pyg-nightly 2.7.0.dev20250415__py3-none-any.whl → 2.7.0.dev20250416__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20250415
3
+ Version: 2.7.0.dev20250416
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=duIwc82SKXqJlQNFyCjs7Ep17yCY5jrbuLKyaZ4Qd_Y,1978
1
+ torch_geometric/__init__.py,sha256=en3YAn8JWtZUWaMs1gx9X-Z0xZM9IfGB3fvTW53cJno,1978
2
2
  torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
3
3
  torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -441,7 +441,7 @@ torch_geometric/nn/models/g_retriever.py,sha256=CdSOasnPiMvq5AjduNTpz-LIZiNp3X0x
441
441
  torch_geometric/nn/models/git_mol.py,sha256=Wc6Hx6RDDR7sDWRWHfA5eK9e9gFsrTZ9OLmpMfoj3pE,12676
442
442
  torch_geometric/nn/models/glem.py,sha256=sT0XM4klVlci9wduvUoXupATUw9p25uXtaJBrmv3yvs,16431
443
443
  torch_geometric/nn/models/gnnff.py,sha256=15dkiLgy0LmH1hnUrpeoHioIp4BPTfjpVATpnGRt9E0,7860
444
- torch_geometric/nn/models/gpse.py,sha256=Fwldw9N3axV--BcSnI4im1sy1r87a5mAXZAXHu_6k2Y,41932
444
+ torch_geometric/nn/models/gpse.py,sha256=NSN7yL98a9KzPjhwEpqOyx4RVtEfOPhFc0opejpTGVk,41981
445
445
  torch_geometric/nn/models/graph_mixer.py,sha256=mthMeCOikR8gseEsu4oJ3Cd9C35zHSv1p32ROwnG-6s,9246
446
446
  torch_geometric/nn/models/graph_unet.py,sha256=N8TSmJo8AlbZjjcame0xW_jZvMOirL5ahw6qv5Yjpbs,5586
447
447
  torch_geometric/nn/models/jumping_knowledge.py,sha256=9JR2EoViXKjcDSLb8tjJm-UHfv1mQCJvZAAEsYa0Ocw,5496
@@ -523,7 +523,7 @@ torch_geometric/testing/distributed.py,sha256=ZZCCXqiQC4-m1ExSjDZhS_a1qPXnHEwhJG
523
523
  torch_geometric/testing/feature_store.py,sha256=J6JBIt2XK-t8yG8B4JzXp-aJcVl5jaCS1m2H7d6OUxs,2158
524
524
  torch_geometric/testing/graph_store.py,sha256=00B7QToCIspYmgN7svQKp1iU-qAzEtrt3VQRFxkHfuk,1044
525
525
  torch_geometric/transforms/__init__.py,sha256=P0R2CFg9pXxjTX4NnYfNPrifRPAw5lVXEOxO80q-1Ek,4296
526
- torch_geometric/transforms/add_gpse.py,sha256=4o0UrSmTu3CKsL3UAREiul8O4lC02PUx_ajxP4sPsxU,1570
526
+ torch_geometric/transforms/add_gpse.py,sha256=ex7cSLmcSIn-dC5gbic-CLwKegV5Is7Y8mUn-mSOWXg,1555
527
527
  torch_geometric/transforms/add_metapaths.py,sha256=GabaPRvUnpFrZJsxLMUBY2Egzx94GTgsMxegL_qTtbk,14239
528
528
  torch_geometric/transforms/add_positional_encoding.py,sha256=tuilyubAn3yeyz8mvFc5zxXTlNzh8okKzG9AE2lPG1Q,6049
529
529
  torch_geometric/transforms/add_remaining_self_loops.py,sha256=ItU5FAcE-mkbp_wqTLkRhv0RShR5JVr8vr9d5xv3_Ak,2085
@@ -636,7 +636,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
636
636
  torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
637
637
  torch_geometric/visualization/graph.py,sha256=ZuLPL92yGRi7lxlqsUPwL_EVVXF7P2kMcveTtW79vpA,4784
638
638
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
639
- pyg_nightly-2.7.0.dev20250415.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
640
- pyg_nightly-2.7.0.dev20250415.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
641
- pyg_nightly-2.7.0.dev20250415.dist-info/METADATA,sha256=WwXaZamewCWf7Ll2a67U4vRjebf09NmPizYYQDmjJz0,62979
642
- pyg_nightly-2.7.0.dev20250415.dist-info/RECORD,,
639
+ pyg_nightly-2.7.0.dev20250416.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
640
+ pyg_nightly-2.7.0.dev20250416.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
641
+ pyg_nightly-2.7.0.dev20250416.dist-info/METADATA,sha256=yDodf56EgttruZas0nqEgbfnFaNHm03BHQsFi-IkPf0,62979
642
+ pyg_nightly-2.7.0.dev20250416.dist-info/RECORD,,
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
31
31
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
32
32
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
33
33
 
34
- __version__ = '2.7.0.dev20250415'
34
+ __version__ = '2.7.0.dev20250416'
35
35
 
36
36
  __all__ = [
37
37
  'Index',
@@ -9,6 +9,7 @@ import numpy as np
9
9
  import torch
10
10
  import torch.nn as nn
11
11
  import torch.nn.functional as F
12
+ from torch.nn import Module
12
13
  from tqdm import trange
13
14
 
14
15
  import torch_geometric.transforms as T
@@ -715,8 +716,9 @@ class GPSENodeEncoder(torch.nn.Module):
715
716
 
716
717
 
717
718
  @torch.no_grad()
718
- def gpse_process(model: GPSE, data: Data, rand_type: str, use_vn: bool = True,
719
- bernoulli_thresh: float = 0.5, neighbor_loader: bool = False,
719
+ def gpse_process(model: Module, data: Data, rand_type: str,
720
+ use_vn: bool = True, bernoulli_thresh: float = 0.5,
721
+ neighbor_loader: bool = False,
720
722
  num_neighbors: List[int] = [30, 20, 10], fillval: int = 5,
721
723
  layers_mp: int = None, **kwargs) -> torch.Tensor:
722
724
  r"""Processes the data using the :class:`GPSE` model to generate and append
@@ -731,7 +733,7 @@ def gpse_process(model: GPSE, data: Data, rand_type: str, use_vn: bool = True,
731
733
  :obj:`precompute_GPSE` on your whole dataset is advised instead.
732
734
 
733
735
  Args:
734
- model (GPSE): The :class:`GPSE` model.
736
+ model (Module): The :class:`GPSE` model.
735
737
  data (torch_geometric.data.Data): A :class:`~torch_geometric.data.Data`
736
738
  object.
737
739
  rand_type (str, optional): Type of random features to use. Options are
@@ -1,6 +1,7 @@
1
+ from torch.nn import Module
2
+
1
3
  from torch_geometric.data import Data
2
4
  from torch_geometric.data.datapipes import functional_transform
3
- from torch_geometric.nn.models.gpse import GPSE
4
5
  from torch_geometric.transforms import BaseTransform, VirtualNode
5
6
 
6
7
 
@@ -13,7 +14,7 @@ class AddGPSE(BaseTransform):
13
14
  the actual encodings.
14
15
 
15
16
  Args:
16
- model (GPSE): The pre-trained GPSE model.
17
+ model (Module): The pre-trained GPSE model.
17
18
  use_vn (bool, optional): Whether to use virtual nodes.
18
19
  (default: :obj:`True`)
19
20
  rand_type (str, optional): Type of random features to use. Options are
@@ -21,7 +22,7 @@ class AddGPSE(BaseTransform):
21
22
  (default: :obj:`NormalSE`)
22
23
 
23
24
  """
24
- def __init__(self, model: GPSE, use_vn: bool = True,
25
+ def __init__(self, model: Module, use_vn: bool = True,
25
26
  rand_type: str = 'NormalSE'):
26
27
  self.model = model
27
28
  self.use_vn = use_vn