pyerualjetwork 5b2__py3-none-any.whl → 5.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +2 -2
- pyerualjetwork/data_operations.py +1 -1
- pyerualjetwork/ene.py +2 -2
- pyerualjetwork/ene_cuda.py +2 -2
- pyerualjetwork/memory_operations.py +1 -1
- pyerualjetwork/model_operations.py +1 -1
- pyerualjetwork/model_operations_cuda.py +1 -1
- pyerualjetwork/neu.py +3 -3
- pyerualjetwork/neu_cuda.py +2 -2
- pyerualjetwork/visualizations.py +10 -10
- pyerualjetwork/visualizations_cuda.py +10 -10
- {pyerualjetwork-5b2.dist-info → pyerualjetwork-5.0.1.dist-info}/METADATA +19 -16
- pyerualjetwork-5.0.1.dist-info/RECORD +25 -0
- pyerualjetwork-5b2.dist-info/RECORD +0 -25
- {pyerualjetwork-5b2.dist-info → pyerualjetwork-5.0.1.dist-info}/WHEEL +0 -0
- {pyerualjetwork-5b2.dist-info → pyerualjetwork-5.0.1.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -29,7 +29,7 @@ Memory Module:
|
|
29
29
|
|
30
30
|
Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
|
31
31
|
|
32
|
-
PyerualJetwork document: https://github.com/HCB06/
|
32
|
+
PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
|
33
33
|
|
34
34
|
- Author: Hasan Can Beydili
|
35
35
|
- YouTube: https://www.youtube.com/@HasanCanBeydili
|
@@ -38,7 +38,7 @@ PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_A
|
|
38
38
|
- Contact: tchasancan@gmail.com
|
39
39
|
"""
|
40
40
|
|
41
|
-
__version__ = "
|
41
|
+
__version__ = "5.0.1"
|
42
42
|
__update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
|
43
43
|
* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
|
44
44
|
* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
|
@@ -19,7 +19,7 @@ Module functions:
|
|
19
19
|
|
20
20
|
Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
|
21
21
|
|
22
|
-
PyerualJetwork document: https://github.com/HCB06/
|
22
|
+
PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
|
23
23
|
|
24
24
|
- Author: Hasan Can Beydili
|
25
25
|
- YouTube: https://www.youtube.com/@HasanCanBeydili
|
pyerualjetwork/ene.py
CHANGED
@@ -19,7 +19,7 @@ Module functions:
|
|
19
19
|
|
20
20
|
Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
|
21
21
|
|
22
|
-
PyerualJetwork document: https://github.com/HCB06/
|
22
|
+
PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
|
23
23
|
|
24
24
|
- Author: Hasan Can Beydili
|
25
25
|
- YouTube: https://www.youtube.com/@HasanCanBeydili
|
@@ -280,7 +280,7 @@ def evolver(weights,
|
|
280
280
|
|
281
281
|
Example:
|
282
282
|
```python
|
283
|
-
weights, activations =
|
283
|
+
weights, activations = ene.evolver(weights, activations, 1, fitness, show_info=True, strategy='normal_selective', policy='aggressive')
|
284
284
|
```
|
285
285
|
|
286
286
|
- The function returns the updated weights and activations after processing based on the chosen strategy, policy, and mutation parameters.
|
pyerualjetwork/ene_cuda.py
CHANGED
@@ -19,7 +19,7 @@ Module functions:
|
|
19
19
|
|
20
20
|
Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
|
21
21
|
|
22
|
-
PyerualJetwork document: https://github.com/HCB06/
|
22
|
+
PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
|
23
23
|
|
24
24
|
- Author: Hasan Can Beydili
|
25
25
|
- YouTube: https://www.youtube.com/@HasanCanBeydili
|
@@ -280,7 +280,7 @@ def evolver(weights,
|
|
280
280
|
|
281
281
|
Example:
|
282
282
|
```python
|
283
|
-
weights, activations =
|
283
|
+
weights, activations = ene_cuda.evolver(weights, activations, 1, fitness, show_info=True, strategy='normal_selective', policy='aggressive')
|
284
284
|
```
|
285
285
|
|
286
286
|
- The function returns the updated weights and activations after processing based on the chosen strategy, policy, and mutation parameters.
|
@@ -15,7 +15,7 @@ Module functions:
|
|
15
15
|
|
16
16
|
Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
|
17
17
|
|
18
|
-
PyerualJetwork document: https://github.com/HCB06/
|
18
|
+
PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
|
19
19
|
|
20
20
|
- Author: Hasan Can Beydili
|
21
21
|
- YouTube: https://www.youtube.com/@HasanCanBeydili
|
@@ -31,7 +31,7 @@ Module functions:
|
|
31
31
|
|
32
32
|
Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
|
33
33
|
|
34
|
-
PyerualJetwork document: https://github.com/HCB06/
|
34
|
+
PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
|
35
35
|
|
36
36
|
- Author: Hasan Can Beydili
|
37
37
|
- YouTube: https://www.youtube.com/@HasanCanBeydili
|
@@ -31,7 +31,7 @@ Module functions:
|
|
31
31
|
|
32
32
|
Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
|
33
33
|
|
34
|
-
PyerualJetwork document: https://github.com/HCB06/
|
34
|
+
PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
|
35
35
|
|
36
36
|
- Author: Hasan Can Beydili
|
37
37
|
- YouTube: https://www.youtube.com/@HasanCanBeydili
|
pyerualjetwork/neu.py
CHANGED
@@ -21,7 +21,7 @@ Module functions:
|
|
21
21
|
|
22
22
|
Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
|
23
23
|
|
24
|
-
PyerualJetwork document: https://github.com/HCB06/
|
24
|
+
PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
|
25
25
|
|
26
26
|
- Author: Hasan Can Beydili
|
27
27
|
- YouTube: https://www.youtube.com/@HasanCanBeydili
|
@@ -71,7 +71,7 @@ def plan_fit(
|
|
71
71
|
|
72
72
|
y_train (aray-like[num]): List or numarray of target labels. (one hot encoded)
|
73
73
|
|
74
|
-
activations (list): For deeper PLAN networks, activation function parameters. For more information please run this code:
|
74
|
+
activations (list): For deeper PLAN networks, activation function parameters. For more information please run this code: neu.activations_list() default: [None] (optional)
|
75
75
|
|
76
76
|
W (numpy.ndarray): If you want to re-continue or update model
|
77
77
|
|
@@ -109,7 +109,7 @@ def learn(x_train, y_train, optimizer, fit_start=True, gen=None, batch_size=1, p
|
|
109
109
|
|
110
110
|
Why genetic optimization ENE(Eugenic NeuroEvolution) and not backpropagation?
|
111
111
|
Because PLAN is different from other neural network architectures. In PLAN, the learnable parameters are not the weights; instead, the learnable parameters are the activation functions.
|
112
|
-
Since activation functions are not differentiable, we cannot use gradient descent or backpropagation. However, I developed a more powerful genetic optimization algorithm:
|
112
|
+
Since activation functions are not differentiable, we cannot use gradient descent or backpropagation. However, I developed a more powerful genetic optimization algorithm: ENE.
|
113
113
|
|
114
114
|
:Args:
|
115
115
|
:param x_train: (array-like): Training input data.
|
pyerualjetwork/neu_cuda.py
CHANGED
@@ -21,7 +21,7 @@ Module functions:
|
|
21
21
|
|
22
22
|
Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
|
23
23
|
|
24
|
-
PyerualJetwork document: https://github.com/HCB06/
|
24
|
+
PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
|
25
25
|
|
26
26
|
- Author: Hasan Can Beydili
|
27
27
|
- YouTube: https://www.youtube.com/@HasanCanBeydili
|
@@ -70,7 +70,7 @@ def plan_fit(
|
|
70
70
|
plan_fit Args:
|
71
71
|
:param (aray-like[cupy]) x_train: (aray-like[cupy]): List or cupy array of input data.
|
72
72
|
:param (aray-like[cupy]) y_train: List or cupy array of target labels. (one hot encoded)
|
73
|
-
:param (list) activations: For deeper PLAN networks, activation function parameters. For more information please run this code:
|
73
|
+
:param (list) activations: For deeper PLAN networks, activation function parameters. For more information please run this code: neu_cuda.activations_list() default: [None] (optional)
|
74
74
|
W (cupy.ndarray, optional): If you want to re-continue or update model
|
75
75
|
auto_normalization (bool, optional): Normalization may solves overflow problem. Default: False
|
76
76
|
dtype (cupy.dtype, optional): Data type for the arrays. cp.float32 by default. Example: cp.float64 or cp.float16.
|
pyerualjetwork/visualizations.py
CHANGED
@@ -86,16 +86,16 @@ def draw_model_architecture(model_name, model_path=''):
|
|
86
86
|
Visualizes the architecture of a neural network model with multiple inputs based on activation functions.
|
87
87
|
"""
|
88
88
|
|
89
|
-
from .model_operations import load_model, get_scaler,
|
89
|
+
from .model_operations import load_model, get_scaler, get_act, get_weights
|
90
90
|
|
91
91
|
model = load_model(model_name=model_name, model_path=model_path)
|
92
92
|
|
93
93
|
W = model[get_weights()]
|
94
|
-
|
94
|
+
activations = model[get_act()]
|
95
95
|
scaler_params = model[get_scaler()]
|
96
96
|
|
97
97
|
# Calculate dimensions based on number of activation functions
|
98
|
-
num_activations = len(
|
98
|
+
num_activations = len(activations)
|
99
99
|
input_groups = num_activations # Number of input groups equals number of activations
|
100
100
|
num_inputs = W.shape[1]
|
101
101
|
|
@@ -138,7 +138,7 @@ def draw_model_architecture(model_name, model_path=''):
|
|
138
138
|
for i in range(num_inputs):
|
139
139
|
plt.plot(*pos[f'input_{group}_{i}'], 'o', color='lightgreen', markersize=20)
|
140
140
|
plt.text(pos[f'input_{group}_{i}'][0] - 0.05, pos[f'input_{group}_{i}'][1],
|
141
|
-
f'Input #{i+1} ({
|
141
|
+
f'Input #{i+1} ({activations[group]})', ha='right', va='center')
|
142
142
|
|
143
143
|
# Draw connections from input to summed input directly
|
144
144
|
plt.plot([pos[f'input_{group}_{i}'][0], pos[f'summed_{i}'][0]],
|
@@ -325,7 +325,7 @@ def draw_activations(x_train, activation):
|
|
325
325
|
return x_train
|
326
326
|
|
327
327
|
|
328
|
-
def plot_evaluate(x_test, y_test, y_preds, acc_list, W,
|
328
|
+
def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activations):
|
329
329
|
|
330
330
|
from .metrics import metrics, confusion_matrix, roc_curve
|
331
331
|
from .ui import loading_bars, initialize_loading_bar
|
@@ -433,7 +433,7 @@ def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation)
|
|
433
433
|
|
434
434
|
for i in range(len(grid_full)):
|
435
435
|
|
436
|
-
Z[i] = np.argmax(predict_model_ram(grid_full[i], W=W,
|
436
|
+
Z[i] = np.argmax(predict_model_ram(grid_full[i], W=W, activations=activations))
|
437
437
|
predict_progress.update(1)
|
438
438
|
|
439
439
|
predict_progress.close()
|
@@ -453,7 +453,7 @@ def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation)
|
|
453
453
|
plt.show()
|
454
454
|
|
455
455
|
|
456
|
-
def plot_decision_boundary(x, y,
|
456
|
+
def plot_decision_boundary(x, y, activations, W, artist=None, ax=None):
|
457
457
|
|
458
458
|
from .model_operations import predict_model_ram
|
459
459
|
from .data_operations import decode_one_hot
|
@@ -473,7 +473,7 @@ def plot_decision_boundary(x, y, activation_potentiation, W, artist=None, ax=Non
|
|
473
473
|
Z = [None] * len(grid_full)
|
474
474
|
|
475
475
|
for i in range(len(grid_full)):
|
476
|
-
Z[i] = np.argmax(predict_model_ram(grid_full[i], W=W,
|
476
|
+
Z[i] = np.argmax(predict_model_ram(grid_full[i], W=W, activations=activations))
|
477
477
|
|
478
478
|
Z = np.array(Z, dtype=np.int32)
|
479
479
|
Z = Z.reshape(xx.shape)
|
@@ -667,9 +667,9 @@ def update_weight_visualization_for_fit(ax, LTPW, artist2):
|
|
667
667
|
"""
|
668
668
|
|
669
669
|
""" DISABLED
|
670
|
-
def update_decision_boundary_for_fit(ax, x_val, y_val,
|
670
|
+
def update_decision_boundary_for_fit(ax, x_val, y_val, activations, LTPW, artist1):
|
671
671
|
|
672
|
-
art1_1, art1_2 = plot_decision_boundary(x_val, y_val,
|
672
|
+
art1_1, art1_2 = plot_decision_boundary(x_val, y_val, activations, LTPW, artist=artist1, ax=ax)
|
673
673
|
artist1.append([*art1_1.collections, art1_2])
|
674
674
|
"""
|
675
675
|
|
@@ -87,16 +87,16 @@ def draw_model_architecture(model_name, model_path=''):
|
|
87
87
|
Visualizes the architecture of a neural network model with multiple inputs based on activation functions.
|
88
88
|
"""
|
89
89
|
|
90
|
-
from .model_operations_cuda import load_model, get_scaler,
|
90
|
+
from .model_operations_cuda import load_model, get_scaler, get_act, get_weights
|
91
91
|
|
92
92
|
model = load_model(model_name=model_name, model_path=model_path)
|
93
93
|
|
94
94
|
W = model[get_weights()]
|
95
|
-
|
95
|
+
activations = model[get_act()]
|
96
96
|
scaler_params = model[get_scaler()]
|
97
97
|
|
98
98
|
# Calculate dimensions based on number of activation functions
|
99
|
-
num_activations = len(
|
99
|
+
num_activations = len(activations)
|
100
100
|
input_groups = num_activations # Number of input groups equals number of activations
|
101
101
|
num_inputs = W.shape[1]
|
102
102
|
|
@@ -139,7 +139,7 @@ def draw_model_architecture(model_name, model_path=''):
|
|
139
139
|
for i in range(num_inputs):
|
140
140
|
plt.plot(*pos[f'input_{group}_{i}'], 'o', color='lightgreen', markersize=20)
|
141
141
|
plt.text(pos[f'input_{group}_{i}'][0] - 0.05, pos[f'input_{group}_{i}'][1],
|
142
|
-
f'Input #{i+1} ({
|
142
|
+
f'Input #{i+1} ({activations[group]})', ha='right', va='center')
|
143
143
|
|
144
144
|
# Draw connections from input to summed input directly
|
145
145
|
plt.plot([pos[f'input_{group}_{i}'][0], pos[f'summed_{i}'][0]],
|
@@ -326,7 +326,7 @@ def draw_activations(x_train, activation):
|
|
326
326
|
return x_train
|
327
327
|
|
328
328
|
|
329
|
-
def plot_evaluate(x_test, y_test, y_preds, acc_list, W,
|
329
|
+
def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activations):
|
330
330
|
|
331
331
|
from .metrics_cuda import metrics, confusion_matrix, roc_curve
|
332
332
|
from .ui import loading_bars, initialize_loading_bar
|
@@ -432,7 +432,7 @@ def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation)
|
|
432
432
|
|
433
433
|
for i in range(len(grid_full)):
|
434
434
|
|
435
|
-
Z[i] = cp.argmax(predict_model_ram(grid_full[i], W=W,
|
435
|
+
Z[i] = cp.argmax(predict_model_ram(grid_full[i], W=W, activations=activations))
|
436
436
|
predict_progress.update(1)
|
437
437
|
|
438
438
|
predict_progress.close()
|
@@ -449,7 +449,7 @@ def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation)
|
|
449
449
|
plt.show()
|
450
450
|
|
451
451
|
|
452
|
-
def plot_decision_boundary(x, y,
|
452
|
+
def plot_decision_boundary(x, y, activations, W, artist=None, ax=None):
|
453
453
|
|
454
454
|
from .model_operations_cuda import predict_model_ram
|
455
455
|
from .data_operations_cuda import decode_one_hot
|
@@ -469,7 +469,7 @@ def plot_decision_boundary(x, y, activation_potentiation, W, artist=None, ax=Non
|
|
469
469
|
Z = [None] * len(grid_full)
|
470
470
|
|
471
471
|
for i in range(len(grid_full)):
|
472
|
-
Z[i] = cp.argmax(predict_model_ram(grid_full[i], W=W,
|
472
|
+
Z[i] = cp.argmax(predict_model_ram(grid_full[i], W=W, activations=activations))
|
473
473
|
|
474
474
|
Z = cp.array(Z, dtype=cp.int32)
|
475
475
|
Z = Z.reshape(xx.shape)
|
@@ -638,8 +638,8 @@ def update_neural_web_for_fit(W, ax, G, artist):
|
|
638
638
|
"""
|
639
639
|
|
640
640
|
""" DISABLED
|
641
|
-
def update_decision_boundary_for_fit(ax, x_val, y_val,
|
642
|
-
art1_1, art1_2 = plot_decision_boundary(x_val, y_val,
|
641
|
+
def update_decision_boundary_for_fit(ax, x_val, y_val, activations, LTPW, artist1):
|
642
|
+
art1_1, art1_2 = plot_decision_boundary(x_val, y_val, activations, LTPW, artist=artist1, ax=ax)
|
643
643
|
artist1.append([*art1_1.collections, art1_2])
|
644
644
|
"""
|
645
645
|
|
@@ -1,7 +1,7 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version:
|
4
|
-
Summary:
|
3
|
+
Version: 5.0.1
|
4
|
+
Summary: PyereualJetwork is a GPU-accelerated machine learning library in Python for professionals and researchers. It features PLAN, MLP, Deep Learning training, and ENE (Eugenic NeuroEvolution) for genetic optimization, applicable to genetic algorithms or Reinforcement Learning (RL). The library includes data pre-processing, visualizations, model saving/loading, prediction, evaluation, training, and detailed or simplified memory management.
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
7
7
|
Keywords: model evaluation,classification,potentiation learning artificial neural networks,NEAT,genetic algorithms,reinforcement learning,neural networks
|
@@ -26,13 +26,13 @@ YouTube Tutorials: https://www.youtube.com/watch?v=6wMQstZ00is&list=PLNgNWpM7Hbs
|
|
26
26
|
|
27
27
|
pip install pyerualjetwork
|
28
28
|
|
29
|
-
from pyerualjetwork import
|
30
|
-
from pyerualjetwork import
|
29
|
+
from pyerualjetwork import neu
|
30
|
+
from pyerualjetwork import ene
|
31
31
|
from pyerualjetwork import data_operations
|
32
32
|
from pyerualjetwork import model_operations
|
33
33
|
|
34
|
-
from pyerualjetwork import
|
35
|
-
from pyerualjetwork import
|
34
|
+
from pyerualjetwork import neu_cuda
|
35
|
+
from pyerualjetwork import ene_cuda
|
36
36
|
from pyerualjetwork import data_operations_cuda
|
37
37
|
from pyerualjetwork import model_operations_cuda
|
38
38
|
|
@@ -43,7 +43,7 @@ YouTube Tutorials: https://www.youtube.com/watch?v=6wMQstZ00is&list=PLNgNWpM7Hbs
|
|
43
43
|
'tqdm==4.66.4',
|
44
44
|
'pandas==2.2.2',
|
45
45
|
'networkx==3.3',
|
46
|
-
|
46
|
+
'seaborn==0.13.2',
|
47
47
|
'numpy==1.26.4',
|
48
48
|
'matplotlib==3.9.0',
|
49
49
|
'colorama==0.4.6',
|
@@ -57,10 +57,13 @@ YouTube Tutorials: https://www.youtube.com/watch?v=6wMQstZ00is&list=PLNgNWpM7Hbs
|
|
57
57
|
|
58
58
|
ABOUT PYERUALJETWORK:
|
59
59
|
|
60
|
-
|
61
|
-
|
60
|
+
PyereualJetwork is a large, GPU-accelerated machine learning library in Python designed for professionals and researchers.
|
61
|
+
It features PLAN, MLP, and Deep Learning training, as well as ENE (Eugenic NeuroEvolution) for genetic optimization,
|
62
|
+
which can also be applied to genetic algorithms or Reinforcement Learning (RL) problems.
|
63
|
+
The library includes functions for data pre-processing, visualizations, model saving and loading, prediction and evaluation,
|
64
|
+
training, and both detailed and simplified memory management. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4862342. (THIS ARTICLE IS FIRST VERSION OF PLAN.) MODERN VERSION OF PLAN: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PLAN/PLAN.pdf
|
65
|
+
Both the PLAN algorithm ENE algorithm and the PyerualJetwork library were created by Author, and all rights are reserved by Author.
|
62
66
|
PyerualJetwork is free to use for commercial business and individual users.
|
63
|
-
As of 12/21/2024, the library includes PLAN and PLANEAT module, but other machine learning modules are expected to be added in the future.
|
64
67
|
|
65
68
|
PyerualJetwork ready for both eager execution(like PyTorch) and static graph(like Tensorflow) concepts because PyerualJetwork using only functions.
|
66
69
|
For example:
|
@@ -68,13 +71,13 @@ For example:
|
|
68
71
|
fit function only fits given training data(suitable for dynamic graph) but learner function learns and optimize entire architecture(suitable for static graph). Or more deeper eager executions PyerualJetwork have: feed_forward function, list of activation functions, loss functions. You can create your unique model architecture. Move your data to GPU or CPU or manage how much should in GPU, Its all up to you.
|
69
72
|
<br><br>
|
70
73
|
|
71
|
-
PyerualJetworket includes
|
74
|
+
PyerualJetworket includes PLAN, MLP & ENE.<br>
|
72
75
|
|
73
76
|
PLAN VISION:<br>
|
74
77
|
|
75
78
|

|
76
79
|
|
77
|
-
You can create artificial intelligence models that perform computer vision tasks using the
|
80
|
+
You can create artificial intelligence models that perform computer vision tasks using the neu module:<br>
|
78
81
|
|
79
82
|
<br><br><br>
|
80
83
|
<br><br><br>
|
@@ -84,13 +87,13 @@ NLPlan:<br>
|
|
84
87
|
|
85
88
|
<br>
|
86
89
|
|
87
|
-
You can create artificial intelligence models that perform natural language processing tasks using the
|
90
|
+
You can create artificial intelligence models that perform natural language processing tasks using the neu module:
|
88
91
|
|
89
92
|

|
90
93
|
|
91
94
|
PLANEAT:<br>
|
92
95
|
|
93
|
-
You can create artificial intelligence models that perform reinforcement learning tasks and genetic optimization tasks using the
|
96
|
+
You can create artificial intelligence models that perform reinforcement learning tasks and genetic optimization tasks using the ene module:
|
94
97
|
|
95
98
|
<br>
|
96
99
|
<br>
|
@@ -113,6 +116,6 @@ HOW DO I IMPORT IT TO MY PROJECT?
|
|
113
116
|
|
114
117
|
Anaconda users can access the 'Anaconda Prompt' terminal from the Start menu and add the necessary library modules to the Python module search queue by typing "pip install pyerualjetwork" and pressing enter. If you are not using Anaconda, you can simply open the 'cmd' Windows command terminal from the Start menu and type "pip install PyerualJetwork". (Visual Studio Code reccomended) After installation, it's important to periodically open the terminal of the environment you are using and stay up to date by using the command "pip install PyerualJetwork --upgrade".
|
115
118
|
|
116
|
-
After installing the module using "pip" you can now call the library module in your project environment. Use: “from pyerualjetwork import
|
119
|
+
After installing the module using "pip" you can now call the library module in your project environment. Use: “from pyerualjetwork import neu”. Now, you can call the necessary functions from the neu module.
|
117
120
|
|
118
|
-
The PLAN algorithm will not be explained in this document. This document focuses on how professionals can integrate and use PyerualJetwork in their systems. However, briefly, the PLAN algorithm can be described as a classification algorithm. PLAN algorithm achieves this task with an incredibly energy-efficient, fast, and hyperparameter-free user-friendly approach. For more detailed information, you can check out .pdf) file.
|
121
|
+
The PLAN algorithm & ENE algorithm will not be explained in this document. This document focuses on how professionals can integrate and use PyerualJetwork in their systems. However, briefly, the PLAN algorithm can be described as a classification algorithm. PLAN algorithm achieves this task with an incredibly energy-efficient, fast, and hyperparameter-free user-friendly approach. For more detailed information, you can check out .pdf) file.
|
@@ -0,0 +1,25 @@
|
|
1
|
+
pyerualjetwork/__init__.py,sha256=87_g-q7oZp-mgXR0fs3ysjwb1mkCALYL74DgP2xCeSc,2654
|
2
|
+
pyerualjetwork/activation_functions.py,sha256=X7Kv8qv8oZq8hvTdUiV-GkFjKHRlKIQypRPXh6gdkm4,7614
|
3
|
+
pyerualjetwork/activation_functions_cuda.py,sha256=pefklsl9QuSVbKwiUUHeF_ExN0bICH7QIF1MfoMU40Q,7665
|
4
|
+
pyerualjetwork/data_operations.py,sha256=m0Z42_czpou460XQB83E76z9bCjM78ewxS-jelezZ_M,16368
|
5
|
+
pyerualjetwork/data_operations_cuda.py,sha256=7p_v0yabHwq5Ft0jxWGEq1ZKyBFxOxvZvtPQjkcligk,18525
|
6
|
+
pyerualjetwork/ene.py,sha256=2HVHLlvkKH2xQlZ_apN8hHP4Gulj8uLxjTw2kgGu6IM,45134
|
7
|
+
pyerualjetwork/ene_cuda.py,sha256=n1rGQnvR0rY-fXnXOfY1o4cfc4mianzUUmwEaxl9j2o,45665
|
8
|
+
pyerualjetwork/fitness_functions.py,sha256=urRdeMvUhNgWxD4ZGHCRdQlIf9cTWYMvF3_aVBojRqY,1235
|
9
|
+
pyerualjetwork/help.py,sha256=F1xDDKqHGeUIXM-mo5c0Eav5XidCVNc62LvXqwS2Zbs,785
|
10
|
+
pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
|
11
|
+
pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
|
12
|
+
pyerualjetwork/memory_operations.py,sha256=g24d-cDuUFc0fOEtk3AJe-z_EBctYV5S4cY1rQ6VGiE,14279
|
13
|
+
pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
|
14
|
+
pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
|
15
|
+
pyerualjetwork/model_operations.py,sha256=XYhyeDKLOD-j2E1R5Bm57Xx0XC0FBoHsxQVlbnB0rj4,15992
|
16
|
+
pyerualjetwork/model_operations_cuda.py,sha256=aGHET1sYBJLYYhY6rdE-8jgCSKcsDh0G7W0W0bZcGfU,17227
|
17
|
+
pyerualjetwork/neu.py,sha256=LtuEaLl-c97zex508P7NQr9vYNKsT2X6hDTYegcbKLg,24964
|
18
|
+
pyerualjetwork/neu_cuda.py,sha256=aIiCxlbKfvCJHuTcoucKn0KmkEJi6MvWNy6_9SIj4Ms,26026
|
19
|
+
pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
|
20
|
+
pyerualjetwork/visualizations.py,sha256=4DpboCi1GnJjKRVQ0RdGyQyHagZQTLUbCgSI7UHzd6o,28212
|
21
|
+
pyerualjetwork/visualizations_cuda.py,sha256=7lYrkOdrjwQGB3T4k_vI8UDxsm_TRjzaSSg9GhlNczs,28667
|
22
|
+
pyerualjetwork-5.0.1.dist-info/METADATA,sha256=ueF_wlZUAgYQx76slwpnZviz4y5-WkdyhPOIDTYA8F0,7764
|
23
|
+
pyerualjetwork-5.0.1.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
24
|
+
pyerualjetwork-5.0.1.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
25
|
+
pyerualjetwork-5.0.1.dist-info/RECORD,,
|
@@ -1,25 +0,0 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=hfJ9eS6MWjT5xcxtk3mDcJhmsG-XwOa5e8rta5QqbIQ,2631
|
2
|
-
pyerualjetwork/activation_functions.py,sha256=X7Kv8qv8oZq8hvTdUiV-GkFjKHRlKIQypRPXh6gdkm4,7614
|
3
|
-
pyerualjetwork/activation_functions_cuda.py,sha256=pefklsl9QuSVbKwiUUHeF_ExN0bICH7QIF1MfoMU40Q,7665
|
4
|
-
pyerualjetwork/data_operations.py,sha256=LKmLfl43zSCCuP2cWkBM-D6GtlhxXQggsNvZNUwHDe4,16347
|
5
|
-
pyerualjetwork/data_operations_cuda.py,sha256=7p_v0yabHwq5Ft0jxWGEq1ZKyBFxOxvZvtPQjkcligk,18525
|
6
|
-
pyerualjetwork/ene.py,sha256=Dnx96FmQHxCbeT0IcUOydG7R8lPTlzmU_xXU9P4VBPY,45117
|
7
|
-
pyerualjetwork/ene_cuda.py,sha256=KgmpfgUH9KK5hDy6qqk3P9CX7N1dsFTTVIbFcASOLrM,45648
|
8
|
-
pyerualjetwork/fitness_functions.py,sha256=urRdeMvUhNgWxD4ZGHCRdQlIf9cTWYMvF3_aVBojRqY,1235
|
9
|
-
pyerualjetwork/help.py,sha256=F1xDDKqHGeUIXM-mo5c0Eav5XidCVNc62LvXqwS2Zbs,785
|
10
|
-
pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
|
11
|
-
pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
|
12
|
-
pyerualjetwork/memory_operations.py,sha256=Ch2QydBGHR5Be6fZu59C8eF8z-C2c3HVDIH8fz07BZo,14258
|
13
|
-
pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
|
14
|
-
pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
|
15
|
-
pyerualjetwork/model_operations.py,sha256=F5qYAU578yrS1cUCwsaPJnqgfEAEUD_50vspakypTGY,15971
|
16
|
-
pyerualjetwork/model_operations_cuda.py,sha256=lgYAEGUERTMU7TEWRVKaa3yk_IOt4Jo9RJP9lDsNREU,17206
|
17
|
-
pyerualjetwork/neu.py,sha256=bNl8nnL5R3WS8vNWxFbVzeX9eeGgownHdebbsKKNfvU,24948
|
18
|
-
pyerualjetwork/neu_cuda.py,sha256=0hUCQ02tLFg1cGuqOxT3jfBx3W28hIL6nhEu4m2LeY8,25999
|
19
|
-
pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
|
20
|
-
pyerualjetwork/visualizations.py,sha256=utnX9zQhzmtvBJLOLNGm2jecVVk4zHXABQdjb0XzJac,28352
|
21
|
-
pyerualjetwork/visualizations_cuda.py,sha256=gnoaaazZ-nc9E1ImqXrZBRgQ4Rnpi2qh2yGJ2eLKMlE,28807
|
22
|
-
pyerualjetwork-5b2.dist-info/METADATA,sha256=eS1VixnfYt_TbVFoqu6HJVf0wHrGyc2Ups5Cr-D8Q_4,7503
|
23
|
-
pyerualjetwork-5b2.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
24
|
-
pyerualjetwork-5b2.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
25
|
-
pyerualjetwork-5b2.dist-info/RECORD,,
|
File without changes
|
File without changes
|