pyg-nightly 2.7.0.dev20241030__py3-none-any.whl → 2.7.0.dev20241031__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pyg_nightly-2.7.0.dev20241030.dist-info → pyg_nightly-2.7.0.dev20241031.dist-info}/METADATA +1 -1
- {pyg_nightly-2.7.0.dev20241030.dist-info → pyg_nightly-2.7.0.dev20241031.dist-info}/RECORD +7 -7
- torch_geometric/__init__.py +1 -1
- torch_geometric/inspector.py +4 -0
- torch_geometric/nn/models/dimenet_utils.py +4 -2
- torch_geometric/nn/models/graph_unet.py +1 -0
- {pyg_nightly-2.7.0.dev20241030.dist-info → pyg_nightly-2.7.0.dev20241031.dist-info}/WHEEL +0 -0
{pyg_nightly-2.7.0.dev20241030.dist-info → pyg_nightly-2.7.0.dev20241031.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20241031
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -1,4 +1,4 @@
|
|
1
|
-
torch_geometric/__init__.py,sha256=
|
1
|
+
torch_geometric/__init__.py,sha256=xvSZWRVIrP2K51ajiMdBNakse3Y6lz77Si0TgGfAPVo,1904
|
2
2
|
torch_geometric/_compile.py,sha256=REjj1_qX8YBrva6iqr3AsNiDueTAy2BhLZkdezKL2MY,1322
|
3
3
|
torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
|
4
4
|
torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
|
@@ -11,7 +11,7 @@ torch_geometric/edge_index.py,sha256=r4_24Rhm3YCK0BF-kzLvL7PlY_1tWcXrBDIr7JPDjkw
|
|
11
11
|
torch_geometric/experimental.py,sha256=JbtNNEXjFGI8hZ9raM6-qrZURP6Z5nlDK8QicZUIbz0,4756
|
12
12
|
torch_geometric/home.py,sha256=EV54B4Dmiv61GDbkCwtCfWGWJ4eFGwZ8s3KOgGjwYgY,790
|
13
13
|
torch_geometric/index.py,sha256=9ChzWFCwj2slNcVBOgfV-wQn-KscJe_y7502w-Vf76w,24045
|
14
|
-
torch_geometric/inspector.py,sha256=
|
14
|
+
torch_geometric/inspector.py,sha256=nKi5o4Mn6xsG0Ex1GudTEQt_EqnF9mcMqGtp7Shh9sQ,19336
|
15
15
|
torch_geometric/isinstance.py,sha256=truZjdU9PxSvjJ6k0d_CLJ2iOpen2o8U-54pbUbNRyE,935
|
16
16
|
torch_geometric/lazy_loader.py,sha256=SM0UcXtIdiFge75MKBAWXedoiSOdFDOV0rm1PfoF9cE,908
|
17
17
|
torch_geometric/logging.py,sha256=HmHHLiCcM64k-6UYNOSfXPIeSGNAyiGGcn8cD8tlyuQ,858
|
@@ -426,11 +426,11 @@ torch_geometric/nn/models/correct_and_smooth.py,sha256=wmq-US2r4ocd0a661R8YeDiBe
|
|
426
426
|
torch_geometric/nn/models/deep_graph_infomax.py,sha256=u6j-5-iHBASDCZ776dyfCI1N8wuvIMjeff8kthiX3Q4,4137
|
427
427
|
torch_geometric/nn/models/deepgcn.py,sha256=tIgT03cj8MghYlxEozpoGvGG_CwpJrGDxv1Z0CVIUts,4339
|
428
428
|
torch_geometric/nn/models/dimenet.py,sha256=Kc5p-rB5q-0e8lY22l-OdQTscTxJh2lTEpeRFMdL4RY,36186
|
429
|
-
torch_geometric/nn/models/dimenet_utils.py,sha256=
|
429
|
+
torch_geometric/nn/models/dimenet_utils.py,sha256=Eyn_EiJqwKvuYj6BtRpSxrzMG3v4Gk98X9MxZ7uvwm4,5069
|
430
430
|
torch_geometric/nn/models/g_retriever.py,sha256=VueRImNJlh1WvRWcsSXliSw8RlxlzWlu2WSFs_VQaJc,7749
|
431
431
|
torch_geometric/nn/models/gnnff.py,sha256=15dkiLgy0LmH1hnUrpeoHioIp4BPTfjpVATpnGRt9E0,7860
|
432
432
|
torch_geometric/nn/models/graph_mixer.py,sha256=mthMeCOikR8gseEsu4oJ3Cd9C35zHSv1p32ROwnG-6s,9246
|
433
|
-
torch_geometric/nn/models/graph_unet.py,sha256
|
433
|
+
torch_geometric/nn/models/graph_unet.py,sha256=N8TSmJo8AlbZjjcame0xW_jZvMOirL5ahw6qv5Yjpbs,5586
|
434
434
|
torch_geometric/nn/models/jumping_knowledge.py,sha256=9JR2EoViXKjcDSLb8tjJm-UHfv1mQCJvZAAEsYa0Ocw,5496
|
435
435
|
torch_geometric/nn/models/label_prop.py,sha256=6XYBKp7OLmUgcn-73jXXpYZpef9Za1m0gI9QLv2bMEw,3908
|
436
436
|
torch_geometric/nn/models/lightgcn.py,sha256=dXKiBvM96jGKLtYp4l90Fko4he0kKdR9fRw-0ZCqSrA,12466
|
@@ -618,6 +618,6 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
|
|
618
618
|
torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
|
619
619
|
torch_geometric/visualization/graph.py,sha256=AGKqbtTdL14w7xIhy6n3g4bpCOnujKt-pXHCNzovxB4,4784
|
620
620
|
torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
|
621
|
-
pyg_nightly-2.7.0.
|
622
|
-
pyg_nightly-2.7.0.
|
623
|
-
pyg_nightly-2.7.0.
|
621
|
+
pyg_nightly-2.7.0.dev20241031.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
|
622
|
+
pyg_nightly-2.7.0.dev20241031.dist-info/METADATA,sha256=XtBSCkGeEBikzpALrIyETHTimwYY8mA6TyiERxECr7E,62897
|
623
|
+
pyg_nightly-2.7.0.dev20241031.dist-info/RECORD,,
|
torch_geometric/__init__.py
CHANGED
@@ -30,7 +30,7 @@ from .lazy_loader import LazyLoader
|
|
30
30
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
31
31
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
32
32
|
|
33
|
-
__version__ = '2.7.0.
|
33
|
+
__version__ = '2.7.0.dev20241031'
|
34
34
|
|
35
35
|
__all__ = [
|
36
36
|
'Index',
|
torch_geometric/inspector.py
CHANGED
@@ -448,6 +448,10 @@ def type_repr(obj: Any, _globals: Dict[str, Any]) -> str:
|
|
448
448
|
return '...'
|
449
449
|
|
450
450
|
if obj.__module__ == 'typing': # Special logic for `typing.*` types:
|
451
|
+
|
452
|
+
if not hasattr(obj, '_name'):
|
453
|
+
return repr(obj)
|
454
|
+
|
451
455
|
name = obj._name
|
452
456
|
if name is None: # In some cases, `_name` is not populated.
|
453
457
|
name = str(obj.__origin__).split('.')[-1]
|
@@ -1,5 +1,7 @@
|
|
1
1
|
# Shameless steal from: https://github.com/klicperajo/dimenet
|
2
2
|
|
3
|
+
import math
|
4
|
+
|
3
5
|
import numpy as np
|
4
6
|
import sympy as sym
|
5
7
|
from scipy import special as sp
|
@@ -62,8 +64,8 @@ def bessel_basis(n, k):
|
|
62
64
|
|
63
65
|
|
64
66
|
def sph_harm_prefactor(k, m):
|
65
|
-
return ((2 * k + 1) *
|
66
|
-
(4 * np.pi *
|
67
|
+
return ((2 * k + 1) * math.factorial(k - abs(m)) /
|
68
|
+
(4 * np.pi * math.factorial(k + abs(m))))**0.5
|
67
69
|
|
68
70
|
|
69
71
|
def associated_legendre_polynomials(k, zero_m_only=True):
|
File without changes
|