pyg-nightly 2.7.0.dev20250415__py3-none-any.whl → 2.7.0.dev20250416__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pyg_nightly-2.7.0.dev20250415.dist-info → pyg_nightly-2.7.0.dev20250416.dist-info}/METADATA +1 -1
- {pyg_nightly-2.7.0.dev20250415.dist-info → pyg_nightly-2.7.0.dev20250416.dist-info}/RECORD +7 -7
- torch_geometric/__init__.py +1 -1
- torch_geometric/nn/models/gpse.py +5 -3
- torch_geometric/transforms/add_gpse.py +4 -3
- {pyg_nightly-2.7.0.dev20250415.dist-info → pyg_nightly-2.7.0.dev20250416.dist-info}/WHEEL +0 -0
- {pyg_nightly-2.7.0.dev20250415.dist-info → pyg_nightly-2.7.0.dev20250416.dist-info}/licenses/LICENSE +0 -0
{pyg_nightly-2.7.0.dev20250415.dist-info → pyg_nightly-2.7.0.dev20250416.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20250416
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -1,4 +1,4 @@
|
|
1
|
-
torch_geometric/__init__.py,sha256=
|
1
|
+
torch_geometric/__init__.py,sha256=en3YAn8JWtZUWaMs1gx9X-Z0xZM9IfGB3fvTW53cJno,1978
|
2
2
|
torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
|
3
3
|
torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
|
4
4
|
torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
|
@@ -441,7 +441,7 @@ torch_geometric/nn/models/g_retriever.py,sha256=CdSOasnPiMvq5AjduNTpz-LIZiNp3X0x
|
|
441
441
|
torch_geometric/nn/models/git_mol.py,sha256=Wc6Hx6RDDR7sDWRWHfA5eK9e9gFsrTZ9OLmpMfoj3pE,12676
|
442
442
|
torch_geometric/nn/models/glem.py,sha256=sT0XM4klVlci9wduvUoXupATUw9p25uXtaJBrmv3yvs,16431
|
443
443
|
torch_geometric/nn/models/gnnff.py,sha256=15dkiLgy0LmH1hnUrpeoHioIp4BPTfjpVATpnGRt9E0,7860
|
444
|
-
torch_geometric/nn/models/gpse.py,sha256=
|
444
|
+
torch_geometric/nn/models/gpse.py,sha256=NSN7yL98a9KzPjhwEpqOyx4RVtEfOPhFc0opejpTGVk,41981
|
445
445
|
torch_geometric/nn/models/graph_mixer.py,sha256=mthMeCOikR8gseEsu4oJ3Cd9C35zHSv1p32ROwnG-6s,9246
|
446
446
|
torch_geometric/nn/models/graph_unet.py,sha256=N8TSmJo8AlbZjjcame0xW_jZvMOirL5ahw6qv5Yjpbs,5586
|
447
447
|
torch_geometric/nn/models/jumping_knowledge.py,sha256=9JR2EoViXKjcDSLb8tjJm-UHfv1mQCJvZAAEsYa0Ocw,5496
|
@@ -523,7 +523,7 @@ torch_geometric/testing/distributed.py,sha256=ZZCCXqiQC4-m1ExSjDZhS_a1qPXnHEwhJG
|
|
523
523
|
torch_geometric/testing/feature_store.py,sha256=J6JBIt2XK-t8yG8B4JzXp-aJcVl5jaCS1m2H7d6OUxs,2158
|
524
524
|
torch_geometric/testing/graph_store.py,sha256=00B7QToCIspYmgN7svQKp1iU-qAzEtrt3VQRFxkHfuk,1044
|
525
525
|
torch_geometric/transforms/__init__.py,sha256=P0R2CFg9pXxjTX4NnYfNPrifRPAw5lVXEOxO80q-1Ek,4296
|
526
|
-
torch_geometric/transforms/add_gpse.py,sha256=
|
526
|
+
torch_geometric/transforms/add_gpse.py,sha256=ex7cSLmcSIn-dC5gbic-CLwKegV5Is7Y8mUn-mSOWXg,1555
|
527
527
|
torch_geometric/transforms/add_metapaths.py,sha256=GabaPRvUnpFrZJsxLMUBY2Egzx94GTgsMxegL_qTtbk,14239
|
528
528
|
torch_geometric/transforms/add_positional_encoding.py,sha256=tuilyubAn3yeyz8mvFc5zxXTlNzh8okKzG9AE2lPG1Q,6049
|
529
529
|
torch_geometric/transforms/add_remaining_self_loops.py,sha256=ItU5FAcE-mkbp_wqTLkRhv0RShR5JVr8vr9d5xv3_Ak,2085
|
@@ -636,7 +636,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
|
|
636
636
|
torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
|
637
637
|
torch_geometric/visualization/graph.py,sha256=ZuLPL92yGRi7lxlqsUPwL_EVVXF7P2kMcveTtW79vpA,4784
|
638
638
|
torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
|
639
|
-
pyg_nightly-2.7.0.
|
640
|
-
pyg_nightly-2.7.0.
|
641
|
-
pyg_nightly-2.7.0.
|
642
|
-
pyg_nightly-2.7.0.
|
639
|
+
pyg_nightly-2.7.0.dev20250416.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
|
640
|
+
pyg_nightly-2.7.0.dev20250416.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
|
641
|
+
pyg_nightly-2.7.0.dev20250416.dist-info/METADATA,sha256=yDodf56EgttruZas0nqEgbfnFaNHm03BHQsFi-IkPf0,62979
|
642
|
+
pyg_nightly-2.7.0.dev20250416.dist-info/RECORD,,
|
torch_geometric/__init__.py
CHANGED
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
|
|
31
31
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
32
32
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
33
33
|
|
34
|
-
__version__ = '2.7.0.
|
34
|
+
__version__ = '2.7.0.dev20250416'
|
35
35
|
|
36
36
|
__all__ = [
|
37
37
|
'Index',
|
@@ -9,6 +9,7 @@ import numpy as np
|
|
9
9
|
import torch
|
10
10
|
import torch.nn as nn
|
11
11
|
import torch.nn.functional as F
|
12
|
+
from torch.nn import Module
|
12
13
|
from tqdm import trange
|
13
14
|
|
14
15
|
import torch_geometric.transforms as T
|
@@ -715,8 +716,9 @@ class GPSENodeEncoder(torch.nn.Module):
|
|
715
716
|
|
716
717
|
|
717
718
|
@torch.no_grad()
|
718
|
-
def gpse_process(model:
|
719
|
-
|
719
|
+
def gpse_process(model: Module, data: Data, rand_type: str,
|
720
|
+
use_vn: bool = True, bernoulli_thresh: float = 0.5,
|
721
|
+
neighbor_loader: bool = False,
|
720
722
|
num_neighbors: List[int] = [30, 20, 10], fillval: int = 5,
|
721
723
|
layers_mp: int = None, **kwargs) -> torch.Tensor:
|
722
724
|
r"""Processes the data using the :class:`GPSE` model to generate and append
|
@@ -731,7 +733,7 @@ def gpse_process(model: GPSE, data: Data, rand_type: str, use_vn: bool = True,
|
|
731
733
|
:obj:`precompute_GPSE` on your whole dataset is advised instead.
|
732
734
|
|
733
735
|
Args:
|
734
|
-
model (
|
736
|
+
model (Module): The :class:`GPSE` model.
|
735
737
|
data (torch_geometric.data.Data): A :class:`~torch_geometric.data.Data`
|
736
738
|
object.
|
737
739
|
rand_type (str, optional): Type of random features to use. Options are
|
@@ -1,6 +1,7 @@
|
|
1
|
+
from torch.nn import Module
|
2
|
+
|
1
3
|
from torch_geometric.data import Data
|
2
4
|
from torch_geometric.data.datapipes import functional_transform
|
3
|
-
from torch_geometric.nn.models.gpse import GPSE
|
4
5
|
from torch_geometric.transforms import BaseTransform, VirtualNode
|
5
6
|
|
6
7
|
|
@@ -13,7 +14,7 @@ class AddGPSE(BaseTransform):
|
|
13
14
|
the actual encodings.
|
14
15
|
|
15
16
|
Args:
|
16
|
-
model (
|
17
|
+
model (Module): The pre-trained GPSE model.
|
17
18
|
use_vn (bool, optional): Whether to use virtual nodes.
|
18
19
|
(default: :obj:`True`)
|
19
20
|
rand_type (str, optional): Type of random features to use. Options are
|
@@ -21,7 +22,7 @@ class AddGPSE(BaseTransform):
|
|
21
22
|
(default: :obj:`NormalSE`)
|
22
23
|
|
23
24
|
"""
|
24
|
-
def __init__(self, model:
|
25
|
+
def __init__(self, model: Module, use_vn: bool = True,
|
25
26
|
rand_type: str = 'NormalSE'):
|
26
27
|
self.model = model
|
27
28
|
self.use_vn = use_vn
|
File without changes
|
{pyg_nightly-2.7.0.dev20250415.dist-info → pyg_nightly-2.7.0.dev20250416.dist-info}/licenses/LICENSE
RENAMED
File without changes
|