pyerualjetwork 5.1__py3-none-any.whl → 5.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +15 -14
- pyerualjetwork/cpu/__init__.py +24 -0
- pyerualjetwork/{activation_functions_cpu.py → cpu/activation_functions.py} +40 -4
- pyerualjetwork/{data_operations_cpu.py → cpu/data_ops.py} +17 -19
- pyerualjetwork/{metrics_cpu.py → cpu/metrics.py} +3 -1
- pyerualjetwork/{visualizations_cpu.py → cpu/visualizations.py} +96 -139
- pyerualjetwork/cuda/__init__.py +24 -0
- pyerualjetwork/{activation_functions_cuda.py → cuda/activation_functions.py} +54 -5
- pyerualjetwork/{data_operations_cuda.py → cuda/data_ops.py} +16 -16
- pyerualjetwork/{metrics_cuda.py → cuda/metrics.py} +1 -1
- pyerualjetwork/{visualizations_cuda.py → cuda/visualizations.py} +8 -244
- pyerualjetwork/{ene_cpu.py → ene.py} +29 -95
- pyerualjetwork/fitness_functions.py +0 -1
- pyerualjetwork/help.py +5 -5
- pyerualjetwork/issue_solver.py +39 -11
- pyerualjetwork/{memory_operations.py → memory_ops.py} +1 -1
- pyerualjetwork/model_ops.py +734 -0
- pyerualjetwork/{neu_cpu.py → nn.py} +199 -91
- pyerualjetwork/{model_operations_cpu.py → old_cpu_model_ops.py} +62 -59
- pyerualjetwork/{model_operations_cuda.py → old_cuda_model_ops.py} +99 -86
- {pyerualjetwork-5.1.dist-info → pyerualjetwork-5.5.dist-info}/METADATA +16 -18
- pyerualjetwork-5.5.dist-info/RECORD +27 -0
- pyerualjetwork/ene_cuda.py +0 -962
- pyerualjetwork/neu_cuda.py +0 -588
- pyerualjetwork-5.1.dist-info/RECORD +0 -26
- /pyerualjetwork/{loss_functions_cpu.py → cpu/loss_functions.py} +0 -0
- /pyerualjetwork/{loss_functions_cuda.py → cuda/loss_functions.py} +0 -0
- {pyerualjetwork-5.1.dist-info → pyerualjetwork-5.5.dist-info}/WHEEL +0 -0
- {pyerualjetwork-5.1.dist-info → pyerualjetwork-5.5.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 5.
|
3
|
+
Version: 5.5
|
4
4
|
Summary: PyereualJetwork is a GPU-accelerated machine learning library in Python for professionals and researchers. It features PLAN, MLP, Deep Learning training, and ENE (Eugenic NeuroEvolution) for genetic optimization, applicable to genetic algorithms or Reinforcement Learning (RL). The library includes data pre-processing, visualizations, model saving/loading, prediction, evaluation, training, and detailed or simplified memory management.
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -24,17 +24,15 @@ GitHub Page: https://github.com/HCB06/PyerualJetwork
|
|
24
24
|
|
25
25
|
YouTube Tutorials: https://www.youtube.com/watch?v=6wMQstZ00is&list=PLNgNWpM7HbsBpCx2VTJ4SK9wcPyse-EHw
|
26
26
|
|
27
|
-
|
27
|
+
installation:
|
28
|
+
'pip install pyerualjetwork'
|
28
29
|
|
29
|
-
|
30
|
-
from pyerualjetwork import
|
31
|
-
from pyerualjetwork
|
32
|
-
from pyerualjetwork
|
33
|
-
|
34
|
-
|
35
|
-
from pyerualjetwork import ene_cuda
|
36
|
-
from pyerualjetwork import data_operations_cuda
|
37
|
-
from pyerualjetwork import model_operations_cuda
|
30
|
+
package modules:
|
31
|
+
'from pyerualjetwork import nn, ene, model_ops, memory_ops'
|
32
|
+
'from pyerualjetwork.cpu data_ops'
|
33
|
+
'from pyerualjetwork.cuda data_ops'
|
34
|
+
|
35
|
+
please read docstrings.
|
38
36
|
|
39
37
|
PyerualJetwork has Issue Solver. This operation provides users ready-to-use functions to identify potential issues
|
40
38
|
caused by version incompatibilities in major updates, ensuring users are not affected by such problems.
|
@@ -74,10 +72,10 @@ PyerualJetwork is free to use for commercial business and individual users.
|
|
74
72
|
PyerualJetwork ready for both eager execution(like PyTorch) and static graph(like Tensorflow) concepts because PyerualJetwork using only functions.
|
75
73
|
For example:
|
76
74
|
|
77
|
-
|
75
|
+
plan_fit function only fits given training data(suitable for dynamic graph) but learn function learns and optimize entire architecture(suitable for static graph). Or more deeper eager executions PyerualJetwork have: cross_over function, mutation function, list of activation functions, loss functions. You can create your unique model architecture. Move your data to GPU or CPU or manage how much should in GPU, Its all up to you.
|
78
76
|
<br><br>
|
79
77
|
|
80
|
-
PyerualJetworket includes PLAN, MLP & ENE.<br>
|
78
|
+
PyerualJetworket includes PLAN, MLP, PTNN & ENE.<br>
|
81
79
|
|
82
80
|
PLAN VISION:<br>
|
83
81
|
|
@@ -97,13 +95,13 @@ You can create artificial intelligence models that perform natural language proc
|
|
97
95
|
|
98
96
|

|
99
97
|
|
100
|
-
|
98
|
+
ENE:<br>
|
101
99
|
|
102
100
|
You can create artificial intelligence models that perform reinforcement learning tasks and genetic optimization tasks using the ene module:
|
103
101
|
|
104
|
-
<br>
|
103
|
+
<br>
|
104
|
+
<br><br>
|
107
105
|
|
108
106
|
YOU CAN CREATE DYNAMIC ANIMATIONS OF YOUR MODELS
|
109
107
|
|
@@ -122,6 +120,6 @@ HOW DO I IMPORT IT TO MY PROJECT?
|
|
122
120
|
|
123
121
|
Anaconda users can access the 'Anaconda Prompt' terminal from the Start menu and add the necessary library modules to the Python module search queue by typing "pip install pyerualjetwork" and pressing enter. If you are not using Anaconda, you can simply open the 'cmd' Windows command terminal from the Start menu and type "pip install PyerualJetwork". (Visual Studio Code reccomended) After installation, it's important to periodically open the terminal of the environment you are using and stay up to date by using the command "pip install PyerualJetwork --upgrade".
|
124
122
|
|
125
|
-
After installing the module using "pip" you can now call the library module in your project environment. Use: “from pyerualjetwork import
|
123
|
+
After installing the module using "pip" you can now call the library module in your project environment. Use: “from pyerualjetwork.cpu import nn. Now, you can call the necessary functions from the nn module.
|
126
124
|
|
127
125
|
The PLAN algorithm & ENE algorithm will not be explained in this document. This document focuses on how professionals can integrate and use PyerualJetwork in their systems. However, briefly, the PLAN algorithm can be described as a classification algorithm. PLAN algorithm achieves this task with an incredibly energy-efficient, fast, and hyperparameter-free user-friendly approach. For more detailed information, you can check out .pdf) file.
|
@@ -0,0 +1,27 @@
|
|
1
|
+
pyerualjetwork/__init__.py,sha256=T8RWTzrVlhI3558X1TSLy4CeLAkxq4Xw2kmF1Mq_mPA,3019
|
2
|
+
pyerualjetwork/ene.py,sha256=luTvspHRTose6s3uRas40pNXyKoxU9siaHiMBNI5yoc,42136
|
3
|
+
pyerualjetwork/fitness_functions.py,sha256=D9JVCr9DFid_xXgBD4uCKxdW2k10MVDE5HZRSOK4Igg,1237
|
4
|
+
pyerualjetwork/help.py,sha256=sn9jBzXkQsTZvdgsUXUpSs_BbYYIgY3whofg6dj8peI,848
|
5
|
+
pyerualjetwork/issue_solver.py,sha256=uay_9XK6xWnLmK2P_BeyDQlyNXzg_zYffnXYd228wZk,4102
|
6
|
+
pyerualjetwork/memory_ops.py,sha256=TUFh9SYWCKL6N-vNdWId_EwU313TuZomQCHOrltrD-4,14280
|
7
|
+
pyerualjetwork/model_ops.py,sha256=WaP1XwKqXMfZl4Yop8a1Bg0xtmLYgap9JFOWHaLr7S4,25143
|
8
|
+
pyerualjetwork/nn.py,sha256=t1Jf99F6PqfEfCH6erPcwN6q-tF3DPYgHUlQ7OMtnv8,36656
|
9
|
+
pyerualjetwork/old_cpu_model_ops.py,sha256=1KNgjUeYCO_TsA5RtbNiuIiBJzq8-rL2dE6jxKqCBU0,21481
|
10
|
+
pyerualjetwork/old_cuda_model_ops.py,sha256=KAscAd8e_I8Vqdd9BJaHd6-IG6fhxFglAFxys0sqmEo,23079
|
11
|
+
pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
|
12
|
+
pyerualjetwork/cpu/__init__.py,sha256=9apRbPqvGKLJwyI3Md6R5a478YbZ7kIq0dRRa_lqgrY,789
|
13
|
+
pyerualjetwork/cpu/activation_functions.py,sha256=zZSoOQ452Ykp_RsHVxklxesJmmFgufyIB4F3WQjudEQ,6689
|
14
|
+
pyerualjetwork/cpu/data_ops.py,sha256=9fCUrBmAc2WJQ3WkWEkDNSJyPdkkKsYX4rwSEy2TSvc,16108
|
15
|
+
pyerualjetwork/cpu/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
|
16
|
+
pyerualjetwork/cpu/metrics.py,sha256=NF8FARAqtuGlf4omVkQT4pOQZy7uePqzuHZGX9Y_Pn4,6076
|
17
|
+
pyerualjetwork/cpu/visualizations.py,sha256=RcEZXX-U3BStOna1-C_a7z2VpXHuLAigeg1pD4u8I9I,26923
|
18
|
+
pyerualjetwork/cuda/__init__.py,sha256=Kja6OmNaJ0giOhRNYw9hgGkh5N4F1EUS2v94E_rmp2k,839
|
19
|
+
pyerualjetwork/cuda/activation_functions.py,sha256=Gj-qalU0GoAWoZzbFFHsD-R0c0KzHwOK1wwUQneBE44,6872
|
20
|
+
pyerualjetwork/cuda/data_ops.py,sha256=BEXh4M7BWXaTpYlVS9D2i3CGgOmL5131vy7FZyuTQBA,18453
|
21
|
+
pyerualjetwork/cuda/loss_functions.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
|
22
|
+
pyerualjetwork/cuda/metrics.py,sha256=PjDBoRvr6va8vRvDIJJGBO4-I4uumrk3NCM1Vz4NJTo,5054
|
23
|
+
pyerualjetwork/cuda/visualizations.py,sha256=2mHE7iqqsN3K6xtCnemS4o_YWGS0bIV2IxF4cG6Ur9k,20090
|
24
|
+
pyerualjetwork-5.5.dist-info/METADATA,sha256=sBcHTBH3yYoIxZWJzL43Ew5jcoHLjJISYQmING91c5c,7987
|
25
|
+
pyerualjetwork-5.5.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
26
|
+
pyerualjetwork-5.5.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
27
|
+
pyerualjetwork-5.5.dist-info/RECORD,,
|