pyerualjetwork 4.6.1b0__py3-none-any.whl → 4.6.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/data_operations.py +2 -2
- pyerualjetwork/data_operations_cuda.py +2 -2
- pyerualjetwork/model_operations.py +2 -2
- pyerualjetwork/model_operations_cuda.py +2 -2
- pyerualjetwork/planeat.py +3 -3
- pyerualjetwork/planeat_cuda.py +3 -3
- {pyerualjetwork-4.6.1b0.dist-info → pyerualjetwork-4.6.3.dist-info}/METADATA +1 -1
- {pyerualjetwork-4.6.1b0.dist-info → pyerualjetwork-4.6.3.dist-info}/RECORD +11 -11
- {pyerualjetwork-4.6.1b0.dist-info → pyerualjetwork-4.6.3.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.6.1b0.dist-info → pyerualjetwork-4.6.3.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
__version__ = "4.6.
|
1
|
+
__version__ = "4.6.3"
|
2
2
|
__update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
|
3
3
|
* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
|
4
4
|
* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
|
@@ -430,7 +430,7 @@ def batcher(x_test, y_test, batch_size=1):
|
|
430
430
|
|
431
431
|
return np.concatenate(sampled_x), np.concatenate(sampled_y)
|
432
432
|
|
433
|
-
def split_nested_arrays(data):
|
433
|
+
def split_nested_arrays(data, dtype):
|
434
434
|
|
435
435
|
n_samples = len(data)
|
436
436
|
if n_samples == 0:
|
@@ -441,7 +441,7 @@ def split_nested_arrays(data):
|
|
441
441
|
result = []
|
442
442
|
|
443
443
|
for i in range(n_components):
|
444
|
-
component_array = np.array([item[i] for item in data])
|
444
|
+
component_array = np.array([item[i] for item in data], dtype=dtype)
|
445
445
|
result.append(component_array)
|
446
446
|
|
447
447
|
return result
|
@@ -479,7 +479,7 @@ def batcher(x_test, y_test, batch_size=1):
|
|
479
479
|
return sampled_x, sampled_y
|
480
480
|
|
481
481
|
|
482
|
-
def split_nested_arrays(data):
|
482
|
+
def split_nested_arrays(data, dtype):
|
483
483
|
|
484
484
|
n_samples = len(data)
|
485
485
|
if n_samples == 0:
|
@@ -490,7 +490,7 @@ def split_nested_arrays(data):
|
|
490
490
|
result = []
|
491
491
|
|
492
492
|
for i in range(n_components):
|
493
|
-
component_array = cp.array([item[i] for item in data])
|
493
|
+
component_array = cp.array([item[i] for item in data], dtype=dtype)
|
494
494
|
result.append(component_array)
|
495
495
|
|
496
496
|
return result
|
@@ -326,7 +326,7 @@ def predict_model_ssd(Input, model_name, model_path='', dtype=np.float32):
|
|
326
326
|
|
327
327
|
layer = Input
|
328
328
|
for i in range(len(W)):
|
329
|
-
if i != len(W) - 1: layer = apply_activation(layer, activation_potentiation[i])
|
329
|
+
if i != len(W) - 1 and i != 0: layer = apply_activation(layer, activation_potentiation[i])
|
330
330
|
layer = layer @ W[i].T
|
331
331
|
|
332
332
|
return layer
|
@@ -405,7 +405,7 @@ def predict_model_ram(Input, W, scaler_params=None, activation_potentiation=['li
|
|
405
405
|
|
406
406
|
layer = Input
|
407
407
|
for i in range(len(W)):
|
408
|
-
if i != len(W) - 1: layer = apply_activation(layer, activation_potentiation[i])
|
408
|
+
if i != len(W) - 1 and i != 0: layer = apply_activation(layer, activation_potentiation[i])
|
409
409
|
layer = layer @ W[i].T
|
410
410
|
|
411
411
|
return layer
|
@@ -336,7 +336,7 @@ def predict_model_ssd(Input, model_name, model_path='', dtype=cp.float32):
|
|
336
336
|
|
337
337
|
layer = Input
|
338
338
|
for i in range(len(W)):
|
339
|
-
if i != len(W) - 1: layer = apply_activation(layer, activation_potentiation[i])
|
339
|
+
if i != len(W) - 1 and i != 0: layer = apply_activation(layer, activation_potentiation[i])
|
340
340
|
layer = layer @ W[i].T
|
341
341
|
|
342
342
|
return layer
|
@@ -417,7 +417,7 @@ def predict_model_ram(Input, W, scaler_params=None, activation_potentiation=['li
|
|
417
417
|
|
418
418
|
layer = Input
|
419
419
|
for i in range(len(W)):
|
420
|
-
if i != len(W) - 1: layer = apply_activation(layer, activation_potentiation[i])
|
420
|
+
if i != len(W) - 1 and i != 0: layer = apply_activation(layer, activation_potentiation[i])
|
421
421
|
layer = layer @ W[i].T
|
422
422
|
|
423
423
|
return layer
|
pyerualjetwork/planeat.py
CHANGED
@@ -437,7 +437,7 @@ def evolver(weights,
|
|
437
437
|
child_W[0] = best_weight
|
438
438
|
child_act[0] = best_activations
|
439
439
|
|
440
|
-
weights = np.vstack((child_W, mutated_W))
|
440
|
+
weights = np.vstack((child_W, mutated_W), dtype=dtype)
|
441
441
|
activation_potentiations = child_act + mutated_act
|
442
442
|
|
443
443
|
### INFO PRINTING CONSOLE
|
@@ -517,7 +517,7 @@ def evaluate(Input, weights, activation_potentiations, is_mlp=False):
|
|
517
517
|
if is_mlp:
|
518
518
|
layer = Input
|
519
519
|
for i in range(len(weights)):
|
520
|
-
if i != len(weights) - 1: layer = apply_activation(layer, activation_potentiations[i])
|
520
|
+
if i != len(weights) - 1 and i != 0: layer = apply_activation(layer, activation_potentiations[i])
|
521
521
|
layer = layer @ weights[i].T
|
522
522
|
|
523
523
|
return layer
|
@@ -551,7 +551,7 @@ def mlp_evolver(weights,
|
|
551
551
|
weight_mutate_prob,
|
552
552
|
):
|
553
553
|
|
554
|
-
weights = split_nested_arrays(weights)
|
554
|
+
weights = split_nested_arrays(weights, dtype)
|
555
555
|
|
556
556
|
for layer in range(len(weights)):
|
557
557
|
if show_info == True:
|
pyerualjetwork/planeat_cuda.py
CHANGED
@@ -438,7 +438,7 @@ def evolver(weights,
|
|
438
438
|
child_W[0] = best_weight
|
439
439
|
child_act[0] = best_activations
|
440
440
|
|
441
|
-
weights = cp.vstack((child_W, mutated_W))
|
441
|
+
weights = cp.vstack((child_W, mutated_W), dtype=dtype)
|
442
442
|
activation_potentiations = child_act + mutated_act
|
443
443
|
|
444
444
|
### INFO PRINTING CONSOLE
|
@@ -519,7 +519,7 @@ def evaluate(Input, weights, activation_potentiations, is_mlp=False):
|
|
519
519
|
|
520
520
|
layer = Input
|
521
521
|
for i in range(len(weights)):
|
522
|
-
if i != len(weights) - 1: layer = apply_activation(layer, activation_potentiations[i])
|
522
|
+
if i != len(weights) - 1 and i != 0: layer = apply_activation(layer, activation_potentiations[i])
|
523
523
|
layer = layer @ weights[i].T
|
524
524
|
|
525
525
|
return layer
|
@@ -553,7 +553,7 @@ def mlp_evolver(weights,
|
|
553
553
|
weight_mutate_prob,
|
554
554
|
):
|
555
555
|
|
556
|
-
weights = split_nested_arrays(weights)
|
556
|
+
weights = split_nested_arrays(weights, dtype)
|
557
557
|
|
558
558
|
for layer in range(len(weights)):
|
559
559
|
if show_info == True:
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.6.
|
3
|
+
Version: 4.6.3
|
4
4
|
Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -1,8 +1,8 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=
|
1
|
+
pyerualjetwork/__init__.py,sha256=VwT_tzGQ_j-4Ou_OSz3X2NqF9XQ3NkhjYzUFo6K_WeI,1279
|
2
2
|
pyerualjetwork/activation_functions.py,sha256=Ms0AGBqkJuCA42ht64MSQnO54Td_1eDGquedpoBDVbc,7642
|
3
3
|
pyerualjetwork/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
|
4
|
-
pyerualjetwork/data_operations.py,sha256=
|
5
|
-
pyerualjetwork/data_operations_cuda.py,sha256=
|
4
|
+
pyerualjetwork/data_operations.py,sha256=_7rS4Addogv25mpMUf0mjBDqTYFzrBp4rGA1ji08VkI,16001
|
5
|
+
pyerualjetwork/data_operations_cuda.py,sha256=0TaTjrG85rdqQjM4IfQbrXqle4Wc-nkykPtd_aM0ItA,18104
|
6
6
|
pyerualjetwork/fitness_functions.py,sha256=urRdeMvUhNgWxD4ZGHCRdQlIf9cTWYMvF3_aVBojRqY,1235
|
7
7
|
pyerualjetwork/help.py,sha256=nQ_YbYA2RtuafhuvkreNpX0WWL1I_nzlelwCtvei0_Y,775
|
8
8
|
pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
|
@@ -10,16 +10,16 @@ pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqd
|
|
10
10
|
pyerualjetwork/memory_operations.py,sha256=0yCOHcgiNyF4ccMcRlL1Q9F_byG4nzjhmkbpXE_yU6E,13401
|
11
11
|
pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
|
12
12
|
pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
|
13
|
-
pyerualjetwork/model_operations.py,sha256=
|
14
|
-
pyerualjetwork/model_operations_cuda.py,sha256=-
|
13
|
+
pyerualjetwork/model_operations.py,sha256=fr64XCwgl1YRh5nP3sEkvQORKHb-2lF_a4KjclNkZfY,15522
|
14
|
+
pyerualjetwork/model_operations_cuda.py,sha256=-Kv8fYqHSU0L9FalOsQ7EWCwCEwjgUySObyueOqCH_o,16134
|
15
15
|
pyerualjetwork/plan.py,sha256=UyIvPmvHCHwczlc9KHolE4y6CPEeBfhnRN5yznSbnoM,23028
|
16
16
|
pyerualjetwork/plan_cuda.py,sha256=iteqgv7x9Z2Pj4vGOZs6HXS3r0bNaF_smr7ZXaOdRnw,23990
|
17
|
-
pyerualjetwork/planeat.py,sha256=
|
18
|
-
pyerualjetwork/planeat_cuda.py,sha256=
|
17
|
+
pyerualjetwork/planeat.py,sha256=KgI1RCNvYxGfw2wQ7dWFLLZrPE6ys9agS4bjodq2W9U,45312
|
18
|
+
pyerualjetwork/planeat_cuda.py,sha256=K0YWrH2POXsD9xiUq9zqPulan57uspeIa16XjknsNwk,45357
|
19
19
|
pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
|
20
20
|
pyerualjetwork/visualizations.py,sha256=utnX9zQhzmtvBJLOLNGm2jecVVk4zHXABQdjb0XzJac,28352
|
21
21
|
pyerualjetwork/visualizations_cuda.py,sha256=gnoaaazZ-nc9E1ImqXrZBRgQ4Rnpi2qh2yGJ2eLKMlE,28807
|
22
|
-
pyerualjetwork-4.6.
|
23
|
-
pyerualjetwork-4.6.
|
24
|
-
pyerualjetwork-4.6.
|
25
|
-
pyerualjetwork-4.6.
|
22
|
+
pyerualjetwork-4.6.3.dist-info/METADATA,sha256=b6-XwpCnTnMIO5YVBJ3wA378PWyD9zde598dI_1_Gqg,7505
|
23
|
+
pyerualjetwork-4.6.3.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
24
|
+
pyerualjetwork-4.6.3.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
25
|
+
pyerualjetwork-4.6.3.dist-info/RECORD,,
|
File without changes
|
File without changes
|