pyg-nightly 2.7.0.dev20241030__py3-none-any.whl → 2.7.0.dev20241031__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20241030
3
+ Version: 2.7.0.dev20241031
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=3fWdahlPEuZccsWnhlRAviJ7SNW7r5WjYq5zjHr7QwA,1904
1
+ torch_geometric/__init__.py,sha256=xvSZWRVIrP2K51ajiMdBNakse3Y6lz77Si0TgGfAPVo,1904
2
2
  torch_geometric/_compile.py,sha256=REjj1_qX8YBrva6iqr3AsNiDueTAy2BhLZkdezKL2MY,1322
3
3
  torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -11,7 +11,7 @@ torch_geometric/edge_index.py,sha256=r4_24Rhm3YCK0BF-kzLvL7PlY_1tWcXrBDIr7JPDjkw
11
11
  torch_geometric/experimental.py,sha256=JbtNNEXjFGI8hZ9raM6-qrZURP6Z5nlDK8QicZUIbz0,4756
12
12
  torch_geometric/home.py,sha256=EV54B4Dmiv61GDbkCwtCfWGWJ4eFGwZ8s3KOgGjwYgY,790
13
13
  torch_geometric/index.py,sha256=9ChzWFCwj2slNcVBOgfV-wQn-KscJe_y7502w-Vf76w,24045
14
- torch_geometric/inspector.py,sha256=9M61T9ruSid5-r2aelRAeX9g_7AZ1VMnYAB2KozM71E,19267
14
+ torch_geometric/inspector.py,sha256=nKi5o4Mn6xsG0Ex1GudTEQt_EqnF9mcMqGtp7Shh9sQ,19336
15
15
  torch_geometric/isinstance.py,sha256=truZjdU9PxSvjJ6k0d_CLJ2iOpen2o8U-54pbUbNRyE,935
16
16
  torch_geometric/lazy_loader.py,sha256=SM0UcXtIdiFge75MKBAWXedoiSOdFDOV0rm1PfoF9cE,908
17
17
  torch_geometric/logging.py,sha256=HmHHLiCcM64k-6UYNOSfXPIeSGNAyiGGcn8cD8tlyuQ,858
@@ -426,11 +426,11 @@ torch_geometric/nn/models/correct_and_smooth.py,sha256=wmq-US2r4ocd0a661R8YeDiBe
426
426
  torch_geometric/nn/models/deep_graph_infomax.py,sha256=u6j-5-iHBASDCZ776dyfCI1N8wuvIMjeff8kthiX3Q4,4137
427
427
  torch_geometric/nn/models/deepgcn.py,sha256=tIgT03cj8MghYlxEozpoGvGG_CwpJrGDxv1Z0CVIUts,4339
428
428
  torch_geometric/nn/models/dimenet.py,sha256=Kc5p-rB5q-0e8lY22l-OdQTscTxJh2lTEpeRFMdL4RY,36186
429
- torch_geometric/nn/models/dimenet_utils.py,sha256=xP_nbzkSSL25GC3rrZ9KP8x9QZ59S-CZuHzCmQ-K0fI,5062
429
+ torch_geometric/nn/models/dimenet_utils.py,sha256=Eyn_EiJqwKvuYj6BtRpSxrzMG3v4Gk98X9MxZ7uvwm4,5069
430
430
  torch_geometric/nn/models/g_retriever.py,sha256=VueRImNJlh1WvRWcsSXliSw8RlxlzWlu2WSFs_VQaJc,7749
431
431
  torch_geometric/nn/models/gnnff.py,sha256=15dkiLgy0LmH1hnUrpeoHioIp4BPTfjpVATpnGRt9E0,7860
432
432
  torch_geometric/nn/models/graph_mixer.py,sha256=mthMeCOikR8gseEsu4oJ3Cd9C35zHSv1p32ROwnG-6s,9246
433
- torch_geometric/nn/models/graph_unet.py,sha256=-IUj1mlvLTLywst2zifqQtmP1ra42SUuDn3T4EKQ5X4,5548
433
+ torch_geometric/nn/models/graph_unet.py,sha256=N8TSmJo8AlbZjjcame0xW_jZvMOirL5ahw6qv5Yjpbs,5586
434
434
  torch_geometric/nn/models/jumping_knowledge.py,sha256=9JR2EoViXKjcDSLb8tjJm-UHfv1mQCJvZAAEsYa0Ocw,5496
435
435
  torch_geometric/nn/models/label_prop.py,sha256=6XYBKp7OLmUgcn-73jXXpYZpef9Za1m0gI9QLv2bMEw,3908
436
436
  torch_geometric/nn/models/lightgcn.py,sha256=dXKiBvM96jGKLtYp4l90Fko4he0kKdR9fRw-0ZCqSrA,12466
@@ -618,6 +618,6 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
618
618
  torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
619
619
  torch_geometric/visualization/graph.py,sha256=AGKqbtTdL14w7xIhy6n3g4bpCOnujKt-pXHCNzovxB4,4784
620
620
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
621
- pyg_nightly-2.7.0.dev20241030.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
622
- pyg_nightly-2.7.0.dev20241030.dist-info/METADATA,sha256=ztFS4megSeWysfzKay6-gH2gtlEUL8ESuBdVSUCFU1Q,62897
623
- pyg_nightly-2.7.0.dev20241030.dist-info/RECORD,,
621
+ pyg_nightly-2.7.0.dev20241031.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
622
+ pyg_nightly-2.7.0.dev20241031.dist-info/METADATA,sha256=XtBSCkGeEBikzpALrIyETHTimwYY8mA6TyiERxECr7E,62897
623
+ pyg_nightly-2.7.0.dev20241031.dist-info/RECORD,,
@@ -30,7 +30,7 @@ from .lazy_loader import LazyLoader
30
30
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
31
31
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
32
32
 
33
- __version__ = '2.7.0.dev20241030'
33
+ __version__ = '2.7.0.dev20241031'
34
34
 
35
35
  __all__ = [
36
36
  'Index',
@@ -448,6 +448,10 @@ def type_repr(obj: Any, _globals: Dict[str, Any]) -> str:
448
448
  return '...'
449
449
 
450
450
  if obj.__module__ == 'typing': # Special logic for `typing.*` types:
451
+
452
+ if not hasattr(obj, '_name'):
453
+ return repr(obj)
454
+
451
455
  name = obj._name
452
456
  if name is None: # In some cases, `_name` is not populated.
453
457
  name = str(obj.__origin__).split('.')[-1]
@@ -1,5 +1,7 @@
1
1
  # Shameless steal from: https://github.com/klicperajo/dimenet
2
2
 
3
+ import math
4
+
3
5
  import numpy as np
4
6
  import sympy as sym
5
7
  from scipy import special as sp
@@ -62,8 +64,8 @@ def bessel_basis(n, k):
62
64
 
63
65
 
64
66
  def sph_harm_prefactor(k, m):
65
- return ((2 * k + 1) * np.math.factorial(k - abs(m)) /
66
- (4 * np.pi * np.math.factorial(k + abs(m))))**0.5
67
+ return ((2 * k + 1) * math.factorial(k - abs(m)) /
68
+ (4 * np.pi * math.factorial(k + abs(m))))**0.5
67
69
 
68
70
 
69
71
  def associated_legendre_polynomials(k, zero_m_only=True):
@@ -92,6 +92,7 @@ class GraphUNet(torch.nn.Module):
92
92
 
93
93
  if edge_weight is None:
94
94
  edge_weight = x.new_ones(edge_index.size(1))
95
+ assert edge_weight.dim() == 1
95
96
  assert edge_weight.size(0) == edge_index.size(1)
96
97
 
97
98
  x = self.down_convs[0](x, edge_index, edge_weight)