pyerualjetwork 4.6.1b0__py3-none-any.whl → 4.6.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,4 +1,4 @@
1
- __version__ = "4.6.1b0"
1
+ __version__ = "4.6.3"
2
2
  __update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
3
3
  * PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
4
4
  * PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
@@ -430,7 +430,7 @@ def batcher(x_test, y_test, batch_size=1):
430
430
 
431
431
  return np.concatenate(sampled_x), np.concatenate(sampled_y)
432
432
 
433
- def split_nested_arrays(data):
433
+ def split_nested_arrays(data, dtype):
434
434
 
435
435
  n_samples = len(data)
436
436
  if n_samples == 0:
@@ -441,7 +441,7 @@ def split_nested_arrays(data):
441
441
  result = []
442
442
 
443
443
  for i in range(n_components):
444
- component_array = np.array([item[i] for item in data])
444
+ component_array = np.array([item[i] for item in data], dtype=dtype)
445
445
  result.append(component_array)
446
446
 
447
447
  return result
@@ -479,7 +479,7 @@ def batcher(x_test, y_test, batch_size=1):
479
479
  return sampled_x, sampled_y
480
480
 
481
481
 
482
- def split_nested_arrays(data):
482
+ def split_nested_arrays(data, dtype):
483
483
 
484
484
  n_samples = len(data)
485
485
  if n_samples == 0:
@@ -490,7 +490,7 @@ def split_nested_arrays(data):
490
490
  result = []
491
491
 
492
492
  for i in range(n_components):
493
- component_array = cp.array([item[i] for item in data])
493
+ component_array = cp.array([item[i] for item in data], dtype=dtype)
494
494
  result.append(component_array)
495
495
 
496
496
  return result
@@ -326,7 +326,7 @@ def predict_model_ssd(Input, model_name, model_path='', dtype=np.float32):
326
326
 
327
327
  layer = Input
328
328
  for i in range(len(W)):
329
- if i != len(W) - 1: layer = apply_activation(layer, activation_potentiation[i])
329
+ if i != len(W) - 1 and i != 0: layer = apply_activation(layer, activation_potentiation[i])
330
330
  layer = layer @ W[i].T
331
331
 
332
332
  return layer
@@ -405,7 +405,7 @@ def predict_model_ram(Input, W, scaler_params=None, activation_potentiation=['li
405
405
 
406
406
  layer = Input
407
407
  for i in range(len(W)):
408
- if i != len(W) - 1: layer = apply_activation(layer, activation_potentiation[i])
408
+ if i != len(W) - 1 and i != 0: layer = apply_activation(layer, activation_potentiation[i])
409
409
  layer = layer @ W[i].T
410
410
 
411
411
  return layer
@@ -336,7 +336,7 @@ def predict_model_ssd(Input, model_name, model_path='', dtype=cp.float32):
336
336
 
337
337
  layer = Input
338
338
  for i in range(len(W)):
339
- if i != len(W) - 1: layer = apply_activation(layer, activation_potentiation[i])
339
+ if i != len(W) - 1 and i != 0: layer = apply_activation(layer, activation_potentiation[i])
340
340
  layer = layer @ W[i].T
341
341
 
342
342
  return layer
@@ -417,7 +417,7 @@ def predict_model_ram(Input, W, scaler_params=None, activation_potentiation=['li
417
417
 
418
418
  layer = Input
419
419
  for i in range(len(W)):
420
- if i != len(W) - 1: layer = apply_activation(layer, activation_potentiation[i])
420
+ if i != len(W) - 1 and i != 0: layer = apply_activation(layer, activation_potentiation[i])
421
421
  layer = layer @ W[i].T
422
422
 
423
423
  return layer
pyerualjetwork/planeat.py CHANGED
@@ -437,7 +437,7 @@ def evolver(weights,
437
437
  child_W[0] = best_weight
438
438
  child_act[0] = best_activations
439
439
 
440
- weights = np.vstack((child_W, mutated_W))
440
+ weights = np.vstack((child_W, mutated_W), dtype=dtype)
441
441
  activation_potentiations = child_act + mutated_act
442
442
 
443
443
  ### INFO PRINTING CONSOLE
@@ -517,7 +517,7 @@ def evaluate(Input, weights, activation_potentiations, is_mlp=False):
517
517
  if is_mlp:
518
518
  layer = Input
519
519
  for i in range(len(weights)):
520
- if i != len(weights) - 1: layer = apply_activation(layer, activation_potentiations[i])
520
+ if i != len(weights) - 1 and i != 0: layer = apply_activation(layer, activation_potentiations[i])
521
521
  layer = layer @ weights[i].T
522
522
 
523
523
  return layer
@@ -551,7 +551,7 @@ def mlp_evolver(weights,
551
551
  weight_mutate_prob,
552
552
  ):
553
553
 
554
- weights = split_nested_arrays(weights)
554
+ weights = split_nested_arrays(weights, dtype)
555
555
 
556
556
  for layer in range(len(weights)):
557
557
  if show_info == True:
@@ -438,7 +438,7 @@ def evolver(weights,
438
438
  child_W[0] = best_weight
439
439
  child_act[0] = best_activations
440
440
 
441
- weights = cp.vstack((child_W, mutated_W))
441
+ weights = cp.vstack((child_W, mutated_W), dtype=dtype)
442
442
  activation_potentiations = child_act + mutated_act
443
443
 
444
444
  ### INFO PRINTING CONSOLE
@@ -519,7 +519,7 @@ def evaluate(Input, weights, activation_potentiations, is_mlp=False):
519
519
 
520
520
  layer = Input
521
521
  for i in range(len(weights)):
522
- if i != len(weights) - 1: layer = apply_activation(layer, activation_potentiations[i])
522
+ if i != len(weights) - 1 and i != 0: layer = apply_activation(layer, activation_potentiations[i])
523
523
  layer = layer @ weights[i].T
524
524
 
525
525
  return layer
@@ -553,7 +553,7 @@ def mlp_evolver(weights,
553
553
  weight_mutate_prob,
554
554
  ):
555
555
 
556
- weights = split_nested_arrays(weights)
556
+ weights = split_nested_arrays(weights, dtype)
557
557
 
558
558
  for layer in range(len(weights)):
559
559
  if show_info == True:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.6.1b0
3
+ Version: 4.6.3
4
4
  Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,8 +1,8 @@
1
- pyerualjetwork/__init__.py,sha256=iS07tu-qBxUf0BbzlgGOwdjZJa2LhYDX-YwH6u-yY90,1281
1
+ pyerualjetwork/__init__.py,sha256=VwT_tzGQ_j-4Ou_OSz3X2NqF9XQ3NkhjYzUFo6K_WeI,1279
2
2
  pyerualjetwork/activation_functions.py,sha256=Ms0AGBqkJuCA42ht64MSQnO54Td_1eDGquedpoBDVbc,7642
3
3
  pyerualjetwork/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
4
- pyerualjetwork/data_operations.py,sha256=TxfpwHWUpJ2E7IVF2uSmigrwpVL_JxrvGPOrMg2lNuI,15981
5
- pyerualjetwork/data_operations_cuda.py,sha256=5e8EO-XRplSmmXcZJxxEISdxO3297ShsAKHswTh3kGQ,18084
4
+ pyerualjetwork/data_operations.py,sha256=_7rS4Addogv25mpMUf0mjBDqTYFzrBp4rGA1ji08VkI,16001
5
+ pyerualjetwork/data_operations_cuda.py,sha256=0TaTjrG85rdqQjM4IfQbrXqle4Wc-nkykPtd_aM0ItA,18104
6
6
  pyerualjetwork/fitness_functions.py,sha256=urRdeMvUhNgWxD4ZGHCRdQlIf9cTWYMvF3_aVBojRqY,1235
7
7
  pyerualjetwork/help.py,sha256=nQ_YbYA2RtuafhuvkreNpX0WWL1I_nzlelwCtvei0_Y,775
8
8
  pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
@@ -10,16 +10,16 @@ pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqd
10
10
  pyerualjetwork/memory_operations.py,sha256=0yCOHcgiNyF4ccMcRlL1Q9F_byG4nzjhmkbpXE_yU6E,13401
11
11
  pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
12
12
  pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
13
- pyerualjetwork/model_operations.py,sha256=ZjLQrYYbzBtTyEfrH9_gouq-m8r_XawRAO2ohkjYd4U,15500
14
- pyerualjetwork/model_operations_cuda.py,sha256=-ag0HjlNFxnhcVY2xHFYqQzxDxyzPfiXl0aTRUSVOnM,16112
13
+ pyerualjetwork/model_operations.py,sha256=fr64XCwgl1YRh5nP3sEkvQORKHb-2lF_a4KjclNkZfY,15522
14
+ pyerualjetwork/model_operations_cuda.py,sha256=-Kv8fYqHSU0L9FalOsQ7EWCwCEwjgUySObyueOqCH_o,16134
15
15
  pyerualjetwork/plan.py,sha256=UyIvPmvHCHwczlc9KHolE4y6CPEeBfhnRN5yznSbnoM,23028
16
16
  pyerualjetwork/plan_cuda.py,sha256=iteqgv7x9Z2Pj4vGOZs6HXS3r0bNaF_smr7ZXaOdRnw,23990
17
- pyerualjetwork/planeat.py,sha256=hZIzDbdRjyCA-wdraD0yJyG-Y8J2KadEqlITs-M_jPQ,45281
18
- pyerualjetwork/planeat_cuda.py,sha256=uOvhTxG36jVu8_uHN8jSxGQqbwpSIPKqbXT1sFl0kU8,45326
17
+ pyerualjetwork/planeat.py,sha256=KgI1RCNvYxGfw2wQ7dWFLLZrPE6ys9agS4bjodq2W9U,45312
18
+ pyerualjetwork/planeat_cuda.py,sha256=K0YWrH2POXsD9xiUq9zqPulan57uspeIa16XjknsNwk,45357
19
19
  pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
20
20
  pyerualjetwork/visualizations.py,sha256=utnX9zQhzmtvBJLOLNGm2jecVVk4zHXABQdjb0XzJac,28352
21
21
  pyerualjetwork/visualizations_cuda.py,sha256=gnoaaazZ-nc9E1ImqXrZBRgQ4Rnpi2qh2yGJ2eLKMlE,28807
22
- pyerualjetwork-4.6.1b0.dist-info/METADATA,sha256=qLfRiea4Z7tUreDfotddrbNOawMDUWz5dCPotOz0u7w,7507
23
- pyerualjetwork-4.6.1b0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
24
- pyerualjetwork-4.6.1b0.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
25
- pyerualjetwork-4.6.1b0.dist-info/RECORD,,
22
+ pyerualjetwork-4.6.3.dist-info/METADATA,sha256=b6-XwpCnTnMIO5YVBJ3wA378PWyD9zde598dI_1_Gqg,7505
23
+ pyerualjetwork-4.6.3.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
24
+ pyerualjetwork-4.6.3.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
25
+ pyerualjetwork-4.6.3.dist-info/RECORD,,