eTgKbgx2PYWV1kgg3sEMrnG_NVzQ,1383
|
250
250
|
torch_geometric/graphgym/utils/LICENSE,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
251
251
|
torch_geometric/graphgym/utils/__init__.py,sha256=an9dcDvVAgT3naLq5-Jv5gh2ZkuTlIvaullJIFMbprQ,641
|
252
252
|
torch_geometric/graphgym/utils/agg_runs.py,sha256=TGuArA50WcCT8twMVTLyPDRvV3OX8lXMaOKVceGOkPM,9301
|
253
|
-
torch_geometric/graphgym/utils/comp_budget.py,sha256=
|
253
|
+
torch_geometric/graphgym/utils/comp_budget.py,sha256=tU5QefRGl3Y9h6fTbnFeqNjJF_cHO_okhwd-bTjxIGY,3047
|
254
254
|
torch_geometric/graphgym/utils/device.py,sha256=B5lgc3KizEHja3q3Fz22SOENAUXRE8ufCx3aNepBAGk,1342
|
255
255
|
torch_geometric/graphgym/utils/epoch.py,sha256=cIlX0Oipx2s4Q8rPJgbLRFQbPqKKNeOynUtGyeyjoFI,690
|
256
256
|
torch_geometric/graphgym/utils/io.py,sha256=gqcAXncTCcM9tJpai0LoCokHLoCftnpIgYTPBKARvFY,2049
|
@@ -278,18 +278,18 @@ torch_geometric/loader/graph_saint.py,sha256=TLNKmMSE1mekMW_k-wcaWICGx_NONsPe7Di
|
|
278
278
|
torch_geometric/loader/hgt_loader.py,sha256=1gjYFzn3rU4BlAozRWI0eefUfmi5XC5y6YXqo0VzMw8,6012
|
279
279
|
torch_geometric/loader/ibmb_loader.py,sha256=11sg918nIbybr2hoFEO-HA1wYNkL6GFMK9yd8qN6quc,31444
|
280
280
|
torch_geometric/loader/imbalanced_sampler.py,sha256=clPERglHRk5SyeFevDrgezYFl7ir975OVFMyJwOV090,3754
|
281
|
-
torch_geometric/loader/link_loader.py,sha256=
|
282
|
-
torch_geometric/loader/link_neighbor_loader.py,sha256=
|
281
|
+
torch_geometric/loader/link_loader.py,sha256=XIYgwo5do_70r-wKQLTKTpET85DMCrEeC3fuKH5xOVQ,16208
|
282
|
+
torch_geometric/loader/link_neighbor_loader.py,sha256=HdZifaJI3b0M11Og8m7ztY9YobkE_7fz8aY-dc4QyaM,14384
|
283
283
|
torch_geometric/loader/mixin.py,sha256=XX2tIXoFj0dYexUiUhTfVCXAQyL63fpk5bS5FqkXo5U,10946
|
284
284
|
torch_geometric/loader/neighbor_loader.py,sha256=vnLn_RhBKTux5h8pi0vzj0d7JPoOpLA3n3vjyIWv9lo,12452
|
285
285
|
torch_geometric/loader/neighbor_sampler.py,sha256=mraVFXIIGctYot4Xr2VOAhCKAOQyW2gP9KROf7g6tcc,8497
|
286
286
|
torch_geometric/loader/node_loader.py,sha256=g_kV5N0tO6eMSFPc5fdbzfHr4COAeKVJi7FEq52f4zc,11848
|
287
287
|
torch_geometric/loader/prefetch.py,sha256=p1mr54TL4nx3Ea0fBy0JulGYJ8Hq4_9rsiNioZsIW-4,3211
|
288
|
-
torch_geometric/loader/rag_loader.py,sha256=
|
288
|
+
torch_geometric/loader/rag_loader.py,sha256=Q2YvFTe4qoThUvsmCQa-4icRvtjBwbTOkWOAQDOhhG4,4642
|
289
289
|
torch_geometric/loader/random_node_loader.py,sha256=rCmRXYv70SPxBo-Oh049eFEWEZDV7FmlRPzmjcoirXQ,2196
|
290
290
|
torch_geometric/loader/shadow.py,sha256=_hCspYf9SlJYX0lqEjxFec9e9t1iMScNThOoWR1wQGM,4173
|
291
|
-
torch_geometric/loader/temporal_dataloader.py,sha256=
|
292
|
-
torch_geometric/loader/utils.py,sha256=
|
291
|
+
torch_geometric/loader/temporal_dataloader.py,sha256=Z7L_rYdl6SYBQXAgtr18FVcmfMH9kP1fBWrc2W63g2c,2250
|
292
|
+
torch_geometric/loader/utils.py,sha256=3hzKzIgB52QIZu7Jdn4JeXZaegIJinIQfIUP9DrUWUQ,14903
|
293
293
|
torch_geometric/loader/zip_loader.py,sha256=3lt10fD15Rxm1WhWzypswGzCEwUz4h8OLCD1nE15yNg,3843
|
294
294
|
torch_geometric/metrics/__init__.py,sha256=3krvDobW6vV5yHTjq2S2pmOXxNfysNG26muq7z48e94,699
|
295
295
|
torch_geometric/metrics/link_pred.py,sha256=dtaI39JB-WqE1B-raiElns6xySRwmkbb9izbcyt6xHI,30886
|
@@ -311,13 +311,13 @@ torch_geometric/nn/summary.py,sha256=Rs59Sr5xMlCROsRNDP-1BuEZOmkvDw1deV7uD-vWXJ8
|
|
311
311
|
torch_geometric/nn/to_fixed_size_transformer.py,sha256=ZjJrWxI0YnoyRjVR7wiOcXZJNnTurt-M6FX6MaVZ0sM,1282
|
312
312
|
torch_geometric/nn/to_hetero_module.py,sha256=J2_ZWMnBjsVtwoN5SpykhUHCmhf1qLnBsqngzepprXQ,6519
|
313
313
|
torch_geometric/nn/to_hetero_transformer.py,sha256=YS4gFOhnMuDstFTPvR18FDyXNaTxxeDIGaRS9Ubvr6M,18407
|
314
|
-
torch_geometric/nn/to_hetero_with_bases_transformer.py,sha256=
|
314
|
+
torch_geometric/nn/to_hetero_with_bases_transformer.py,sha256=p6A79eQG1bgOll_mPN-1ptQ6xL3bmC1_hoqQTomnsPQ,22976
|
315
315
|
torch_geometric/nn/aggr/__init__.py,sha256=_a01GujVyoRSE6-2driodMhC8-jJss4WNIhairYmhHY,1645
|
316
316
|
torch_geometric/nn/aggr/attention.py,sha256=ZaZQijQGDx7Mfsk-kDlxJSCDjN1Vp02YyblR5-3SmnY,2952
|
317
317
|
torch_geometric/nn/aggr/base.py,sha256=vcWHJlS51mfdYHWmnWEN8b1D57mPM5Y8nqqdVnFm82M,8225
|
318
318
|
torch_geometric/nn/aggr/basic.py,sha256=5CRXpm0VVZb22fMPbMMdqQgh97RYiKiUgZGq3hr7Gbw,11011
|
319
319
|
torch_geometric/nn/aggr/deep_sets.py,sha256=2LSxJJZaWuxRJew-pubmMYc2ynLYWeTyVK47k6OUhq0,2650
|
320
|
-
torch_geometric/nn/aggr/equilibrium.py,sha256=
|
320
|
+
torch_geometric/nn/aggr/equilibrium.py,sha256=6yY9kelCi1qiSUJPpssR5liGIwS2A9nqi-7K7p8QSfI,6639
|
321
321
|
torch_geometric/nn/aggr/fused.py,sha256=AXL8JO47gBIwktfikwGgLmE-OkQ_tKEAuhNP2lOl1nU,12276
|
322
322
|
torch_geometric/nn/aggr/gmt.py,sha256=1JKXHGooA8q_ufGBbfzOhWt693ojuIGJp0lZRqyVNU4,3801
|
323
323
|
torch_geometric/nn/aggr/gru.py,sha256=LCLdJWq3xZjJCTxyO3gD8tX6uITQD9U5nCzj8JU4BCA,2193
|
@@ -347,7 +347,7 @@ torch_geometric/nn/conv/cheb_conv.py,sha256=5skDmnURkGk0qYYKwefe6kkj_ZSoivUgk_UQ
|
|
347
347
|
torch_geometric/nn/conv/cluster_gcn_conv.py,sha256=cbaL-k9t6ne4qa5dlGpwR7XeLuN5vNQ1o9tuJ0x-ac4,5255
|
348
348
|
torch_geometric/nn/conv/collect.jinja,sha256=ekJinVPDXisg4UnP7jYOi9yUbqhf7_McgPggnk6qzUI,5752
|
349
349
|
torch_geometric/nn/conv/dir_gnn_conv.py,sha256=QWtmSDYKAHSlvRQF4XKhsIw7TFqUNTJS6GdOxbloSU8,2440
|
350
|
-
torch_geometric/nn/conv/dna_conv.py,sha256=
|
350
|
+
torch_geometric/nn/conv/dna_conv.py,sha256=i4SiBRzZ9a_f1NF_43UCvxd881gfKX1rfxVRWqWWY-g,12242
|
351
351
|
torch_geometric/nn/conv/edge_conv.py,sha256=HFcsyOYueRAkkoh6Ifvgj63XcXKkNE3lj4WmKvC9C54,5446
|
352
352
|
torch_geometric/nn/conv/edge_updater.jinja,sha256=sCAQMr88Whl4qLqPJ2lGVnBFjllavbHx5N02In81mfk,2216
|
353
353
|
torch_geometric/nn/conv/eg_conv.py,sha256=aOKw-ygu8WIhQywiS6tFeNrvPe1W67slhCHa93J3ChQ,10742
|
@@ -433,17 +433,17 @@ torch_geometric/nn/models/attentive_fp.py,sha256=tkgvw28wg9-JqHIfBllfCwTHrZIUiv8
|
|
433
433
|
torch_geometric/nn/models/attract_repel.py,sha256=h9OyogT0NY0xiT0DkpJHMxH6ZUmo8R-CmwZdKEwq8Ek,5277
|
434
434
|
torch_geometric/nn/models/autoencoder.py,sha256=nGje-zty78Y3hxOJ9o0_6QziJjOvBlknk6z0_fDQwQU,10770
|
435
435
|
torch_geometric/nn/models/basic_gnn.py,sha256=PGa0RUMyvrNy_5yRI2jX_zwPsmZXwOQWfsWvxOiHsSk,31225
|
436
|
-
torch_geometric/nn/models/captum.py,sha256=
|
436
|
+
torch_geometric/nn/models/captum.py,sha256=vPN85_HDMTNcw-rKXAtYY-vT2SbHdf4CFtkseqYsnHg,3972
|
437
437
|
torch_geometric/nn/models/correct_and_smooth.py,sha256=wmq-US2r4ocd0a661R8YeDiBeVtILOjdN-4swIth9BQ,6827
|
438
438
|
torch_geometric/nn/models/deep_graph_infomax.py,sha256=u6j-5-iHBASDCZ776dyfCI1N8wuvIMjeff8kthiX3Q4,4137
|
439
439
|
torch_geometric/nn/models/deepgcn.py,sha256=tIgT03cj8MghYlxEozpoGvGG_CwpJrGDxv1Z0CVIUts,4339
|
440
|
-
torch_geometric/nn/models/dimenet.py,sha256=
|
440
|
+
torch_geometric/nn/models/dimenet.py,sha256=O2rqEx5HWs_lMwRD8eq6WMkbqJaCLL5zgWUJ27qh9Bc,36188
|
441
441
|
torch_geometric/nn/models/dimenet_utils.py,sha256=Eyn_EiJqwKvuYj6BtRpSxrzMG3v4Gk98X9MxZ7uvwm4,5069
|
442
|
-
torch_geometric/nn/models/g_retriever.py,sha256=
|
442
|
+
torch_geometric/nn/models/g_retriever.py,sha256=tVibbqM_r-1LnA3R3oVyzp0bpuN3qPoYqcU6LZ8dYEk,8260
|
443
443
|
torch_geometric/nn/models/git_mol.py,sha256=Wc6Hx6RDDR7sDWRWHfA5eK9e9gFsrTZ9OLmpMfoj3pE,12676
|
444
444
|
torch_geometric/nn/models/glem.py,sha256=sT0XM4klVlci9wduvUoXupATUw9p25uXtaJBrmv3yvs,16431
|
445
445
|
torch_geometric/nn/models/gnnff.py,sha256=15dkiLgy0LmH1hnUrpeoHioIp4BPTfjpVATpnGRt9E0,7860
|
446
|
-
torch_geometric/nn/models/gpse.py,sha256=
|
446
|
+
torch_geometric/nn/models/gpse.py,sha256=3tKzVPkvntAtj13qSPJO1rittr8X1Q_7OqVTOaSpp2s,41982
|
447
447
|
torch_geometric/nn/models/graph_mixer.py,sha256=mthMeCOikR8gseEsu4oJ3Cd9C35zHSv1p32ROwnG-6s,9246
|
448
448
|
torch_geometric/nn/models/graph_unet.py,sha256=N8TSmJo8AlbZjjcame0xW_jZvMOirL5ahw6qv5Yjpbs,5586
|
449
449
|
torch_geometric/nn/models/jumping_knowledge.py,sha256=9JR2EoViXKjcDSLb8tjJm-UHfv1mQCJvZAAEsYa0Ocw,5496
|
@@ -465,7 +465,7 @@ torch_geometric/nn/models/schnet.py,sha256=0aaHrVtxApdvn3RHCGLQJW1MbIb--CSYUrx9O
|
|
465
465
|
torch_geometric/nn/models/sgformer.py,sha256=3NDzkEVRtM1QmeJsXSq7FBhGGchyUvyX1SDPKYg9F70,6875
|
466
466
|
torch_geometric/nn/models/signed_gcn.py,sha256=J40CnedFIqtKI1LhW1ITSEFRbA_XiJZL6lASrKwUEAI,9841
|
467
467
|
torch_geometric/nn/models/tgn.py,sha256=kEGdfLJybkbMT4UMoAh2nCzfX3_nDjfm1cicuPHEwAM,11878
|
468
|
-
torch_geometric/nn/models/visnet.py,sha256
|
468
|
+
torch_geometric/nn/models/visnet.py,sha256=-ABewG-3BzChboHAvoiO3bbi3d_46x8egyvTwxBD5WE,43194
|
469
469
|
torch_geometric/nn/nlp/__init__.py,sha256=q6CPUiJHcc9bXw90lyj-ID4F3kfW8uPM-SOxW9uCMHs,213
|
470
470
|
torch_geometric/nn/nlp/llm.py,sha256=uVPoIB2_nU0s3N_Z3oVW2Q7XGsAisW1QGaaLe2Y__hw,12227
|
471
471
|
torch_geometric/nn/nlp/sentence_transformer.py,sha256=q5M7SGtrUzoSiNhKCGFb7JatWiukdhNF6zdq2yiqxwE,4475
|
@@ -476,7 +476,7 @@ torch_geometric/nn/norm/diff_group_norm.py,sha256=b57XvNekrUYGDjNJlGeqvaMGNJmHwo
|
|
476
476
|
torch_geometric/nn/norm/graph_norm.py,sha256=Tld_9_dzst4yEw58DZo4U--4QryA6pP2bsNfmqEDgrY,2727
|
477
477
|
torch_geometric/nn/norm/graph_size_norm.py,sha256=sh5Nue1Ix2jC1T7o7KqOw0_TAOcpZ4VbYzhADWE97-M,1491
|
478
478
|
torch_geometric/nn/norm/instance_norm.py,sha256=lUCZccuQNY8gfYUz-YRrNeSVckYuIJSFaW_m2HMp3iY,4685
|
479
|
-
torch_geometric/nn/norm/layer_norm.py,sha256=
|
479
|
+
torch_geometric/nn/norm/layer_norm.py,sha256=m7a7Uoyx0zZhAxJ6Kj5N5DOg4zQnojO1FA1i661wW80,7835
|
480
480
|
torch_geometric/nn/norm/mean_subtraction_norm.py,sha256=KVHOp413mw7obwAN09Le6XdgobtCXpi4UKpjpG1M550,1322
|
481
481
|
torch_geometric/nn/norm/msg_norm.py,sha256=zaQtqhs55LU-e6KPC4ylaSdge4KvEoseqOt7pmAzi2s,1662
|
482
482
|
torch_geometric/nn/norm/pair_norm.py,sha256=IfHMiVYw_xsy035NakbPGdQVaVC-Ue3Oxwo651Vc47I,2824
|
@@ -484,7 +484,7 @@ torch_geometric/nn/pool/__init__.py,sha256=2Bi-_xlsGIUUKDeOO7BhaTqCc5n6_ixbu_MO9
|
|
484
484
|
torch_geometric/nn/pool/approx_knn.py,sha256=n7C8Cbar6o5tJcuAbzhM5hqMK26hW8dm5DopuocidO0,3967
|
485
485
|
torch_geometric/nn/pool/asap.py,sha256=p8fwpMOeCUyJrdvMmLoTMzr0tI9YCTnefMx8ylIv5xE,6683
|
486
486
|
torch_geometric/nn/pool/avg_pool.py,sha256=pwiQh14BCVsT-iULqVAFW-Dxt7DjFOu8CQX_Hu34vZc,3966
|
487
|
-
torch_geometric/nn/pool/cluster_pool.py,sha256=
|
487
|
+
torch_geometric/nn/pool/cluster_pool.py,sha256=XSwZa9wvbJppvCqHAhGky0MzQwNkXNVcnIKdI6ZYuwM,5225
|
488
488
|
torch_geometric/nn/pool/consecutive.py,sha256=7dMiMd5IybNeml1RqZq436FI6sod5ZUxTuDWJjr5syo,273
|
489
489
|
torch_geometric/nn/pool/decimation.py,sha256=AjbU2h_Gl_EQcfkhF977EnrLJ2kait_e4HyCNKRyxPw,1601
|
490
490
|
torch_geometric/nn/pool/edge_pool.py,sha256=cXgcN5xF8z5NeycYMX9m1zoAk1jtSdyK42YiNNHTeow,8571
|
@@ -520,7 +520,7 @@ torch_geometric/sampler/utils.py,sha256=RJtasO6Q7Pp3oYEOWrbf2DEYuSfuKZOsF2I7-eJD
|
|
520
520
|
torch_geometric/testing/__init__.py,sha256=m3yp_5UnCAxVgzTFofpiVt0vdbl5GwVAve8WTrAaNxo,1319
|
521
521
|
torch_geometric/testing/asserts.py,sha256=DLC9HnBgFWuTIiQs2OalsQcXGhOVG-e6R99IWhkO32c,4606
|
522
522
|
torch_geometric/testing/data.py,sha256=O1qo8FyNxt6RGf63Ys3eXBfa5RvYydeZLk74szrez3c,2604
|
523
|
-
torch_geometric/testing/decorators.py,sha256=
|
523
|
+
torch_geometric/testing/decorators.py,sha256=jW2d9qxT7DgWEYFdes2cB-IhnTGg_qjmGufEtHuMX14,9076
|
524
524
|
torch_geometric/testing/distributed.py,sha256=ZZCCXqiQC4-m1ExSjDZhS_a1qPXnHEwhJGTmACxNnVI,2227
|
525
525
|
torch_geometric/testing/feature_store.py,sha256=J6JBIt2XK-t8yG8B4JzXp-aJcVl5jaCS1m2H7d6OUxs,2158
|
526
526
|
torch_geometric/testing/graph_store.py,sha256=00B7QToCIspYmgN7svQKp1iU-qAzEtrt3VQRFxkHfuk,1044
|
@@ -626,7 +626,7 @@ torch_geometric/utils/map.py,sha256=urEpmpf7SB4875nL7zR1Nc89wYMIcvzgBVfDgi3AHFc,
|
|
626
626
|
torch_geometric/utils/mask.py,sha256=WOsfZLOMf1bunlwI6RH3evptbu0eOwNg19t6VOYboIo,2340
|
627
627
|
torch_geometric/utils/mesh_laplacian.py,sha256=dqUEp7sOCBhWZPnUMAqa93OAj30dTDshcUpstt2iZDc,4387
|
628
628
|
torch_geometric/utils/mixin.py,sha256=h4r5acaeEZ2azvwBcUbybevuoyhLE8qLBiERU7V9w20,699
|
629
|
-
torch_geometric/utils/nested.py,sha256
|
629
|
+
torch_geometric/utils/nested.py,sha256=QZtxG65MEAQp7BN7oY-O1U0WpI0_x7cqsKEU13K9AGA,3311
|
630
630
|
torch_geometric/utils/noise_scheduler.py,sha256=SFn_IFGGZquyxM_wzDpmq6BWJU8MFLREJVuPDrk-8Bc,3750
|
631
631
|
torch_geometric/utils/num_nodes.py,sha256=F15ciTFOe8AxjkUh1wKH7RLmJvQYYpz-l3pPPvQZzOw,2176
|
632
632
|
torch_geometric/utils/ppr.py,sha256=ebiHbQqRJsQbGUI5xu-IkzQSQsgIaC71vgO0KcXIKAk,4055
|
@@ -638,7 +638,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
|
|
638
638
|
torch_geometric/visualization/__init__.py,sha256=b-HnVesXjyJ_L1N-DnjiRiRVf7lhwKaBQF_2i5YMVSU,208
|
639
639
|
torch_geometric/visualization/graph.py,sha256=mfZHXYfiU-CWMtfawYc80IxVwVmtK9hbIkSKhM_j7oI,14311
|
640
640
|
torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
|
641
|
-
pyg_nightly-2.7.0.
|
642
|
-
pyg_nightly-2.7.0.
|
643
|
-
pyg_nightly-2.7.0.
|
644
|
-
pyg_nightly-2.7.0.
|
641
|
+
pyg_nightly-2.7.0.dev20250527.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
|
642
|
+
pyg_nightly-2.7.0.dev20250527.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
|
643
|
+
pyg_nightly-2.7.0.dev20250527.dist-info/METADATA,sha256=LD47bEQqXq7LIbIIf3TIfRLDGpcKM6mVL2f2HYDrUdE,62952
|
644
|
+
pyg_nightly-2.7.0.dev20250527.dist-info/RECORD,,
|
torch_geometric/__init__.py
CHANGED
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
|
|
31
31
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
32
32
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
33
33
|
|
34
|
-
__version__ = '2.7.0.
|
34
|
+
__version__ = '2.7.0.dev20250527'
|
35
35
|
|
36
36
|
__all__ = [
|
37
37
|
'Index',
|
@@ -409,7 +409,7 @@ class FeatureStore(ABC):
|
|
409
409
|
def update_tensor(self, tensor: FeatureTensorType, *args,
|
410
410
|
**kwargs) -> bool:
|
411
411
|
r"""Updates a :obj:`tensor` in the :class:`FeatureStore` with a new
|
412
|
-
value. Returns whether the update was
|
412
|
+
value. Returns whether the update was successful.
|
413
413
|
|
414
414
|
.. note::
|
415
415
|
Implementor classes can choose to define more efficient update
|
@@ -566,7 +566,7 @@ class HeteroData(BaseData, FeatureStore, GraphStore):
|
|
566
566
|
This is equivalent to writing :obj:`data.x_dict`.
|
567
567
|
|
568
568
|
Args:
|
569
|
-
key (str): The attribute to collect from all node and
|
569
|
+
key (str): The attribute to collect from all node and edge types.
|
570
570
|
allow_empty (bool, optional): If set to :obj:`True`, will not raise
|
571
571
|
an error in case the attribute does not exit in any node or
|
572
572
|
edge type. (default: :obj:`False`)
|
@@ -39,7 +39,7 @@ class HyperGraphData(Data):
|
|
39
39
|
edge_index (LongTensor, optional): Hyperedge tensor
|
40
40
|
with shape :obj:`[2, num_edges*num_nodes_per_edge]`.
|
41
41
|
Where `edge_index[1]` denotes the hyperedge index and
|
42
|
-
`edge_index[0]` denotes the node
|
42
|
+
`edge_index[0]` denotes the node indices that are connected
|
43
43
|
by the hyperedge. (default: :obj:`None`)
|
44
44
|
(default: :obj:`None`)
|
45
45
|
edge_attr (torch.Tensor, optional): Edge feature matrix with shape
|
@@ -25,7 +25,7 @@ class AirfRANS(InMemoryDataset):
|
|
25
25
|
features: the inlet velocity (two components in meter per second), the
|
26
26
|
distance to the airfoil (one component in meter), and the normals (two
|
27
27
|
components in meter, set to :obj:`0` if the point is not on the airfoil).
|
28
|
-
Each point is given a target of 4 components for the
|
28
|
+
Each point is given a target of 4 components for the underlying regression
|
29
29
|
task: the velocity (two components in meter per second), the pressure
|
30
30
|
divided by the specific mass (one component in meter squared per second
|
31
31
|
squared), the turbulent kinematic viscosity (one component in meter squared
|
@@ -277,7 +277,7 @@ class TAGDataset(InMemoryDataset):
|
|
277
277
|
for k, tensor in all_encoded_token.items():
|
278
278
|
torch.save(tensor, os.path.join(path, f'{k}.pt'))
|
279
279
|
print('Token saved:', os.path.join(path, f'{k}.pt'))
|
280
|
-
os.environ["TOKENIZERS_PARALLELISM"] = 'true' #
|
280
|
+
os.environ["TOKENIZERS_PARALLELISM"] = 'true' # suppressing warning
|
281
281
|
return all_encoded_token
|
282
282
|
|
283
283
|
def __repr__(self) -> str:
|
@@ -304,7 +304,7 @@ class Partitioner:
|
|
304
304
|
elif self.is_node_level_time:
|
305
305
|
node_time = data.time
|
306
306
|
|
307
|
-
# Sort by column to avoid keeping track of
|
307
|
+
# Sort by column to avoid keeping track of permutations in
|
308
308
|
# `NeighborSampler` when converting to CSC format:
|
309
309
|
global_row, global_col, perm = sort_csc(
|
310
310
|
global_row, global_col, node_time, edge_time)
|
@@ -361,7 +361,7 @@ class Partitioner:
|
|
361
361
|
'edge_types': self.edge_types,
|
362
362
|
'node_offset': list(node_offset.values()) if node_offset else None,
|
363
363
|
'is_hetero': self.is_hetero,
|
364
|
-
'is_sorted': True, # Based on
|
364
|
+
'is_sorted': True, # Based on columnn/destination.
|
365
365
|
}
|
366
366
|
with open(osp.join(self.root, 'META.json'), 'w') as f:
|
367
367
|
json.dump(meta, f)
|
@@ -190,7 +190,7 @@ def to_captum_input(
|
|
190
190
|
|
191
191
|
Args:
|
192
192
|
x (torch.Tensor or Dict[NodeType, torch.Tensor]): The node features.
|
193
|
-
For heterogeneous graphs this is a dictionary holding node
|
193
|
+
For heterogeneous graphs this is a dictionary holding node features
|
194
194
|
for each node type.
|
195
195
|
edge_index(torch.Tensor or Dict[EdgeType, torch.Tensor]): The edge
|
196
196
|
indices. For heterogeneous graphs this is a dictionary holding the
|
@@ -13,7 +13,7 @@ def unfaithfulness(
|
|
13
13
|
top_k: Optional[int] = None,
|
14
14
|
) -> float:
|
15
15
|
r"""Evaluates how faithful an :class:`~torch_geometric.explain.Explanation`
|
16
|
-
is to an
|
16
|
+
is to an underlying GNN predictor, as described in the
|
17
17
|
`"Evaluating Explainability for Graph Neural Networks"
|
18
18
|
<https://arxiv.org/abs/2208.09339>`_ paper.
|
19
19
|
|
@@ -67,12 +67,12 @@ def dict_to_stats(cfg_dict):
|
|
67
67
|
|
68
68
|
def match_baseline_cfg(cfg_dict, cfg_dict_baseline, verbose=True):
|
69
69
|
"""Match the computational budget of a given baseline model. The current
|
70
|
-
configuration dictionary will be
|
70
|
+
configuration dictionary will be modified and returned.
|
71
71
|
|
72
72
|
Args:
|
73
73
|
cfg_dict (dict): Current experiment's configuration
|
74
74
|
cfg_dict_baseline (dict): Baseline configuration
|
75
|
-
verbose (str, optional): If printing matched
|
75
|
+
verbose (str, optional): If printing matched parameter conunts
|
76
76
|
"""
|
77
77
|
from yacs.config import CfgNode as CN
|
78
78
|
stats_baseline = dict_to_stats(cfg_dict_baseline)
|
torch_geometric/index.py
CHANGED
@@ -104,7 +104,7 @@ class Index(Tensor):
|
|
104
104
|
conversion in case its representation is sorted.
|
105
105
|
Caches are filled based on demand (*e.g.*, when calling
|
106
106
|
:meth:`Index.get_indptr`), or when explicitly requested via
|
107
|
-
:meth:`Index.fill_cache_`, and are
|
107
|
+
:meth:`Index.fill_cache_`, and are maintained and adjusted over its
|
108
108
|
lifespan.
|
109
109
|
|
110
110
|
This representation ensures optimal computation in GNN message passing
|
@@ -70,7 +70,7 @@ class LinkLoader(
|
|
70
70
|
:obj:`edge_label_index`. If set, temporal sampling will be
|
71
71
|
used such that neighbors are guaranteed to fulfill temporal
|
72
72
|
constraints, *i.e.*, neighbors have an earlier timestamp than
|
73
|
-
the
|
73
|
+
the output edge. The :obj:`time_attr` needs to be set for this
|
74
74
|
to work. (default: :obj:`None`)
|
75
75
|
neg_sampling (NegativeSampling, optional): The negative sampling
|
76
76
|
configuration.
|
@@ -117,7 +117,7 @@ class LinkNeighborLoader(LinkLoader):
|
|
117
117
|
:obj:`edge_label_index`. If set, temporal sampling will be
|
118
118
|
used such that neighbors are guaranteed to fulfill temporal
|
119
119
|
constraints, *i.e.*, neighbors have an earlier timestamp than
|
120
|
-
the
|
120
|
+
the output edge. The :obj:`time_attr` needs to be set for this
|
121
121
|
to work. (default: :obj:`None`)
|
122
122
|
replace (bool, optional): If set to :obj:`True`, will sample with
|
123
123
|
replacement. (default: :obj:`False`)
|
@@ -68,7 +68,7 @@ class RAGQueryLoader:
|
|
68
68
|
local_filter (Optional[Callable[[Data, Any], Data]], optional):
|
69
69
|
Optional local transform to apply to data after retrieval.
|
70
70
|
Defaults to None.
|
71
|
-
seed_nodes_kwargs (Optional[Dict[str, Any]], optional):
|
71
|
+
seed_nodes_kwargs (Optional[Dict[str, Any]], optional): Parameters
|
72
72
|
to pass into process for fetching seed nodes. Defaults to None.
|
73
73
|
seed_edges_kwargs (Optional[Dict[str, Any]], optional): Parameters
|
74
74
|
to pass into process for fetching seed edges. Defaults to None.
|
@@ -6,7 +6,7 @@ from torch_geometric.data import TemporalData
|
|
6
6
|
|
7
7
|
|
8
8
|
class TemporalDataLoader(torch.utils.data.DataLoader):
|
9
|
-
r"""A data loader which merges
|
9
|
+
r"""A data loader which merges successive events of a
|
10
10
|
:class:`torch_geometric.data.TemporalData` to a mini-batch.
|
11
11
|
|
12
12
|
Args:
|
@@ -15,7 +15,7 @@ class TemporalDataLoader(torch.utils.data.DataLoader):
|
|
15
15
|
batch_size (int, optional): How many samples per batch to load.
|
16
16
|
(default: :obj:`1`)
|
17
17
|
neg_sampling_ratio (float, optional): The ratio of sampled negative
|
18
|
-
destination nodes to the number of
|
18
|
+
destination nodes to the number of positive destination nodes.
|
19
19
|
(default: :obj:`0.0`)
|
20
20
|
**kwargs (optional): Additional arguments of
|
21
21
|
:class:`torch.utils.data.DataLoader`.
|
torch_geometric/loader/utils.py
CHANGED
@@ -178,7 +178,7 @@ def filter_hetero_data(
|
|
178
178
|
out = copy.copy(data)
|
179
179
|
|
180
180
|
for node_type in out.node_types:
|
181
|
-
# Handle the case of
|
181
|
+
# Handle the case of disconnected graph sampling:
|
182
182
|
if node_type not in node_dict:
|
183
183
|
node_dict[node_type] = torch.empty(0, dtype=torch.long)
|
184
184
|
|
@@ -186,7 +186,7 @@ def filter_hetero_data(
|
|
186
186
|
node_dict[node_type])
|
187
187
|
|
188
188
|
for edge_type in out.edge_types:
|
189
|
-
# Handle the case of
|
189
|
+
# Handle the case of disconnected graph sampling:
|
190
190
|
if edge_type not in row_dict:
|
191
191
|
row_dict[edge_type] = torch.empty(0, dtype=torch.long)
|
192
192
|
if edge_type not in col_dict:
|
@@ -52,7 +52,7 @@ class MomentumOptimizer(torch.nn.Module):
|
|
52
52
|
layer. It is based on an unrolled Nesterov momentum algorithm.
|
53
53
|
|
54
54
|
Args:
|
55
|
-
learning_rate (
|
55
|
+
learning_rate (float): learning rate for optimizer.
|
56
56
|
momentum (float): momentum for optimizer.
|
57
57
|
learnable (bool): If :obj:`True` then the :obj:`learning_rate` and
|
58
58
|
:obj:`momentum` will be learnable parameters. If False they
|
@@ -163,7 +163,7 @@ class MultiHead(Attention):
|
|
163
163
|
def __repr__(self) -> str: # pragma: no cover
|
164
164
|
return (f'{self.__class__.__name__}({self.in_channels}, '
|
165
165
|
f'{self.out_channels}, heads={self.heads}, '
|
166
|
-
f'groups={self.groups}, dropout={self.
|
166
|
+
f'groups={self.groups}, dropout={self.dropout}, '
|
167
167
|
f'bias={self.bias})')
|
168
168
|
|
169
169
|
|
@@ -94,7 +94,7 @@ def to_captum_model(
|
|
94
94
|
function will return the output of the model for the element at
|
95
95
|
the index specified. (default: :obj:`None`)
|
96
96
|
metadata (Metadata, optional): The metadata of the heterogeneous graph.
|
97
|
-
Only required if
|
97
|
+
Only required if explaining a
|
98
98
|
:class:`~torch_geometric.data.HeteroData` object.
|
99
99
|
(default: :obj:`None`)
|
100
100
|
"""
|
@@ -755,7 +755,7 @@ class DimeNetPlusPlus(DimeNet):
|
|
755
755
|
interaction blocks after the skip connection. (default: :obj:`2`)
|
756
756
|
num_output_layers: (int, optional): Number of linear layers for the
|
757
757
|
output blocks. (default: :obj:`3`)
|
758
|
-
act: (str or Callable, optional): The activation
|
758
|
+
act: (str or Callable, optional): The activation function.
|
759
759
|
(default: :obj:`"swish"`)
|
760
760
|
output_initializer (str, optional): The initialization method for the
|
761
761
|
output layer (:obj:`"zeros"`, :obj:`"glorot_orthogonal"`).
|
@@ -805,7 +805,7 @@ class DimeNetPlusPlus(DimeNet):
|
|
805
805
|
|
806
806
|
# We are re-using the RBF, SBF and embedding layers of `DimeNet` and
|
807
807
|
# redefine output_block and interaction_block in DimeNet++.
|
808
|
-
# Hence, it is to be noted that in the above
|
808
|
+
# Hence, it is to be noted that in the above initialization, the
|
809
809
|
# variable `num_bilinear` does not have any purpose as it is used
|
810
810
|
# solely in the `OutputBlock` of DimeNet:
|
811
811
|
self.output_blocks = torch.nn.ModuleList([
|
@@ -131,7 +131,7 @@ class GRetriever(torch.nn.Module):
|
|
131
131
|
x = self.projector(x)
|
132
132
|
xs = x.split(1, dim=0)
|
133
133
|
|
134
|
-
# Handle case where
|
134
|
+
# Handle case where there's more than one embedding for each sample
|
135
135
|
xs = [x.squeeze(0) for x in xs]
|
136
136
|
|
137
137
|
# Handle questions without node features:
|
@@ -190,7 +190,7 @@ class GRetriever(torch.nn.Module):
|
|
190
190
|
x = self.projector(x)
|
191
191
|
xs = x.split(1, dim=0)
|
192
192
|
|
193
|
-
# Handle case where
|
193
|
+
# Handle case where there's more than one embedding for each sample
|
194
194
|
xs = [x.squeeze(0) for x in xs]
|
195
195
|
|
196
196
|
# Handle questions without node features:
|
@@ -283,7 +283,7 @@ class GNNInductiveHybridMultiHead(torch.nn.Module):
|
|
283
283
|
(default: :obj:`add`)
|
284
284
|
has_bn (bool, optional): Whether to apply batch normalization to layer
|
285
285
|
outputs. (default: :obj:`True`)
|
286
|
-
has_l2norm (bool, optional):
|
286
|
+
has_l2norm (bool, optional): Whether to apply L2 normalization to the
|
287
287
|
layer outputs. (default: :obj:`True`)
|
288
288
|
dropout (float, optional): Dropout ratio at layer output.
|
289
289
|
(default: :obj:`0.2`)
|
@@ -951,7 +951,7 @@ def precompute_GPSE(model: GPSE, dataset: Dataset, use_vn: bool = True,
|
|
951
951
|
**kwargs)
|
952
952
|
|
953
953
|
batch_out = batch_out.to('cpu', non_blocking=True)
|
954
|
-
# Need to wait for batch_ptr to finish
|
954
|
+
# Need to wait for batch_ptr to finish transferring so that start and
|
955
955
|
# end indices are ready to use
|
956
956
|
batch_ptr = batch_ptr.to('cpu', non_blocking=False)
|
957
957
|
|
@@ -966,7 +966,7 @@ def precompute_GPSE(model: GPSE, dataset: Dataset, use_vn: bool = True,
|
|
966
966
|
pbar.update(len(batch_ptr) - 1)
|
967
967
|
pbar.close()
|
968
968
|
|
969
|
-
# Collate dataset and reset
|
969
|
+
# Collate dataset and reset indices and data list
|
970
970
|
dataset.transform = orig_dataset_transform
|
971
971
|
dataset._indices = None
|
972
972
|
dataset._data_list = data_list
|
@@ -11,7 +11,7 @@ from torch_geometric.utils import scatter
|
|
11
11
|
|
12
12
|
|
13
13
|
class CosineCutoff(torch.nn.Module):
|
14
|
-
r"""
|
14
|
+
r"""Applies a cosine cutoff to the input distances.
|
15
15
|
|
16
16
|
.. math::
|
17
17
|
\text{cutoffs} =
|
@@ -572,7 +572,7 @@ class ViS_MP(MessagePassing):
|
|
572
572
|
d_ij: Tensor,
|
573
573
|
) -> Tuple[Tensor, Tensor, Optional[Tensor]]:
|
574
574
|
r"""Computes the residual scalar and vector features of the nodes and
|
575
|
-
scalar
|
575
|
+
scalar features of the edges.
|
576
576
|
|
577
577
|
Args:
|
578
578
|
x (torch.Tensor): The scalar features of the nodes.
|
@@ -30,7 +30,7 @@ class LayerNorm(torch.nn.Module):
|
|
30
30
|
affine (bool, optional): If set to :obj:`True`, this module has
|
31
31
|
learnable affine parameters :math:`\gamma` and :math:`\beta`.
|
32
32
|
(default: :obj:`True`)
|
33
|
-
mode (str,
|
33
|
+
mode (str, optional): The normalization mode to use for layer
|
34
34
|
normalization (:obj:`"graph"` or :obj:`"node"`). If :obj:`"graph"`
|
35
35
|
is used, each graph will be considered as an element to be
|
36
36
|
normalized. If `"node"` is used, each node will be considered as
|
@@ -108,7 +108,7 @@ class LayerNorm(torch.nn.Module):
|
|
108
108
|
return F.layer_norm(x, (self.in_channels, ), self.weight,
|
109
109
|
self.bias, self.eps)
|
110
110
|
|
111
|
-
raise ValueError(f"
|
111
|
+
raise ValueError(f"Unknownn normalization mode: {self.mode}")
|
112
112
|
|
113
113
|
def __repr__(self):
|
114
114
|
return (f'{self.__class__.__name__}({self.in_channels}, '
|
@@ -130,7 +130,7 @@ class HeteroLayerNorm(torch.nn.Module):
|
|
130
130
|
affine (bool, optional): If set to :obj:`True`, this module has
|
131
131
|
learnable affine parameters :math:`\gamma` and :math:`\beta`.
|
132
132
|
(default: :obj:`True`)
|
133
|
-
mode (str,
|
133
|
+
mode (str, optional): The normalization mode to use for layer
|
134
134
|
normalization (:obj:`"node"`). If `"node"` is used, each node will
|
135
135
|
be considered as an element to be normalized.
|
136
136
|
(default: :obj:`"node"`)
|
@@ -55,7 +55,7 @@ class ClusterPooling(torch.nn.Module):
|
|
55
55
|
self.in_channels = in_channels
|
56
56
|
self.edge_score_method = edge_score_method
|
57
57
|
self.dropout = dropout
|
58
|
-
self.
|
58
|
+
self.threshold = threshold
|
59
59
|
|
60
60
|
self.lin = torch.nn.Linear(2 * in_channels, 1)
|
61
61
|
|
@@ -116,7 +116,7 @@ class ClusterPooling(torch.nn.Module):
|
|
116
116
|
|
117
117
|
from scipy.sparse.csgraph import connected_components
|
118
118
|
|
119
|
-
edge_contract = edge_index[:, edge_score > self.
|
119
|
+
edge_contract = edge_index[:, edge_score > self.threshold]
|
120
120
|
|
121
121
|
adj = to_scipy_sparse_matrix(edge_contract, num_nodes=x.size(0))
|
122
122
|
_, cluster_np = connected_components(adj, directed=True,
|
@@ -380,7 +380,7 @@ class HeteroBasisConv(torch.nn.Module):
|
|
380
380
|
|
381
381
|
|
382
382
|
class LinearAlign(torch.nn.Module):
|
383
|
-
# Aligns
|
383
|
+
# Aligns representations to the same dimensionality. Note that this will
|
384
384
|
# create lazy modules, and as such requires a forward pass in order to
|
385
385
|
# initialize parameters.
|
386
386
|
def __init__(self, keys: List[Union[NodeType, EdgeType]],
|
@@ -268,7 +268,7 @@ def withMETIS(func: Callable) -> Callable:
|
|
268
268
|
with_metis = WITH_METIS
|
269
269
|
|
270
270
|
if with_metis:
|
271
|
-
try: # Test that METIS can
|
271
|
+
try: # Test that METIS can successfully execute:
|
272
272
|
# TODO Using `pyg-lib` metis partitioning leads to some weird bugs
|
273
273
|
# in the # CI. As such, we require `torch-sparse` for now.
|
274
274
|
rowptr = torch.tensor([0, 2, 4, 6])
|
torch_geometric/utils/nested.py
CHANGED
@@ -43,7 +43,7 @@ def to_nested_tensor(
|
|
43
43
|
xs = [x]
|
44
44
|
|
45
45
|
# This currently copies the data, although `x` is already contiguous.
|
46
|
-
# Sadly, there does not exist any (public) API to
|
46
|
+
# Sadly, there does not exist any (public) API to prevent this :(
|
47
47
|
return torch.nested.as_nested_tensor(xs)
|
48
48
|
|
49
49
|
|
File without changes
|
{pyg_nightly-2.7.0.dev20250525.dist-info → pyg_nightly-2.7.0.dev20250527.dist-info}/licenses/LICENSE
RENAMED
File without changes
|