pyerualjetwork 5b2__py3-none-any.whl → 5.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -29,7 +29,7 @@ Memory Module:
29
29
 
30
30
  Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
31
31
 
32
- PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_Anaplan/ANAPLAN_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
32
+ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
33
33
 
34
34
  - Author: Hasan Can Beydili
35
35
  - YouTube: https://www.youtube.com/@HasanCanBeydili
@@ -38,7 +38,7 @@ PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_A
38
38
  - Contact: tchasancan@gmail.com
39
39
  """
40
40
 
41
- __version__ = "5b2"
41
+ __version__ = "5.0.1"
42
42
  __update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
43
43
  * PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
44
44
  * PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
@@ -19,7 +19,7 @@ Module functions:
19
19
 
20
20
  Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
21
21
 
22
- PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_Anaplan/ANAPLAN_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
22
+ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
23
23
 
24
24
  - Author: Hasan Can Beydili
25
25
  - YouTube: https://www.youtube.com/@HasanCanBeydili
pyerualjetwork/ene.py CHANGED
@@ -19,7 +19,7 @@ Module functions:
19
19
 
20
20
  Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
21
21
 
22
- PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_Anaplan/ANAPLAN_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
22
+ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
23
23
 
24
24
  - Author: Hasan Can Beydili
25
25
  - YouTube: https://www.youtube.com/@HasanCanBeydili
@@ -280,7 +280,7 @@ def evolver(weights,
280
280
 
281
281
  Example:
282
282
  ```python
283
- weights, activations = planeat.evolver(weights, activations, 1, fitness, show_info=True, strategy='normal_selective', policy='aggressive')
283
+ weights, activations = ene.evolver(weights, activations, 1, fitness, show_info=True, strategy='normal_selective', policy='aggressive')
284
284
  ```
285
285
 
286
286
  - The function returns the updated weights and activations after processing based on the chosen strategy, policy, and mutation parameters.
@@ -19,7 +19,7 @@ Module functions:
19
19
 
20
20
  Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
21
21
 
22
- PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_Anaplan/ANAPLAN_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
22
+ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
23
23
 
24
24
  - Author: Hasan Can Beydili
25
25
  - YouTube: https://www.youtube.com/@HasanCanBeydili
@@ -280,7 +280,7 @@ def evolver(weights,
280
280
 
281
281
  Example:
282
282
  ```python
283
- weights, activations = planeat_cuda.evolver(weights, activations, 1, fitness, show_info=True, strategy='normal_selective', policy='aggressive')
283
+ weights, activations = ene_cuda.evolver(weights, activations, 1, fitness, show_info=True, strategy='normal_selective', policy='aggressive')
284
284
  ```
285
285
 
286
286
  - The function returns the updated weights and activations after processing based on the chosen strategy, policy, and mutation parameters.
@@ -15,7 +15,7 @@ Module functions:
15
15
 
16
16
  Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
17
17
 
18
- PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_Anaplan/ANAPLAN_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
18
+ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
19
19
 
20
20
  - Author: Hasan Can Beydili
21
21
  - YouTube: https://www.youtube.com/@HasanCanBeydili
@@ -31,7 +31,7 @@ Module functions:
31
31
 
32
32
  Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
33
33
 
34
- PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_Anaplan/ANAPLAN_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
34
+ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
35
35
 
36
36
  - Author: Hasan Can Beydili
37
37
  - YouTube: https://www.youtube.com/@HasanCanBeydili
@@ -31,7 +31,7 @@ Module functions:
31
31
 
32
32
  Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
33
33
 
34
- PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_Anaplan/ANAPLAN_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
34
+ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
35
35
 
36
36
  - Author: Hasan Can Beydili
37
37
  - YouTube: https://www.youtube.com/@HasanCanBeydili
pyerualjetwork/neu.py CHANGED
@@ -21,7 +21,7 @@ Module functions:
21
21
 
22
22
  Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
23
23
 
24
- PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_Anaplan/ANAPLAN_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
24
+ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
25
25
 
26
26
  - Author: Hasan Can Beydili
27
27
  - YouTube: https://www.youtube.com/@HasanCanBeydili
@@ -71,7 +71,7 @@ def plan_fit(
71
71
 
72
72
  y_train (aray-like[num]): List or numarray of target labels. (one hot encoded)
73
73
 
74
- activations (list): For deeper PLAN networks, activation function parameters. For more information please run this code: plan.activations_list() default: [None] (optional)
74
+ activations (list): For deeper PLAN networks, activation function parameters. For more information please run this code: neu.activations_list() default: [None] (optional)
75
75
 
76
76
  W (numpy.ndarray): If you want to re-continue or update model
77
77
 
@@ -109,7 +109,7 @@ def learn(x_train, y_train, optimizer, fit_start=True, gen=None, batch_size=1, p
109
109
 
110
110
  Why genetic optimization ENE(Eugenic NeuroEvolution) and not backpropagation?
111
111
  Because PLAN is different from other neural network architectures. In PLAN, the learnable parameters are not the weights; instead, the learnable parameters are the activation functions.
112
- Since activation functions are not differentiable, we cannot use gradient descent or backpropagation. However, I developed a more powerful genetic optimization algorithm: PLANEAT.
112
+ Since activation functions are not differentiable, we cannot use gradient descent or backpropagation. However, I developed a more powerful genetic optimization algorithm: ENE.
113
113
 
114
114
  :Args:
115
115
  :param x_train: (array-like): Training input data.
@@ -21,7 +21,7 @@ Module functions:
21
21
 
22
22
  Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
23
23
 
24
- PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_Anaplan/ANAPLAN_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
24
+ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
25
25
 
26
26
  - Author: Hasan Can Beydili
27
27
  - YouTube: https://www.youtube.com/@HasanCanBeydili
@@ -70,7 +70,7 @@ def plan_fit(
70
70
  plan_fit Args:
71
71
  :param (aray-like[cupy]) x_train: (aray-like[cupy]): List or cupy array of input data.
72
72
  :param (aray-like[cupy]) y_train: List or cupy array of target labels. (one hot encoded)
73
- :param (list) activations: For deeper PLAN networks, activation function parameters. For more information please run this code: nn.activations_list() default: [None] (optional)
73
+ :param (list) activations: For deeper PLAN networks, activation function parameters. For more information please run this code: neu_cuda.activations_list() default: [None] (optional)
74
74
  W (cupy.ndarray, optional): If you want to re-continue or update model
75
75
  auto_normalization (bool, optional): Normalization may solves overflow problem. Default: False
76
76
  dtype (cupy.dtype, optional): Data type for the arrays. cp.float32 by default. Example: cp.float64 or cp.float16.
@@ -86,16 +86,16 @@ def draw_model_architecture(model_name, model_path=''):
86
86
  Visualizes the architecture of a neural network model with multiple inputs based on activation functions.
87
87
  """
88
88
 
89
- from .model_operations import load_model, get_scaler, get_act_pot, get_weights
89
+ from .model_operations import load_model, get_scaler, get_act, get_weights
90
90
 
91
91
  model = load_model(model_name=model_name, model_path=model_path)
92
92
 
93
93
  W = model[get_weights()]
94
- activation_potentiation = model[get_act_pot()]
94
+ activations = model[get_act()]
95
95
  scaler_params = model[get_scaler()]
96
96
 
97
97
  # Calculate dimensions based on number of activation functions
98
- num_activations = len(activation_potentiation)
98
+ num_activations = len(activations)
99
99
  input_groups = num_activations # Number of input groups equals number of activations
100
100
  num_inputs = W.shape[1]
101
101
 
@@ -138,7 +138,7 @@ def draw_model_architecture(model_name, model_path=''):
138
138
  for i in range(num_inputs):
139
139
  plt.plot(*pos[f'input_{group}_{i}'], 'o', color='lightgreen', markersize=20)
140
140
  plt.text(pos[f'input_{group}_{i}'][0] - 0.05, pos[f'input_{group}_{i}'][1],
141
- f'Input #{i+1} ({activation_potentiation[group]})', ha='right', va='center')
141
+ f'Input #{i+1} ({activations[group]})', ha='right', va='center')
142
142
 
143
143
  # Draw connections from input to summed input directly
144
144
  plt.plot([pos[f'input_{group}_{i}'][0], pos[f'summed_{i}'][0]],
@@ -325,7 +325,7 @@ def draw_activations(x_train, activation):
325
325
  return x_train
326
326
 
327
327
 
328
- def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation):
328
+ def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activations):
329
329
 
330
330
  from .metrics import metrics, confusion_matrix, roc_curve
331
331
  from .ui import loading_bars, initialize_loading_bar
@@ -433,7 +433,7 @@ def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation)
433
433
 
434
434
  for i in range(len(grid_full)):
435
435
 
436
- Z[i] = np.argmax(predict_model_ram(grid_full[i], W=W, activation_potentiation=activation_potentiation))
436
+ Z[i] = np.argmax(predict_model_ram(grid_full[i], W=W, activations=activations))
437
437
  predict_progress.update(1)
438
438
 
439
439
  predict_progress.close()
@@ -453,7 +453,7 @@ def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation)
453
453
  plt.show()
454
454
 
455
455
 
456
- def plot_decision_boundary(x, y, activation_potentiation, W, artist=None, ax=None):
456
+ def plot_decision_boundary(x, y, activations, W, artist=None, ax=None):
457
457
 
458
458
  from .model_operations import predict_model_ram
459
459
  from .data_operations import decode_one_hot
@@ -473,7 +473,7 @@ def plot_decision_boundary(x, y, activation_potentiation, W, artist=None, ax=Non
473
473
  Z = [None] * len(grid_full)
474
474
 
475
475
  for i in range(len(grid_full)):
476
- Z[i] = np.argmax(predict_model_ram(grid_full[i], W=W, activation_potentiation=activation_potentiation))
476
+ Z[i] = np.argmax(predict_model_ram(grid_full[i], W=W, activations=activations))
477
477
 
478
478
  Z = np.array(Z, dtype=np.int32)
479
479
  Z = Z.reshape(xx.shape)
@@ -667,9 +667,9 @@ def update_weight_visualization_for_fit(ax, LTPW, artist2):
667
667
  """
668
668
 
669
669
  """ DISABLED
670
- def update_decision_boundary_for_fit(ax, x_val, y_val, activation_potentiation, LTPW, artist1):
670
+ def update_decision_boundary_for_fit(ax, x_val, y_val, activations, LTPW, artist1):
671
671
 
672
- art1_1, art1_2 = plot_decision_boundary(x_val, y_val, activation_potentiation, LTPW, artist=artist1, ax=ax)
672
+ art1_1, art1_2 = plot_decision_boundary(x_val, y_val, activations, LTPW, artist=artist1, ax=ax)
673
673
  artist1.append([*art1_1.collections, art1_2])
674
674
  """
675
675
 
@@ -87,16 +87,16 @@ def draw_model_architecture(model_name, model_path=''):
87
87
  Visualizes the architecture of a neural network model with multiple inputs based on activation functions.
88
88
  """
89
89
 
90
- from .model_operations_cuda import load_model, get_scaler, get_act_pot, get_weights
90
+ from .model_operations_cuda import load_model, get_scaler, get_act, get_weights
91
91
 
92
92
  model = load_model(model_name=model_name, model_path=model_path)
93
93
 
94
94
  W = model[get_weights()]
95
- activation_potentiation = model[get_act_pot()]
95
+ activations = model[get_act()]
96
96
  scaler_params = model[get_scaler()]
97
97
 
98
98
  # Calculate dimensions based on number of activation functions
99
- num_activations = len(activation_potentiation)
99
+ num_activations = len(activations)
100
100
  input_groups = num_activations # Number of input groups equals number of activations
101
101
  num_inputs = W.shape[1]
102
102
 
@@ -139,7 +139,7 @@ def draw_model_architecture(model_name, model_path=''):
139
139
  for i in range(num_inputs):
140
140
  plt.plot(*pos[f'input_{group}_{i}'], 'o', color='lightgreen', markersize=20)
141
141
  plt.text(pos[f'input_{group}_{i}'][0] - 0.05, pos[f'input_{group}_{i}'][1],
142
- f'Input #{i+1} ({activation_potentiation[group]})', ha='right', va='center')
142
+ f'Input #{i+1} ({activations[group]})', ha='right', va='center')
143
143
 
144
144
  # Draw connections from input to summed input directly
145
145
  plt.plot([pos[f'input_{group}_{i}'][0], pos[f'summed_{i}'][0]],
@@ -326,7 +326,7 @@ def draw_activations(x_train, activation):
326
326
  return x_train
327
327
 
328
328
 
329
- def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation):
329
+ def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activations):
330
330
 
331
331
  from .metrics_cuda import metrics, confusion_matrix, roc_curve
332
332
  from .ui import loading_bars, initialize_loading_bar
@@ -432,7 +432,7 @@ def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation)
432
432
 
433
433
  for i in range(len(grid_full)):
434
434
 
435
- Z[i] = cp.argmax(predict_model_ram(grid_full[i], W=W, activation_potentiation=activation_potentiation))
435
+ Z[i] = cp.argmax(predict_model_ram(grid_full[i], W=W, activations=activations))
436
436
  predict_progress.update(1)
437
437
 
438
438
  predict_progress.close()
@@ -449,7 +449,7 @@ def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation)
449
449
  plt.show()
450
450
 
451
451
 
452
- def plot_decision_boundary(x, y, activation_potentiation, W, artist=None, ax=None):
452
+ def plot_decision_boundary(x, y, activations, W, artist=None, ax=None):
453
453
 
454
454
  from .model_operations_cuda import predict_model_ram
455
455
  from .data_operations_cuda import decode_one_hot
@@ -469,7 +469,7 @@ def plot_decision_boundary(x, y, activation_potentiation, W, artist=None, ax=Non
469
469
  Z = [None] * len(grid_full)
470
470
 
471
471
  for i in range(len(grid_full)):
472
- Z[i] = cp.argmax(predict_model_ram(grid_full[i], W=W, activation_potentiation=activation_potentiation))
472
+ Z[i] = cp.argmax(predict_model_ram(grid_full[i], W=W, activations=activations))
473
473
 
474
474
  Z = cp.array(Z, dtype=cp.int32)
475
475
  Z = Z.reshape(xx.shape)
@@ -638,8 +638,8 @@ def update_neural_web_for_fit(W, ax, G, artist):
638
638
  """
639
639
 
640
640
  """ DISABLED
641
- def update_decision_boundary_for_fit(ax, x_val, y_val, activation_potentiation, LTPW, artist1):
642
- art1_1, art1_2 = plot_decision_boundary(x_val, y_val, activation_potentiation, LTPW, artist=artist1, ax=ax)
641
+ def update_decision_boundary_for_fit(ax, x_val, y_val, activations, LTPW, artist1):
642
+ art1_1, art1_2 = plot_decision_boundary(x_val, y_val, activations, LTPW, artist=artist1, ax=ax)
643
643
  artist1.append([*art1_1.collections, art1_2])
644
644
  """
645
645
 
@@ -1,7 +1,7 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 5b2
4
- Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
3
+ Version: 5.0.1
4
+ Summary: PyereualJetwork is a GPU-accelerated machine learning library in Python for professionals and researchers. It features PLAN, MLP, Deep Learning training, and ENE (Eugenic NeuroEvolution) for genetic optimization, applicable to genetic algorithms or Reinforcement Learning (RL). The library includes data pre-processing, visualizations, model saving/loading, prediction, evaluation, training, and detailed or simplified memory management.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
7
7
  Keywords: model evaluation,classification,potentiation learning artificial neural networks,NEAT,genetic algorithms,reinforcement learning,neural networks
@@ -26,13 +26,13 @@ YouTube Tutorials: https://www.youtube.com/watch?v=6wMQstZ00is&list=PLNgNWpM7Hbs
26
26
 
27
27
  pip install pyerualjetwork
28
28
 
29
- from pyerualjetwork import plan
30
- from pyerualjetwork import planeat
29
+ from pyerualjetwork import neu
30
+ from pyerualjetwork import ene
31
31
  from pyerualjetwork import data_operations
32
32
  from pyerualjetwork import model_operations
33
33
 
34
- from pyerualjetwork import plan_cuda
35
- from pyerualjetwork import planeat_cuda
34
+ from pyerualjetwork import neu_cuda
35
+ from pyerualjetwork import ene_cuda
36
36
  from pyerualjetwork import data_operations_cuda
37
37
  from pyerualjetwork import model_operations_cuda
38
38
 
@@ -43,7 +43,7 @@ YouTube Tutorials: https://www.youtube.com/watch?v=6wMQstZ00is&list=PLNgNWpM7Hbs
43
43
  'tqdm==4.66.4',
44
44
  'pandas==2.2.2',
45
45
  'networkx==3.3',
46
- 'seaborn==0.13.2',
46
+ 'seaborn==0.13.2',
47
47
  'numpy==1.26.4',
48
48
  'matplotlib==3.9.0',
49
49
  'colorama==0.4.6',
@@ -57,10 +57,13 @@ YouTube Tutorials: https://www.youtube.com/watch?v=6wMQstZ00is&list=PLNgNWpM7Hbs
57
57
 
58
58
  ABOUT PYERUALJETWORK:
59
59
 
60
- PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques with optimized GPU acceleration. Its most important component is the PLAN (Potentiation Learning Artificial Neural Network) https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4862342. (THIS ARTICLE IS FIRST VERSION OF PLAN.) MODERN VERSION OF PLAN: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PLAN/PLAN.pdf
61
- Both the PLAN algorithm and the PyerualJetwork library were created by Author, and all rights are reserved by Author.
60
+ PyereualJetwork is a large, GPU-accelerated machine learning library in Python designed for professionals and researchers.
61
+ It features PLAN, MLP, and Deep Learning training, as well as ENE (Eugenic NeuroEvolution) for genetic optimization,
62
+ which can also be applied to genetic algorithms or Reinforcement Learning (RL) problems.
63
+ The library includes functions for data pre-processing, visualizations, model saving and loading, prediction and evaluation,
64
+ training, and both detailed and simplified memory management. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4862342. (THIS ARTICLE IS FIRST VERSION OF PLAN.) MODERN VERSION OF PLAN: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PLAN/PLAN.pdf
65
+ Both the PLAN algorithm ENE algorithm and the PyerualJetwork library were created by Author, and all rights are reserved by Author.
62
66
  PyerualJetwork is free to use for commercial business and individual users.
63
- As of 12/21/2024, the library includes PLAN and PLANEAT module, but other machine learning modules are expected to be added in the future.
64
67
 
65
68
  PyerualJetwork ready for both eager execution(like PyTorch) and static graph(like Tensorflow) concepts because PyerualJetwork using only functions.
66
69
  For example:
@@ -68,13 +71,13 @@ For example:
68
71
  fit function only fits given training data(suitable for dynamic graph) but learner function learns and optimize entire architecture(suitable for static graph). Or more deeper eager executions PyerualJetwork have: feed_forward function, list of activation functions, loss functions. You can create your unique model architecture. Move your data to GPU or CPU or manage how much should in GPU, Its all up to you.
69
72
  <br><br>
70
73
 
71
- PyerualJetworket includes Plan Vision, NLPlan, PLANEAT and at the between of both, Deep Plan.<br>
74
+ PyerualJetworket includes PLAN, MLP & ENE.<br>
72
75
 
73
76
  PLAN VISION:<br>
74
77
 
75
78
  ![PLAN VISION](https://github.com/HCB06/PyerualJetwork/blob/main/Media/PlanVision.jpg)
76
79
 
77
- You can create artificial intelligence models that perform computer vision tasks using the plan module:<br>
80
+ You can create artificial intelligence models that perform computer vision tasks using the neu module:<br>
78
81
 
79
82
  ![AUTONOMOUS](https://github.com/HCB06/PyerualJetwork/blob/main/Media/autonomous.gif)<br><br><br>
80
83
  ![XRAY](https://github.com/HCB06/PyerualJetwork/blob/main/Media/chest_xray.png)<br><br><br>
@@ -84,13 +87,13 @@ NLPlan:<br>
84
87
 
85
88
  ![NLPLAN](https://github.com/HCB06/PyerualJetwork/blob/main/Media/NLPlan.jpg)<br>
86
89
 
87
- You can create artificial intelligence models that perform natural language processing tasks using the plan module:
90
+ You can create artificial intelligence models that perform natural language processing tasks using the neu module:
88
91
 
89
92
  ![PLAN VISION](https://github.com/HCB06/PyerualJetwork/blob/main/Media/NLP.gif)
90
93
 
91
94
  PLANEAT:<br>
92
95
 
93
- You can create artificial intelligence models that perform reinforcement learning tasks and genetic optimization tasks using the planeat module:
96
+ You can create artificial intelligence models that perform reinforcement learning tasks and genetic optimization tasks using the ene module:
94
97
 
95
98
  ![PLANEAT](https://github.com/HCB06/PyerualJetwork/blob/main/Media/PLANEAT_1.gif)<br>
96
99
  ![PLANEAT](https://github.com/HCB06/PyerualJetwork/blob/main/Media/PLANEAT_2.gif)<br>
@@ -113,6 +116,6 @@ HOW DO I IMPORT IT TO MY PROJECT?
113
116
 
114
117
  Anaconda users can access the 'Anaconda Prompt' terminal from the Start menu and add the necessary library modules to the Python module search queue by typing "pip install pyerualjetwork" and pressing enter. If you are not using Anaconda, you can simply open the 'cmd' Windows command terminal from the Start menu and type "pip install PyerualJetwork". (Visual Studio Code reccomended) After installation, it's important to periodically open the terminal of the environment you are using and stay up to date by using the command "pip install PyerualJetwork --upgrade".
115
118
 
116
- After installing the module using "pip" you can now call the library module in your project environment. Use: “from pyerualjetwork import plan”. Now, you can call the necessary functions from the plan module.
119
+ After installing the module using "pip" you can now call the library module in your project environment. Use: “from pyerualjetwork import neu”. Now, you can call the necessary functions from the neu module.
117
120
 
118
- The PLAN algorithm will not be explained in this document. This document focuses on how professionals can integrate and use PyerualJetwork in their systems. However, briefly, the PLAN algorithm can be described as a classification algorithm. PLAN algorithm achieves this task with an incredibly energy-efficient, fast, and hyperparameter-free user-friendly approach. For more detailed information, you can check out ![PYERUALJETWORK USER MANUEL](https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf) file.
121
+ The PLAN algorithm & ENE algorithm will not be explained in this document. This document focuses on how professionals can integrate and use PyerualJetwork in their systems. However, briefly, the PLAN algorithm can be described as a classification algorithm. PLAN algorithm achieves this task with an incredibly energy-efficient, fast, and hyperparameter-free user-friendly approach. For more detailed information, you can check out ![PYERUALJETWORK USER MANUEL](https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf) file.
@@ -0,0 +1,25 @@
1
+ pyerualjetwork/__init__.py,sha256=87_g-q7oZp-mgXR0fs3ysjwb1mkCALYL74DgP2xCeSc,2654
2
+ pyerualjetwork/activation_functions.py,sha256=X7Kv8qv8oZq8hvTdUiV-GkFjKHRlKIQypRPXh6gdkm4,7614
3
+ pyerualjetwork/activation_functions_cuda.py,sha256=pefklsl9QuSVbKwiUUHeF_ExN0bICH7QIF1MfoMU40Q,7665
4
+ pyerualjetwork/data_operations.py,sha256=m0Z42_czpou460XQB83E76z9bCjM78ewxS-jelezZ_M,16368
5
+ pyerualjetwork/data_operations_cuda.py,sha256=7p_v0yabHwq5Ft0jxWGEq1ZKyBFxOxvZvtPQjkcligk,18525
6
+ pyerualjetwork/ene.py,sha256=2HVHLlvkKH2xQlZ_apN8hHP4Gulj8uLxjTw2kgGu6IM,45134
7
+ pyerualjetwork/ene_cuda.py,sha256=n1rGQnvR0rY-fXnXOfY1o4cfc4mianzUUmwEaxl9j2o,45665
8
+ pyerualjetwork/fitness_functions.py,sha256=urRdeMvUhNgWxD4ZGHCRdQlIf9cTWYMvF3_aVBojRqY,1235
9
+ pyerualjetwork/help.py,sha256=F1xDDKqHGeUIXM-mo5c0Eav5XidCVNc62LvXqwS2Zbs,785
10
+ pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
11
+ pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
12
+ pyerualjetwork/memory_operations.py,sha256=g24d-cDuUFc0fOEtk3AJe-z_EBctYV5S4cY1rQ6VGiE,14279
13
+ pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
14
+ pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
15
+ pyerualjetwork/model_operations.py,sha256=XYhyeDKLOD-j2E1R5Bm57Xx0XC0FBoHsxQVlbnB0rj4,15992
16
+ pyerualjetwork/model_operations_cuda.py,sha256=aGHET1sYBJLYYhY6rdE-8jgCSKcsDh0G7W0W0bZcGfU,17227
17
+ pyerualjetwork/neu.py,sha256=LtuEaLl-c97zex508P7NQr9vYNKsT2X6hDTYegcbKLg,24964
18
+ pyerualjetwork/neu_cuda.py,sha256=aIiCxlbKfvCJHuTcoucKn0KmkEJi6MvWNy6_9SIj4Ms,26026
19
+ pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
20
+ pyerualjetwork/visualizations.py,sha256=4DpboCi1GnJjKRVQ0RdGyQyHagZQTLUbCgSI7UHzd6o,28212
21
+ pyerualjetwork/visualizations_cuda.py,sha256=7lYrkOdrjwQGB3T4k_vI8UDxsm_TRjzaSSg9GhlNczs,28667
22
+ pyerualjetwork-5.0.1.dist-info/METADATA,sha256=ueF_wlZUAgYQx76slwpnZviz4y5-WkdyhPOIDTYA8F0,7764
23
+ pyerualjetwork-5.0.1.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
24
+ pyerualjetwork-5.0.1.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
25
+ pyerualjetwork-5.0.1.dist-info/RECORD,,
@@ -1,25 +0,0 @@
1
- pyerualjetwork/__init__.py,sha256=hfJ9eS6MWjT5xcxtk3mDcJhmsG-XwOa5e8rta5QqbIQ,2631
2
- pyerualjetwork/activation_functions.py,sha256=X7Kv8qv8oZq8hvTdUiV-GkFjKHRlKIQypRPXh6gdkm4,7614
3
- pyerualjetwork/activation_functions_cuda.py,sha256=pefklsl9QuSVbKwiUUHeF_ExN0bICH7QIF1MfoMU40Q,7665
4
- pyerualjetwork/data_operations.py,sha256=LKmLfl43zSCCuP2cWkBM-D6GtlhxXQggsNvZNUwHDe4,16347
5
- pyerualjetwork/data_operations_cuda.py,sha256=7p_v0yabHwq5Ft0jxWGEq1ZKyBFxOxvZvtPQjkcligk,18525
6
- pyerualjetwork/ene.py,sha256=Dnx96FmQHxCbeT0IcUOydG7R8lPTlzmU_xXU9P4VBPY,45117
7
- pyerualjetwork/ene_cuda.py,sha256=KgmpfgUH9KK5hDy6qqk3P9CX7N1dsFTTVIbFcASOLrM,45648
8
- pyerualjetwork/fitness_functions.py,sha256=urRdeMvUhNgWxD4ZGHCRdQlIf9cTWYMvF3_aVBojRqY,1235
9
- pyerualjetwork/help.py,sha256=F1xDDKqHGeUIXM-mo5c0Eav5XidCVNc62LvXqwS2Zbs,785
10
- pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
11
- pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
12
- pyerualjetwork/memory_operations.py,sha256=Ch2QydBGHR5Be6fZu59C8eF8z-C2c3HVDIH8fz07BZo,14258
13
- pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
14
- pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
15
- pyerualjetwork/model_operations.py,sha256=F5qYAU578yrS1cUCwsaPJnqgfEAEUD_50vspakypTGY,15971
16
- pyerualjetwork/model_operations_cuda.py,sha256=lgYAEGUERTMU7TEWRVKaa3yk_IOt4Jo9RJP9lDsNREU,17206
17
- pyerualjetwork/neu.py,sha256=bNl8nnL5R3WS8vNWxFbVzeX9eeGgownHdebbsKKNfvU,24948
18
- pyerualjetwork/neu_cuda.py,sha256=0hUCQ02tLFg1cGuqOxT3jfBx3W28hIL6nhEu4m2LeY8,25999
19
- pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
20
- pyerualjetwork/visualizations.py,sha256=utnX9zQhzmtvBJLOLNGm2jecVVk4zHXABQdjb0XzJac,28352
21
- pyerualjetwork/visualizations_cuda.py,sha256=gnoaaazZ-nc9E1ImqXrZBRgQ4Rnpi2qh2yGJ2eLKMlE,28807
22
- pyerualjetwork-5b2.dist-info/METADATA,sha256=eS1VixnfYt_TbVFoqu6HJVf0wHrGyc2Ups5Cr-D8Q_4,7503
23
- pyerualjetwork-5b2.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
24
- pyerualjetwork-5b2.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
25
- pyerualjetwork-5b2.dist-info/RECORD,,