pyerualjetwork 5.1__py3-none-any.whl → 5.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +15 -14
- pyerualjetwork/cpu/__init__.py +24 -0
- pyerualjetwork/{activation_functions_cpu.py → cpu/activation_functions.py} +40 -4
- pyerualjetwork/{data_operations_cpu.py → cpu/data_ops.py} +17 -19
- pyerualjetwork/{metrics_cpu.py → cpu/metrics.py} +3 -1
- pyerualjetwork/{visualizations_cpu.py → cpu/visualizations.py} +96 -139
- pyerualjetwork/cuda/__init__.py +24 -0
- pyerualjetwork/{activation_functions_cuda.py → cuda/activation_functions.py} +54 -5
- pyerualjetwork/{data_operations_cuda.py → cuda/data_ops.py} +16 -16
- pyerualjetwork/{metrics_cuda.py → cuda/metrics.py} +1 -1
- pyerualjetwork/{visualizations_cuda.py → cuda/visualizations.py} +8 -244
- pyerualjetwork/{ene_cpu.py → ene.py} +29 -95
- pyerualjetwork/fitness_functions.py +0 -1
- pyerualjetwork/help.py +5 -5
- pyerualjetwork/issue_solver.py +39 -11
- pyerualjetwork/{memory_operations.py → memory_ops.py} +1 -1
- pyerualjetwork/model_ops.py +734 -0
- pyerualjetwork/{neu_cpu.py → nn.py} +199 -91
- pyerualjetwork/{model_operations_cpu.py → old_cpu_model_ops.py} +62 -59
- pyerualjetwork/{model_operations_cuda.py → old_cuda_model_ops.py} +99 -86
- {pyerualjetwork-5.1.dist-info → pyerualjetwork-5.5.dist-info}/METADATA +16 -18
- pyerualjetwork-5.5.dist-info/RECORD +27 -0
- pyerualjetwork/ene_cuda.py +0 -962
- pyerualjetwork/neu_cuda.py +0 -588
- pyerualjetwork-5.1.dist-info/RECORD +0 -26
- /pyerualjetwork/{loss_functions_cpu.py → cpu/loss_functions.py} +0 -0
- /pyerualjetwork/{loss_functions_cuda.py → cuda/loss_functions.py} +0 -0
- {pyerualjetwork-5.1.dist-info → pyerualjetwork-5.5.dist-info}/WHEEL +0 -0
- {pyerualjetwork-5.1.dist-info → pyerualjetwork-5.5.dist-info}/top_level.txt +0 -0
pyerualjetwork/neu_cuda.py
DELETED
@@ -1,588 +0,0 @@
|
|
1
|
-
# -*- coding: utf-8 -*-
|
2
|
-
"""
|
3
|
-
|
4
|
-
|
5
|
-
NEU (Neural Networks) on CUDA
|
6
|
-
=============================
|
7
|
-
This module hosts functions for training and evaluating artificial neural networks on CUDA GPU for labeled classification tasks (for now).
|
8
|
-
|
9
|
-
Currently, 3 types of models can be trained:
|
10
|
-
|
11
|
-
PLAN (Potentiation Learning Artificial Neural Network)
|
12
|
-
* Training Time for Small Projects: fast
|
13
|
-
* Training Time for Big Projects: fast
|
14
|
-
* Explainability: high
|
15
|
-
* Learning Capacity: medium (compared to single perceptrons)
|
16
|
-
|
17
|
-
MLP (Multi-Layer Perceptron → Deep Learning) -- With non-bias
|
18
|
-
* Training Time for Small Projects: fast
|
19
|
-
* Training Time for Big Projects: slow
|
20
|
-
* Explainability: low
|
21
|
-
* Learning Capacity: high
|
22
|
-
|
23
|
-
PTNN (Potentiation Transfer Neural Network) -- With non-bias
|
24
|
-
* Training Time for Small Projects: fast
|
25
|
-
* Training Time for Big Projects: fast
|
26
|
-
* Explainability: low
|
27
|
-
* Learning Capacity: high
|
28
|
-
|
29
|
-
Read learn function docstring for know how to use of these model architectures.
|
30
|
-
|
31
|
-
|
32
|
-
For more information about PLAN: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PLAN/PLAN.pdf
|
33
|
-
|
34
|
-
Module functions:
|
35
|
-
-----------------
|
36
|
-
- plan_fit()
|
37
|
-
- learn()
|
38
|
-
- evaluate()
|
39
|
-
|
40
|
-
Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
|
41
|
-
|
42
|
-
PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
|
43
|
-
|
44
|
-
- Author: Hasan Can Beydili
|
45
|
-
- YouTube: https://www.youtube.com/@HasanCanBeydili
|
46
|
-
- Linkedin: https://www.linkedin.com/in/hasan-can-beydili-77a1b9270/
|
47
|
-
- Instagram: https://www.instagram.com/canbeydilj
|
48
|
-
- Contact: tchasancan@gmail.com
|
49
|
-
"""
|
50
|
-
|
51
|
-
import cupy as cp
|
52
|
-
import numpy as np
|
53
|
-
import copy
|
54
|
-
import random
|
55
|
-
|
56
|
-
### LIBRARY IMPORTS ###
|
57
|
-
from .ui import loading_bars, initialize_loading_bar
|
58
|
-
from .data_operations_cuda import normalization
|
59
|
-
from .activation_functions_cuda import apply_activation, all_activations
|
60
|
-
from .model_operations_cuda import get_acc, get_preds_softmax
|
61
|
-
from .memory_operations import transfer_to_gpu, transfer_to_cpu, optimize_labels
|
62
|
-
from .loss_functions_cuda import categorical_crossentropy, binary_crossentropy
|
63
|
-
from .fitness_functions import wals
|
64
|
-
from .visualizations_cuda import (
|
65
|
-
draw_neural_web,
|
66
|
-
display_visualizations_for_learner,
|
67
|
-
update_history_plots_for_learner,
|
68
|
-
initialize_visualization_for_learner,
|
69
|
-
update_neuron_history_for_learner
|
70
|
-
)
|
71
|
-
|
72
|
-
### GLOBAL VARIABLES ###
|
73
|
-
bar_format_normal = loading_bars()[0]
|
74
|
-
bar_format_learner = loading_bars()[1]
|
75
|
-
|
76
|
-
# BUILD -----
|
77
|
-
|
78
|
-
def plan_fit(
|
79
|
-
x_train,
|
80
|
-
y_train,
|
81
|
-
activations=['linear'],
|
82
|
-
W=None,
|
83
|
-
auto_normalization=False,
|
84
|
-
dtype=cp.float32
|
85
|
-
):
|
86
|
-
"""
|
87
|
-
Creates a PLAN model to fitting data.,
|
88
|
-
|
89
|
-
plan_fit Args:
|
90
|
-
:param (aray-like[cupy]) x_train: (aray-like[cupy]): List or cupy array of input data.
|
91
|
-
:param (aray-like[cupy]) y_train: List or cupy array of target labels. (one hot encoded)
|
92
|
-
:param (list) activations: For deeper PLAN networks, activation function parameters. For more information please run this code: neu_cuda.activations_list() default: [None] (optional)
|
93
|
-
W (cupy.ndarray, optional): If you want to re-continue or update model
|
94
|
-
auto_normalization (bool, optional): Normalization may solves overflow problem. Default: False
|
95
|
-
dtype (cupy.dtype, optional): Data type for the arrays. cp.float32 by default. Example: cp.float64 or cp.float16.
|
96
|
-
|
97
|
-
Returns:
|
98
|
-
cupyarray: (Weight matrix).
|
99
|
-
"""
|
100
|
-
# Pre-check
|
101
|
-
|
102
|
-
if len(x_train) != len(y_train): raise ValueError("x_train and y_train must have the same length.")
|
103
|
-
|
104
|
-
weight = cp.zeros((len(y_train[0]), len(x_train[0].ravel()))).astype(dtype, copy=False) if W is None else W
|
105
|
-
|
106
|
-
if auto_normalization is True: x_train = normalization(apply_activation(x_train, activations))
|
107
|
-
elif auto_normalization is False: x_train = apply_activation(x_train, activations)
|
108
|
-
else: raise ValueError('normalization parameter only be True or False')
|
109
|
-
|
110
|
-
weight += y_train.T @ x_train
|
111
|
-
|
112
|
-
return normalization(weight, dtype=dtype)
|
113
|
-
|
114
|
-
def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size=1,
|
115
|
-
weight_evolve=True, neural_web_history=False, show_current_activations=False, auto_normalization=False, target_acc=None,
|
116
|
-
neurons_history=False, early_stop=False, show_history=False, loss='categorical_crossentropy',
|
117
|
-
interval=33.33, target_loss=None, loss_impact=0.1, acc_impact=0.9,
|
118
|
-
start_this_act=None, start_this_W=None, neurons=[], activation_functions=[], dtype=cp.float32, memory='gpu'):
|
119
|
-
"""
|
120
|
-
Optimizes the activation functions for a neural network by leveraging train data to find
|
121
|
-
the most accurate combination of activation potentiation(or activation function) & weight values for the given labeled classificaiton dataset.
|
122
|
-
|
123
|
-
Why genetic optimization ENE(Eugenic NeuroEvolution) and not backpropagation?
|
124
|
-
Because PLAN is different from other neural network architectures. In PLAN, the learnable parameters are not the weights; instead, the learnable parameters are the activation functions.
|
125
|
-
Since activation functions are not differentiable, we cannot use gradient descent or backpropagation. However, I developed a more powerful genetic optimization algorithm: ENE.
|
126
|
-
|
127
|
-
* This function also able to train classic MLP model architectures.
|
128
|
-
* And my newest innovative architecture: PTNN (Potentiation Transfer Neural Network).
|
129
|
-
|
130
|
-
:Args:
|
131
|
-
:param x_train: (array-like): Training input data.
|
132
|
-
:param y_train: (array-like): Labels for training data.
|
133
|
-
:param optimizer: (function): Optimization technique with hyperparameters. (PLAN, MLP & PTNN (all) using ENE for optimization. Gradient based technique's will added in the future.) Please use this: from pyerualjetwork.ene_cuda import evolver (and) optimizer = lambda *args, **kwargs: evolver(*args, 'here give your hyperparameters for example: activation_add_prob=0.85', **kwargs) Example:
|
134
|
-
```python
|
135
|
-
|
136
|
-
optimizer = lambda *args, **kwargs: ene_cuda.evolver(*args,
|
137
|
-
activation_add_prob=0.05,
|
138
|
-
strategy='aggressive',
|
139
|
-
policy='more_selective',
|
140
|
-
**kwargs)
|
141
|
-
|
142
|
-
model = neu_cuda.learn(x_train,
|
143
|
-
y_train,
|
144
|
-
optimizer,
|
145
|
-
fit_start=True,
|
146
|
-
show_history=True,
|
147
|
-
gen=15,
|
148
|
-
batch_size=0.05,
|
149
|
-
interval=16.67)
|
150
|
-
```
|
151
|
-
:param fit_start: (bool, optional): If the fit_start parameter is set to True, the initial generation population undergoes a simple short training process using the PLAN algorithm. This allows for a very robust starting point, especially for large and complex datasets. However, for small or relatively simple datasets, it may result in unnecessary computational overhead. When fit_start is True, completing the first generation may take slightly longer (this increase in computational cost applies only to the first generation and does not affect subsequent generations). If fit_start is set to False, the initial population will be entirely random. Additonaly if you want to train PTNN model you must be give True. Options: True or False. Default: True
|
152
|
-
:param gen: (int or list): The generation count for genetic optimization. If you want to train PTNN model you must give a list of two number. First number for PLAN model training second number for MLP.
|
153
|
-
:param batch_size: (float, optional): Batch size is used in the prediction process to receive train feedback by dividing the train data into chunks and selecting activations based on randomly chosen partitions. This process reduces computational cost and time while still covering the entire train set due to random selection, so it doesn't significantly impact accuracy. For example, a batch size of 0.08 means each train batch represents %8 of the train set. Default is 1. (%100 of train)
|
154
|
-
:param pop_size: (int): Population size of each generation.
|
155
|
-
:param weight_evolve: (bool, optional): Activation combinations already optimizes by PLANEAT genetic search algorithm. Should the weight parameters also evolve or should the weights be determined according to the aggregating learning principle of the PLAN algorithm? Default: True (Evolves Weights)
|
156
|
-
:param neural_web_history: (bool, optional): Draws history of neural web. Default is False. [ONLY FOR PLAN MODELS]
|
157
|
-
:param show_current_activations: (bool, optional): Should it display the activations selected according to the current strategies during learning, or not? (True or False) This can be very useful if you want to cancel the learning process and resume from where you left off later. After canceling, you will need to view the live training activations in order to choose the activations to be given to the 'start_this' parameter. Default is False
|
158
|
-
:param auto_normalization: (bool, optional): Normalization may solves overflow problem. Default: False
|
159
|
-
:param target_acc: (float, optional): The target accuracy to stop training early when achieved. Default is None.
|
160
|
-
:param neurons_history: (bool, optional): Shows the history of changes that neurons undergo during the ENE process. True or False. Default is False. [ONLY FOR PLAN MODELS]
|
161
|
-
:param early_stop: (bool, optional): If True, implements early stopping during training.(If train accuracy not improves in two gen stops learning.) Default is False.
|
162
|
-
:param show_history: (bool, optional): If True, displays the training history after optimization. Default is False.
|
163
|
-
:param loss: (str, optional): For visualizing and monitoring. PLAN neural networks doesn't need any loss function in training. options: ('categorical_crossentropy' or 'binary_crossentropy') Default is 'categorical_crossentropy'.
|
164
|
-
:param interval: (int, optional): The interval at which evaluations are conducted during training. (33.33 = 30 FPS, 16.67 = 60 FPS) Default is 33.33.
|
165
|
-
:param target_loss: (float, optional): The target loss to stop training early when achieved. Default is None.
|
166
|
-
:param loss_impact: (float, optional): Impact of loss for optimization [0-1]. Default: 0.1
|
167
|
-
:param acc_impact: (float, optional): Impact of accuracy for optimization [0-1]. Default: 0.9
|
168
|
-
:param start_this_act: (list, optional): To resume a previously canceled or interrupted training from where it left off, or to continue from that point with a different strategy, provide the list of activation functions selected up to the learned portion to this parameter. Default is None
|
169
|
-
:param start_this_W: (cupy.array, optional): To resume a previously canceled or interrupted training from where it left off, or to continue from that point with a different strategy, provide the weight matrix of this genome. Default is None
|
170
|
-
:param neurons: (list[int], optional): If you dont want train PLAN model this parameter represents neuron count of each hidden layer for MLP or PTNN. Number of elements --> Layer count. Default: [] (No hidden layer) --> architecture setted to PLAN, if not --> architecture setted to MLP.
|
171
|
-
:param activation_functions: (list[str], optional): If you dont want train PLAN model this parameter represents activation function of each hidden layer for MLP or PTNN. if neurons is not [] --> uses default: ['linear'] * len(neurons). if neurons is [] --> uses [].
|
172
|
-
:param dtype: (cupy.dtype): Data type for the Weight matrices. np.float32 by default. Example: cp.float64 or cp.float16.
|
173
|
-
:param memory: (str): The memory parameter determines whether the dataset to be processed on the GPU will be stored in the CPU's RAM or the GPU's RAM. Options: 'gpu', 'cpu'. Default: 'gpu'.
|
174
|
-
|
175
|
-
Returns:
|
176
|
-
tuple: A list for model parameters: [Weight matrix, Train Preds, Train Accuracy, [Activations functions]]. You can acces this parameters in model_operations module. For example: model_operations.get_weights() for Weight matrix.
|
177
|
-
"""
|
178
|
-
|
179
|
-
from .ene_cuda import define_genomes
|
180
|
-
|
181
|
-
data = 'Train'
|
182
|
-
|
183
|
-
except_this = ['spiral', 'circular']
|
184
|
-
activations = [item for item in all_activations() if item not in except_this]
|
185
|
-
activations_len = len(activations)
|
186
|
-
|
187
|
-
if pop_size > activations_len and fit_start is True:
|
188
|
-
for _ in range(pop_size - len(activations)):
|
189
|
-
random_index_all_act = random.randint(0, len(activations)-1)
|
190
|
-
activations.append(activations[random_index_all_act])
|
191
|
-
|
192
|
-
y_train = optimize_labels(y_train, cuda=True)
|
193
|
-
|
194
|
-
if pop_size < activations_len: raise ValueError(f"pop_size must be higher or equal to {activations_len}")
|
195
|
-
|
196
|
-
if memory == 'gpu':
|
197
|
-
x_train = transfer_to_gpu(x_train, dtype=x_train.dtype)
|
198
|
-
y_train = transfer_to_gpu(y_train, dtype=y_train.dtype)
|
199
|
-
|
200
|
-
from .data_operations_cuda import batcher
|
201
|
-
|
202
|
-
elif memory == 'cpu':
|
203
|
-
x_train = transfer_to_cpu(x_train, dtype=x_train.dtype)
|
204
|
-
y_train = transfer_to_cpu(y_train, dtype=y_train.dtype)
|
205
|
-
|
206
|
-
from .data_operations_cpu import batcher
|
207
|
-
|
208
|
-
else:
|
209
|
-
raise ValueError("memory parameter must be 'cpu' or 'gpu'.")
|
210
|
-
|
211
|
-
if target_acc is not None and (target_acc < 0 or target_acc > 1): raise ValueError('target_acc must be in range 0 and 1')
|
212
|
-
if fit_start is not True and fit_start is not False: raise ValueError('fit_start parameter only be True or False. Please read doc-string')
|
213
|
-
|
214
|
-
if neurons != []:
|
215
|
-
weight_evolve = True
|
216
|
-
|
217
|
-
if activation_functions == []: activation_functions = ['linear'] * len(neurons)
|
218
|
-
|
219
|
-
if fit_start is False:
|
220
|
-
# MLP
|
221
|
-
activations = activation_functions
|
222
|
-
model_type = 'MLP'
|
223
|
-
activation_potentiations = [0] * pop_size
|
224
|
-
activation_potentiation = None
|
225
|
-
is_mlp = True
|
226
|
-
transfer_learning = False
|
227
|
-
else:
|
228
|
-
# PTNN
|
229
|
-
model_type = 'PLAN' # First generation index gen[0] is PLAN, other index gen[1] it will change to PTNN (PLAN Connects to MLP and will transfer the learned information)
|
230
|
-
transfer_learning = True
|
231
|
-
|
232
|
-
neurons_copy = neurons.copy()
|
233
|
-
neurons = []
|
234
|
-
gen_copy = gen.copy()
|
235
|
-
gen = gen[0] + gen[1]
|
236
|
-
activation_potentiations = [0] * pop_size
|
237
|
-
activation_potentiation = None
|
238
|
-
is_mlp = False # it will change
|
239
|
-
|
240
|
-
else:
|
241
|
-
# PLAN
|
242
|
-
model_type = 'PLAN'
|
243
|
-
transfer_learning = False
|
244
|
-
|
245
|
-
activation_potentiations = [0] * pop_size # NOTE: For PLAN models, activation_potentiations is needed BUT activations variable already mirros activation_potentiation values.
|
246
|
-
# So, we don't need to use activation_potentiations variable. activation_potentiations variable is only for PTNN models.
|
247
|
-
activation_potentiation = None
|
248
|
-
is_mlp = False
|
249
|
-
|
250
|
-
# Initialize visualization components
|
251
|
-
viz_objects = initialize_visualization_for_learner(show_history, neurons_history, neural_web_history, x_train, y_train)
|
252
|
-
|
253
|
-
# Initialize variables
|
254
|
-
best_acc = 0
|
255
|
-
best_loss = float('inf')
|
256
|
-
best_fitness = float('-inf')
|
257
|
-
best_acc_per_gen_list = []
|
258
|
-
postfix_dict = {}
|
259
|
-
loss_list = []
|
260
|
-
target_pop = []
|
261
|
-
|
262
|
-
progress = initialize_loading_bar(total=activations_len, desc="", ncols=79, bar_format=bar_format_learner)
|
263
|
-
|
264
|
-
if fit_start is False:
|
265
|
-
weight_pop, act_pop = define_genomes(input_shape=len(x_train[0]), output_shape=len(y_train[0]), neurons=neurons, activation_functions=activations, population_size=pop_size, dtype=dtype)
|
266
|
-
|
267
|
-
else:
|
268
|
-
weight_pop = [0] * len(activations)
|
269
|
-
act_pop = [0] * len(activations)
|
270
|
-
|
271
|
-
if start_this_act is not None and start_this_W is not None:
|
272
|
-
weight_pop[0] = start_this_W
|
273
|
-
act_pop[0] = start_this_act
|
274
|
-
|
275
|
-
# LEARNING STARTED
|
276
|
-
for i in range(gen):
|
277
|
-
|
278
|
-
# TRANSFORMATION PLAN TO MLP FOR PTNN (in later generations)
|
279
|
-
if model_type == 'PLAN' and transfer_learning:
|
280
|
-
if i == gen_copy[0]:
|
281
|
-
|
282
|
-
model_type = 'PTNN'
|
283
|
-
neurons = neurons_copy
|
284
|
-
|
285
|
-
for individual in range(len(weight_pop)):
|
286
|
-
weight_pop[individual] = cp.copy(best_weight)
|
287
|
-
activation_potentiations[individual] = final_activations.copy() if isinstance(final_activations, list) else final_activations
|
288
|
-
|
289
|
-
activation_potentiation = activation_potentiations[0]
|
290
|
-
|
291
|
-
neurons_copy = [len(y_train[0])] + neurons_copy
|
292
|
-
activation_functions = ['linear'] + activation_functions
|
293
|
-
|
294
|
-
weight_pop, act_pop = define_genomes(input_shape=len(x_train[0]), output_shape=len(y_train[0]), neurons=neurons_copy, activation_functions=activation_functions, population_size=pop_size, dtype=dtype)
|
295
|
-
|
296
|
-
# 0 indexed individual will keep PLAN's learned informations and in later generations it will share other individuals.
|
297
|
-
for l in range(1, len(weight_pop[0])):
|
298
|
-
original_shape = weight_pop[0][l].shape
|
299
|
-
|
300
|
-
identity_matrix = cp.eye(original_shape[0], original_shape[1], dtype=weight_pop[0][l].dtype)
|
301
|
-
weight_pop[0][l] = identity_matrix
|
302
|
-
|
303
|
-
for l in range(len(weight_pop)):
|
304
|
-
weight_pop[l][0] = cp.copy(best_weight)
|
305
|
-
|
306
|
-
best_weight = list(weight_pop[0])
|
307
|
-
final_activations = act_pop[0]
|
308
|
-
is_mlp = True
|
309
|
-
fit_start = False
|
310
|
-
|
311
|
-
|
312
|
-
postfix_dict["Gen"] = str(i+1) + '/' + str(gen)
|
313
|
-
progress.set_postfix(postfix_dict)
|
314
|
-
|
315
|
-
progress.n = 0
|
316
|
-
progress.last_print_n = 0
|
317
|
-
progress.update(0)
|
318
|
-
|
319
|
-
for j in range(pop_size):
|
320
|
-
|
321
|
-
x_train_batch, y_train_batch = batcher(x_train, y_train, batch_size=batch_size)
|
322
|
-
|
323
|
-
x_train_batch = cp.array(x_train_batch, dtype=x_train_batch.dtype, copy=False)
|
324
|
-
y_train_batch = cp.array(y_train_batch, dtype=y_train.dtype)
|
325
|
-
|
326
|
-
if fit_start is True and i == 0:
|
327
|
-
if start_this_act is not None and j == 0:
|
328
|
-
pass
|
329
|
-
else:
|
330
|
-
|
331
|
-
act_pop[j] = activations[j]
|
332
|
-
W = plan_fit(x_train_batch, y_train_batch, activations=act_pop[j], auto_normalization=auto_normalization, dtype=dtype)
|
333
|
-
weight_pop[j] = W
|
334
|
-
|
335
|
-
if weight_evolve is False:
|
336
|
-
weight_pop[j] = plan_fit(x_train_batch, y_train_batch, activations=act_pop[j], auto_normalization=auto_normalization, dtype=dtype)
|
337
|
-
|
338
|
-
model = evaluate(x_train_batch, y_train_batch, W=weight_pop[j], activations=act_pop[j], activation_potentiations=activation_potentiations[j], auto_normalization=auto_normalization, model_type=model_type)
|
339
|
-
acc = model[get_acc()]
|
340
|
-
|
341
|
-
if loss == 'categorical_crossentropy':
|
342
|
-
train_loss = categorical_crossentropy(y_true_batch=y_train_batch,
|
343
|
-
y_pred_batch=model[get_preds_softmax()])
|
344
|
-
else:
|
345
|
-
train_loss = binary_crossentropy(y_true_batch=y_train_batch,
|
346
|
-
y_pred_batch=model[get_preds_softmax()])
|
347
|
-
|
348
|
-
|
349
|
-
fitness = wals(acc, train_loss, acc_impact, loss_impact)
|
350
|
-
target_pop.append(fitness.get())
|
351
|
-
|
352
|
-
if fitness >= best_fitness:
|
353
|
-
|
354
|
-
best_fitness = fitness
|
355
|
-
best_acc = acc
|
356
|
-
best_loss = train_loss
|
357
|
-
best_weight = cp.copy(weight_pop[j]) if model_type == 'PLAN' else copy.deepcopy(weight_pop[j])
|
358
|
-
best_model = model
|
359
|
-
|
360
|
-
final_activations = act_pop[j].copy() if isinstance(act_pop[j], list) else act_pop[j]
|
361
|
-
if model_type == 'PLAN': final_activations = [final_activations[0]] if len(set(final_activations)) == 1 else final_activations # removing if all same
|
362
|
-
|
363
|
-
if batch_size == 1:
|
364
|
-
postfix_dict[f"{data} Accuracy"] = cp.round(best_acc, 4)
|
365
|
-
postfix_dict[f"{data} Loss"] = cp.round(train_loss, 4)
|
366
|
-
progress.set_postfix(postfix_dict)
|
367
|
-
|
368
|
-
if show_current_activations:
|
369
|
-
print(f", Current Activations={final_activations}", end='')
|
370
|
-
|
371
|
-
# Update visualizations during training
|
372
|
-
if show_history:
|
373
|
-
gen_list = range(1, len(best_acc_per_gen_list) + 2)
|
374
|
-
update_history_plots_for_learner(viz_objects, gen_list, loss_list + [train_loss],
|
375
|
-
best_acc_per_gen_list + [best_acc], x_train, final_activations)
|
376
|
-
|
377
|
-
if neurons_history:
|
378
|
-
viz_objects['neurons']['artists'] = (
|
379
|
-
update_neuron_history_for_learner(cp.copy(best_weight), viz_objects['neurons']['ax'],
|
380
|
-
viz_objects['neurons']['row'], viz_objects['neurons']['col'],
|
381
|
-
y_train[0], viz_objects['neurons']['artists'],
|
382
|
-
data=data, fig1=viz_objects['neurons']['fig'],
|
383
|
-
acc=best_acc, loss=train_loss)
|
384
|
-
)
|
385
|
-
|
386
|
-
if neural_web_history:
|
387
|
-
art5_1, art5_2, art5_3 = draw_neural_web(W=best_weight, ax=viz_objects['web']['ax'],
|
388
|
-
G=viz_objects['web']['G'], return_objs=True)
|
389
|
-
art5_list = [art5_1] + [art5_2] + list(art5_3.values())
|
390
|
-
viz_objects['web']['artists'].append(art5_list)
|
391
|
-
|
392
|
-
# Check target accuracy
|
393
|
-
if target_acc is not None and best_acc >= target_acc:
|
394
|
-
progress.close()
|
395
|
-
train_model = evaluate(x_train, y_train, W=best_weight,
|
396
|
-
activations=final_activations, activation_potentiations=activation_potentiation, auto_normalization=auto_normalization, model_type=model_type)
|
397
|
-
if loss == 'categorical_crossentropy':
|
398
|
-
train_loss = categorical_crossentropy(y_true_batch=y_train,
|
399
|
-
y_pred_batch=train_model[get_preds_softmax()])
|
400
|
-
else:
|
401
|
-
train_loss = binary_crossentropy(y_true_batch=y_train,
|
402
|
-
y_pred_batch=train_model[get_preds_softmax()])
|
403
|
-
print('\nActivations: ', final_activations)
|
404
|
-
print('Activation Potentiation: ', activation_potentiation)
|
405
|
-
print('Train Accuracy:', train_model[get_acc()])
|
406
|
-
print('Train Loss: ', train_loss, '\n')
|
407
|
-
print('Model Type:', model_type)
|
408
|
-
|
409
|
-
display_visualizations_for_learner(viz_objects, best_weight, data, best_acc,
|
410
|
-
best_loss, y_train, interval)
|
411
|
-
return best_weight, best_model[get_preds_softmax()], best_acc, final_activations, None, None, None, None, None, None, None, activation_potentiation
|
412
|
-
|
413
|
-
# Check target loss
|
414
|
-
if target_loss is not None and best_loss <= target_loss:
|
415
|
-
progress.close()
|
416
|
-
train_model = evaluate(x_train, y_train, W=best_weight,
|
417
|
-
activations=final_activations, activation_potentiations=activation_potentiation, auto_normalization=auto_normalization, model_type=model_type)
|
418
|
-
|
419
|
-
if loss == 'categorical_crossentropy':
|
420
|
-
train_loss = categorical_crossentropy(y_true_batch=y_train,
|
421
|
-
y_pred_batch=train_model[get_preds_softmax()])
|
422
|
-
else:
|
423
|
-
train_loss = binary_crossentropy(y_true_batch=y_train,
|
424
|
-
y_pred_batch=train_model[get_preds_softmax()])
|
425
|
-
|
426
|
-
print('\nActivations: ', final_activations)
|
427
|
-
print('Activation Potentiation: ', activation_potentiation)
|
428
|
-
print('Train Accuracy:', train_model[get_acc()])
|
429
|
-
print('Train Loss: ', train_loss, '\n')
|
430
|
-
print('Model Type:', model_type)
|
431
|
-
|
432
|
-
# Display final visualizations
|
433
|
-
display_visualizations_for_learner(viz_objects, best_weight, data, best_acc,
|
434
|
-
train_loss, y_train, interval)
|
435
|
-
return best_weight, best_model[get_preds_softmax()], best_acc, final_activations, None, None, None, None, None, None, None, activation_potentiation, None, None, None, None, None, None, None, activation_potentiation
|
436
|
-
|
437
|
-
|
438
|
-
progress.update(1)
|
439
|
-
|
440
|
-
if batch_size != 1:
|
441
|
-
train_model = evaluate(x_train, y_train, W=best_weight,
|
442
|
-
activations=final_activations, activation_potentiations=activation_potentiation, auto_normalization=auto_normalization, model_type=model_type)
|
443
|
-
|
444
|
-
if loss == 'categorical_crossentropy':
|
445
|
-
train_loss = categorical_crossentropy(y_true_batch=y_train,
|
446
|
-
y_pred_batch=train_model[get_preds_softmax()])
|
447
|
-
else:
|
448
|
-
train_loss = binary_crossentropy(y_true_batch=y_train,
|
449
|
-
y_pred_batch=train_model[get_preds_softmax()])
|
450
|
-
|
451
|
-
postfix_dict[f"{data} Accuracy"] = cp.round(train_model[get_acc()], 4)
|
452
|
-
postfix_dict[f"{data} Loss"] = cp.round(train_loss, 4)
|
453
|
-
progress.set_postfix(postfix_dict)
|
454
|
-
|
455
|
-
best_acc_per_gen_list.append(train_model[get_acc()])
|
456
|
-
loss_list.append(train_loss)
|
457
|
-
|
458
|
-
else:
|
459
|
-
best_acc_per_gen_list.append(best_acc)
|
460
|
-
loss_list.append(best_loss)
|
461
|
-
|
462
|
-
if model_type == 'PLAN': weight_pop = cp.array(weight_pop, copy=False, dtype=dtype)
|
463
|
-
|
464
|
-
weight_pop, act_pop = optimizer(weight_pop, act_pop, i, np.array(target_pop), weight_evolve=weight_evolve, is_mlp=is_mlp, bar_status=False)
|
465
|
-
target_pop = []
|
466
|
-
|
467
|
-
# Early stopping check
|
468
|
-
if early_stop == True and i > 0:
|
469
|
-
if best_acc_per_gen_list[i] == best_acc_per_gen_list[i-1]:
|
470
|
-
progress.close()
|
471
|
-
train_model = evaluate(x_train, y_train, W=best_weight,
|
472
|
-
activations=final_activations, activation_potentiations=activation_potentiation, auto_normalization=auto_normalization, model_type=model_type)
|
473
|
-
|
474
|
-
if loss == 'categorical_crossentropy':
|
475
|
-
train_loss = categorical_crossentropy(y_true_batch=y_train,
|
476
|
-
y_pred_batch=train_model[get_preds_softmax()])
|
477
|
-
else:
|
478
|
-
train_loss = binary_crossentropy(y_true_batch=y_train,
|
479
|
-
y_pred_batch=train_model[get_preds_softmax()])
|
480
|
-
|
481
|
-
print('\nActivations: ', final_activations)
|
482
|
-
print('Activation Potentiation: ', activation_potentiation)
|
483
|
-
print('Train Accuracy:', train_model[get_acc()])
|
484
|
-
print('Train Loss: ', train_loss, '\n')
|
485
|
-
print('Model Type:', model_type)
|
486
|
-
|
487
|
-
# Display final visualizations
|
488
|
-
display_visualizations_for_learner(viz_objects, best_weight, data, best_acc,
|
489
|
-
train_loss, y_train, interval)
|
490
|
-
return best_weight, best_model[get_preds_softmax()], best_acc, final_activations, None, None, None, None, None, None, None, activation_potentiation
|
491
|
-
|
492
|
-
# Final evaluation
|
493
|
-
progress.close()
|
494
|
-
train_model = evaluate(x_train, y_train, W=best_weight,
|
495
|
-
activations=final_activations, activation_potentiations=activation_potentiation, auto_normalization=auto_normalization, model_type=model_type)
|
496
|
-
|
497
|
-
if loss == 'categorical_crossentropy':
|
498
|
-
train_loss = categorical_crossentropy(y_true_batch=y_train,
|
499
|
-
y_pred_batch=train_model[get_preds_softmax()])
|
500
|
-
else:
|
501
|
-
train_loss = binary_crossentropy(y_true_batch=y_train,
|
502
|
-
y_pred_batch=train_model[get_preds_softmax()])
|
503
|
-
|
504
|
-
print('\nActivations: ', final_activations)
|
505
|
-
print('Activation Potentiation: ', activation_potentiation)
|
506
|
-
print('Train Accuracy:', train_model[get_acc()])
|
507
|
-
print('Train Loss: ', train_loss, '\n')
|
508
|
-
print('Model Type:', model_type)
|
509
|
-
|
510
|
-
# Display final visualizations
|
511
|
-
display_visualizations_for_learner(viz_objects, best_weight, data, best_acc, train_loss, y_train, interval)
|
512
|
-
return best_weight, best_model[get_preds_softmax()], best_acc, final_activations, None, None, None, None, None, None, None, activation_potentiation
|
513
|
-
|
514
|
-
def evaluate(
|
515
|
-
x_test,
|
516
|
-
y_test,
|
517
|
-
model_type,
|
518
|
-
W,
|
519
|
-
activations=['linear'],
|
520
|
-
activation_potentiations=[],
|
521
|
-
auto_normalization=False
|
522
|
-
) -> tuple:
|
523
|
-
"""
|
524
|
-
Evaluates the neural network model using the given test data.
|
525
|
-
|
526
|
-
Args:
|
527
|
-
x_test (cp.ndarray): Test data.
|
528
|
-
|
529
|
-
y_test (cp.ndarray): Test labels (one-hot encoded).
|
530
|
-
|
531
|
-
model_type: (str): Type of the model. Options: 'PLAN', 'MLP', 'PTNN'.
|
532
|
-
|
533
|
-
W (cp.ndarray): Neural net weight matrix.
|
534
|
-
|
535
|
-
activations (list, optional): Activation list for PLAN or MLP models (MLP layers activations if it PTNN model). Default = ['linear'].
|
536
|
-
|
537
|
-
activation_potentiations (list, optional): Extra activation potentiation list (PLAN layers activations) for PTNN models. Default = [].
|
538
|
-
|
539
|
-
auto_normalization (bool, optional): Normalization for x_test ? Default = False.
|
540
|
-
|
541
|
-
Returns:
|
542
|
-
tuple: Model (list).
|
543
|
-
"""
|
544
|
-
|
545
|
-
if auto_normalization: x_test = normalization(x_test, dtype=x_test.dtype)
|
546
|
-
|
547
|
-
if isinstance(activations, str):
|
548
|
-
activations = [activations]
|
549
|
-
elif isinstance(activations, list):
|
550
|
-
activations = [item if isinstance(item, list) or isinstance(item, str) else [item] for item in activations]
|
551
|
-
|
552
|
-
if model_type == 'MLP':
|
553
|
-
layer = x_test
|
554
|
-
for i in range(len(W)):
|
555
|
-
if i != len(W) - 1 and i != 0: layer = apply_activation(layer, activations[i])
|
556
|
-
|
557
|
-
layer = layer @ W[i].T
|
558
|
-
|
559
|
-
result = layer
|
560
|
-
|
561
|
-
if model_type == 'PLAN':
|
562
|
-
|
563
|
-
x_test = apply_activation(x_test, activations)
|
564
|
-
result = x_test @ W.T
|
565
|
-
|
566
|
-
if model_type == 'PTNN':
|
567
|
-
|
568
|
-
if isinstance(activation_potentiations, str):
|
569
|
-
activation_potentiations = [activation_potentiations]
|
570
|
-
elif isinstance(activation_potentiations, list):
|
571
|
-
activation_potentiations = [item if isinstance(item, list) or isinstance(item, str) else [item] for item in activation_potentiations]
|
572
|
-
|
573
|
-
x_test = apply_activation(x_test, activation_potentiations)
|
574
|
-
layer = x_test @ W[0].T
|
575
|
-
|
576
|
-
for i in range(1, len(W)):
|
577
|
-
if i != len(W) - 1: layer = apply_activation(layer, activations[i])
|
578
|
-
|
579
|
-
layer = layer @ W[i].T
|
580
|
-
|
581
|
-
result = layer
|
582
|
-
|
583
|
-
max_vals = cp.max(result, axis=1, keepdims=True)
|
584
|
-
|
585
|
-
softmax_preds = cp.exp(result - max_vals) / cp.sum(cp.exp(result - max_vals), axis=1, keepdims=True)
|
586
|
-
accuracy = (cp.argmax(softmax_preds, axis=1) == cp.argmax(y_test, axis=1)).mean()
|
587
|
-
|
588
|
-
return W, result, accuracy, None, None, softmax_preds
|
@@ -1,26 +0,0 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=IwEIh3pG8VOF-x3j5zczYZoFU0sAPskLx74yLtbhuik,2732
|
2
|
-
pyerualjetwork/activation_functions_cpu.py,sha256=qP_Ipi2-c5tyJ7Jb9gWJZCj2AgeOIzLBdoEqQOUXD-s,5885
|
3
|
-
pyerualjetwork/activation_functions_cuda.py,sha256=IJAqlbVdE01MrtOCX8TvxkGmqqhEcr1p9qozy0Sjpjw,5673
|
4
|
-
pyerualjetwork/data_operations_cpu.py,sha256=HemqiYfSdlQKTTYNzpCh_9lTtS3AimMI4DvqJBAGjGw,16186
|
5
|
-
pyerualjetwork/data_operations_cuda.py,sha256=5zgyJGPjQuHyx6IHNkRwMguYhm-GcI6Hal49WNvw-bM,18536
|
6
|
-
pyerualjetwork/ene_cpu.py,sha256=2y5__d-vx7t5Ajs4IPuNnQe8ULR39Km_KQFNIUnalGA,45167
|
7
|
-
pyerualjetwork/ene_cuda.py,sha256=dWavZydKL9b5BAGL430SuWs1TenMelbFtltoEAXKkJY,45673
|
8
|
-
pyerualjetwork/fitness_functions.py,sha256=pUmAbUy5ex1Vpu6n_RRac_df-FR52gYIV8uxYS5H3tw,1252
|
9
|
-
pyerualjetwork/help.py,sha256=FcX8mxo1_mvoqONVXY0Kn7S09CDkhi0jwNmn8g9mYZc,804
|
10
|
-
pyerualjetwork/issue_solver.py,sha256=iY6hSsBxYI5l82RwnXQp2DrRUJyksk_7U9GUSnt2YfU,3117
|
11
|
-
pyerualjetwork/loss_functions_cpu.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
|
12
|
-
pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
|
13
|
-
pyerualjetwork/memory_operations.py,sha256=g24d-cDuUFc0fOEtk3AJe-z_EBctYV5S4cY1rQ6VGiE,14279
|
14
|
-
pyerualjetwork/metrics_cpu.py,sha256=vbfMwS0ay2heMSa0GNo-ydLjQ8cfexbLwaREp4FKAtY,6081
|
15
|
-
pyerualjetwork/metrics_cuda.py,sha256=PWyJyexeqlPKb09LAcF55JvhZVeXLCu3P_siYq5m2gg,5065
|
16
|
-
pyerualjetwork/model_operations_cpu.py,sha256=Y0uPkLVbdodP7lC-fOPdja3RWi2J9z2rwWIS2pxzotU,20523
|
17
|
-
pyerualjetwork/model_operations_cuda.py,sha256=9KfaO3NwvA-bwZqshYQwfc5e-4AYPp53EwFHMvDHS3I,21537
|
18
|
-
pyerualjetwork/neu_cpu.py,sha256=C9nNzMaan8-QyUK6gXTM_PQiSb4cBEpbM-WMLGbuDDY,31202
|
19
|
-
pyerualjetwork/neu_cuda.py,sha256=nK74JgfyJDbaPmSR1CmtZc_PaSKk0FeFmNcWHe5-8U0,32354
|
20
|
-
pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
|
21
|
-
pyerualjetwork/visualizations_cpu.py,sha256=StyD1Hl1Gt55EMqR6tO3yVJZdPyGkOgCnQ75Zn8K6J8,28252
|
22
|
-
pyerualjetwork/visualizations_cuda.py,sha256=7lYrkOdrjwQGB3T4k_vI8UDxsm_TRjzaSSg9GhlNczs,28667
|
23
|
-
pyerualjetwork-5.1.dist-info/METADATA,sha256=aYILBPyOZMu50jTsmu22UVYh6DMToxX_XdhPF720RQw,8132
|
24
|
-
pyerualjetwork-5.1.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
25
|
-
pyerualjetwork-5.1.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
26
|
-
pyerualjetwork-5.1.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|