pyerualjetwork 4.5__py3-none-any.whl → 4.5.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/data_operations.py +51 -46
- pyerualjetwork/data_operations_cuda.py +48 -51
- pyerualjetwork/fitness_functions.py +3 -8
- pyerualjetwork/memory_operations.py +9 -23
- pyerualjetwork/model_operations.py +43 -55
- pyerualjetwork/model_operations_cuda.py +43 -53
- pyerualjetwork/plan.py +50 -72
- pyerualjetwork/plan_cuda.py +57 -85
- pyerualjetwork/planeat.py +1 -1
- pyerualjetwork/planeat_cuda.py +3 -3
- pyerualjetwork/ui.py +10 -9
- pyerualjetwork/visualizations.py +17 -17
- pyerualjetwork/visualizations_cuda.py +17 -17
- {pyerualjetwork-4.5.dist-info → pyerualjetwork-4.5.2.dist-info}/METADATA +1 -1
- pyerualjetwork-4.5.2.dist-info/RECORD +25 -0
- pyerualjetwork-4.5.dist-info/RECORD +0 -25
- {pyerualjetwork-4.5.dist-info → pyerualjetwork-4.5.2.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.5.dist-info → pyerualjetwork-4.5.2.dist-info}/top_level.txt +0 -0
pyerualjetwork/plan_cuda.py
CHANGED
@@ -51,18 +51,12 @@ def fit(
|
|
51
51
|
Creates a model to fitting data.,
|
52
52
|
|
53
53
|
fit Args:
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
y_train (aray-like[cupy]): List or cupy array of target labels. (one hot encoded)
|
58
|
-
|
59
|
-
activation_potentiation (list): For deeper PLAN networks, activation function parameters. For more information please run this code: plan.activations_list() default: [None] (optional)
|
60
|
-
|
54
|
+
:param (aray-like[cupy]) x_train: (aray-like[cupy]): List or cupy array of input data.
|
55
|
+
:param (aray-like[cupy]) y_train: List or cupy array of target labels. (one hot encoded)
|
56
|
+
:param (list) activation_potentiation: For deeper PLAN networks, activation function parameters. For more information please run this code: plan.activations_list() default: [None] (optional)
|
61
57
|
W (cupy.ndarray, optional): If you want to re-continue or update model
|
62
|
-
|
63
58
|
auto_normalization (bool, optional): Normalization may solves overflow problem. Default: False
|
64
|
-
|
65
|
-
dtype (cupy.dtype, optional): Data type for the arrays. cp.float32 by default. Example: cp.float64 or cp.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
|
59
|
+
dtype (cupy.dtype, optional): Data type for the arrays. cp.float32 by default. Example: cp.float64 or cp.float16.
|
66
60
|
|
67
61
|
Returns:
|
68
62
|
cupyarray: (Weight matrix).
|
@@ -90,82 +84,55 @@ def learner(x_train, y_train, optimizer, fit_start=True, gen=None, batch_size=1,
|
|
90
84
|
"""
|
91
85
|
Optimizes the activation functions for a neural network by leveraging train data to find
|
92
86
|
the most accurate combination of activation potentiation for the given dataset.
|
93
|
-
|
87
|
+
|
94
88
|
Why genetic optimization and not backpropagation?
|
95
89
|
Because PLAN is different from other neural network architectures. In PLAN, the learnable parameters are not the weights; instead, the learnable parameters are the activation functions.
|
96
90
|
Since activation functions are not differentiable, we cannot use gradient descent or backpropagation. However, I developed a more powerful genetic optimization algorithm: PLANEAT.
|
97
91
|
|
98
|
-
Args:
|
99
|
-
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
132
|
-
|
133
|
-
|
134
|
-
|
135
|
-
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
|
140
|
-
pop_size (int, optional): Population size of each generation. Default: count of activation functions
|
141
|
-
|
142
|
-
early_stop (bool, optional): If True, implements early stopping during training.(If train accuracy not improves in two gen stops learning.) Default is False.
|
143
|
-
|
144
|
-
show_current_activations (bool, optional): Should it display the activations selected according to the current strategies during learning, or not? (True or False) This can be very useful if you want to cancel the learning process and resume from where you left off later. After canceling, you will need to view the live training activations in order to choose the activations to be given to the 'start_this' parameter. Default is False
|
145
|
-
|
146
|
-
show_history (bool, optional): If True, displays the training history after optimization. Default is False.
|
147
|
-
|
148
|
-
auto_normalization (bool, optional): Normalization may solves overflow problem. Default: False
|
149
|
-
|
150
|
-
interval (int, optional): The interval at which evaluations are conducted during training. (33.33 = 30 FPS, 16.67 = 60 FPS) Default is 100.
|
151
|
-
|
152
|
-
target_acc (int, optional): The target accuracy to stop training early when achieved. Default is None.
|
153
|
-
|
154
|
-
start_this_act (list, optional): To resume a previously canceled or interrupted training from where it left off, or to continue from that point with a different strategy, provide the list of activation functions selected up to the learned portion to this parameter. Default is None
|
155
|
-
|
156
|
-
start_this_W (cupy.array, optional): To resume a previously canceled or interrupted training from where it left off, or to continue from that point with a different strategy, provide the weight matrix of this genome. Default is None
|
157
|
-
|
158
|
-
neurons_history (bool, optional): Shows the history of changes that neurons undergo during the TFL (Test or Train Feedback Learning) stages. True or False. Default is False.
|
159
|
-
|
160
|
-
neural_web_history (bool, optional): Draws history of neural web. Default is False.
|
161
|
-
|
162
|
-
dtype (cupy.dtype): Data type for the arrays. np.float32 by default. Example: cp.float64 or cp.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
|
163
|
-
|
164
|
-
memory (str): The memory parameter determines whether the dataset to be processed on the GPU will be stored in the CPU's RAM or the GPU's RAM. Options: 'gpu', 'cpu'. Default: 'gpu'.
|
92
|
+
:Args:
|
93
|
+
:param x_train: (array-like): Training input data.
|
94
|
+
:param y_train: (array-like): Labels for training data.
|
95
|
+
:param optimizer: (function): PLAN optimization technique with hyperparameters. (PLAN using NEAT(PLANEAT) for optimization.) Please use this: from pyerualjetwork import planeat_cuda (and) optimizer = lambda *args, **kwargs: planeat_cuda.evolve(*args, 'here give your neat hyperparameters for example: activation_add_prob=0.85', **kwargs) Example:
|
96
|
+
```python
|
97
|
+
optimizer = lambda *args, **kwargs: planeat_cuda.evolver(*args,
|
98
|
+
activation_add_prob=0.05,
|
99
|
+
strategy='aggressive',
|
100
|
+
policy='more_selective',
|
101
|
+
**kwargs)
|
102
|
+
|
103
|
+
model = plan_cuda.learner(x_train,
|
104
|
+
y_train,
|
105
|
+
optimizer,
|
106
|
+
fit_start=True,
|
107
|
+
show_history=True,
|
108
|
+
gen=15,
|
109
|
+
batch_size=0.05,
|
110
|
+
interval=16.67)
|
111
|
+
```
|
112
|
+
:param fit_start: (bool, optional): If the fit_start parameter is set to True, the initial generation population undergoes a simple short training process using the PLAN algorithm. This allows for a very robust starting point, especially for large and complex datasets. However, for small or relatively simple datasets, it may result in unnecessary computational overhead. When fit_start is True, completing the first generation may take slightly longer (this increase in computational cost applies only to the first generation and does not affect subsequent generations). If fit_start is set to False, the initial population will be entirely random. Options: True or False. Default: True
|
113
|
+
:param gen: (int, optional): The generation count for genetic optimization.
|
114
|
+
:param batch_size: (float, optional): Batch size is used in the prediction process to receive train feedback by dividing the train data into chunks and selecting activations based on randomly chosen partitions. This process reduces computational cost and time while still covering the entire train set due to random selection, so it doesn't significantly impact accuracy. For example, a batch size of 0.08 means each train batch represents %8 of the train set. Default is 1. (%100 of train)
|
115
|
+
:param pop_size: (int, optional): Population size of each generation. Default: count of activation functions
|
116
|
+
:param weight_evolve: (bool, optional): Activation combinations already optimizes by PLANEAT genetic search algorithm. Should the weight parameters also evolve or should the weights be determined according to the aggregating learning principle of the PLAN algorithm? Default: True (Evolves Weights)
|
117
|
+
:param neural_web_history: (bool, optional): Draws history of neural web. Default is False.
|
118
|
+
:param show_current_activations: (bool, optional): Should it display the activations selected according to the current strategies during learning, or not? (True or False) This can be very useful if you want to cancel the learning process and resume from where you left off later. After canceling, you will need to view the live training activations in order to choose the activations to be given to the 'start_this' parameter. Default is False
|
119
|
+
:param auto_normalization: (bool, optional): Normalization may solves overflow problem. Default: False
|
120
|
+
:param target_acc: (float, optional): The target accuracy to stop training early when achieved. Default is None.
|
121
|
+
:param neurons_history: (bool, optional): Shows the history of changes that neurons undergo during the TFL (Test or Train Feedback Learning) stages. True or False. Default is False.
|
122
|
+
:param early_stop: (bool, optional): If True, implements early stopping during training.(If train accuracy not improves in two gen stops learning.) Default is False.
|
123
|
+
:param show_history: (bool, optional): If True, displays the training history after optimization. Default is False.
|
124
|
+
:param loss: (str, optional): For visualizing and monitoring. PLAN neural networks doesn't need any loss function in training. options: ('categorical_crossentropy' or 'binary_crossentropy') Default is 'categorical_crossentropy'.
|
125
|
+
:param interval: (int, optional): The interval at which evaluations are conducted during training. (33.33 = 30 FPS, 16.67 = 60 FPS) Default is 33.33.
|
126
|
+
:param target_loss: (float, optional): The target loss to stop training early when achieved. Default is None.
|
127
|
+
:param loss_impact: (float, optional): Impact of loss for optimization [0-1]. Default: 0.1
|
128
|
+
:param acc_impact: (float, optional): Impact of accuracy for optimization [0-1]. Default: 0.9
|
129
|
+
:param start_this_act: (list, optional): To resume a previously canceled or interrupted training from where it left off, or to continue from that point with a different strategy, provide the list of activation functions selected up to the learned portion to this parameter. Default is None
|
130
|
+
:param start_this_W: (cupy.array, optional): To resume a previously canceled or interrupted training from where it left off, or to continue from that point with a different strategy, provide the weight matrix of this genome. Default is None
|
131
|
+
:param dtype: (cupy.dtype): Data type for the arrays. np.float32 by default. Example: cp.float64 or cp.float16.
|
132
|
+
:param memory: (str): The memory parameter determines whether the dataset to be processed on the GPU will be stored in the CPU's RAM or the GPU's RAM. Options: 'gpu', 'cpu'. Default: 'gpu'.
|
165
133
|
|
166
134
|
Returns:
|
167
135
|
tuple: A list for model parameters: [Weight matrix, Preds, Accuracy, [Activations functions]]. You can acces this parameters in model_operations module. For example: model_operations.get_weights() for Weight matrix.
|
168
|
-
|
169
136
|
"""
|
170
137
|
|
171
138
|
from .planeat_cuda import define_genomes
|
@@ -253,7 +220,7 @@ def learner(x_train, y_train, optimizer, fit_start=True, gen=None, batch_size=1,
|
|
253
220
|
if weight_evolve is False:
|
254
221
|
weight_pop[j] = fit(x_train_batch, y_train_batch, activation_potentiation=act_pop[j], auto_normalization=auto_normalization, dtype=dtype)
|
255
222
|
|
256
|
-
model = evaluate(x_train_batch, y_train_batch, W=weight_pop[j], activation_potentiation=act_pop[j])
|
223
|
+
model = evaluate(x_train_batch, y_train_batch, W=weight_pop[j], activation_potentiation=act_pop[j], auto_normalization=auto_normalization)
|
257
224
|
acc = model[get_acc()]
|
258
225
|
|
259
226
|
if loss == 'categorical_crossentropy':
|
@@ -311,7 +278,7 @@ def learner(x_train, y_train, optimizer, fit_start=True, gen=None, batch_size=1,
|
|
311
278
|
if target_acc is not None and best_acc >= target_acc:
|
312
279
|
progress.close()
|
313
280
|
train_model = evaluate(x_train, y_train, W=best_weight,
|
314
|
-
activation_potentiation=final_activations)
|
281
|
+
activation_potentiation=final_activations, auto_normalization=auto_normalization)
|
315
282
|
if loss == 'categorical_crossentropy':
|
316
283
|
train_loss = categorical_crossentropy(y_true_batch=y_train,
|
317
284
|
y_pred_batch=train_model[get_preds_softmax()])
|
@@ -331,7 +298,7 @@ def learner(x_train, y_train, optimizer, fit_start=True, gen=None, batch_size=1,
|
|
331
298
|
if target_loss is not None and best_loss <= target_loss:
|
332
299
|
progress.close()
|
333
300
|
train_model = evaluate(x_train, y_train, W=best_weight,
|
334
|
-
activation_potentiation=final_activations)
|
301
|
+
activation_potentiation=final_activations, auto_normalization=auto_normalization)
|
335
302
|
|
336
303
|
if loss == 'categorical_crossentropy':
|
337
304
|
train_loss = categorical_crossentropy(y_true_batch=y_train,
|
@@ -381,7 +348,7 @@ def learner(x_train, y_train, optimizer, fit_start=True, gen=None, batch_size=1,
|
|
381
348
|
if best_acc_per_gen_list[i] == best_acc_per_gen_list[i-1]:
|
382
349
|
progress.close()
|
383
350
|
train_model = evaluate(x_train, y_train, W=best_weight,
|
384
|
-
activation_potentiation=final_activations)
|
351
|
+
activation_potentiation=final_activations, auto_normalization=auto_normalization)
|
385
352
|
|
386
353
|
if loss == 'categorical_crossentropy':
|
387
354
|
train_loss = categorical_crossentropy(y_true_batch=y_train,
|
@@ -402,7 +369,7 @@ def learner(x_train, y_train, optimizer, fit_start=True, gen=None, batch_size=1,
|
|
402
369
|
# Final evaluation
|
403
370
|
progress.close()
|
404
371
|
train_model = evaluate(x_train, y_train, W=best_weight,
|
405
|
-
activation_potentiation=final_activations)
|
372
|
+
activation_potentiation=final_activations, auto_normalization=auto_normalization)
|
406
373
|
|
407
374
|
if loss == 'categorical_crossentropy':
|
408
375
|
train_loss = categorical_crossentropy(y_true_batch=y_train,
|
@@ -423,7 +390,8 @@ def evaluate(
|
|
423
390
|
x_test,
|
424
391
|
y_test,
|
425
392
|
W,
|
426
|
-
activation_potentiation=['linear']
|
393
|
+
activation_potentiation=['linear'],
|
394
|
+
auto_normalization=False
|
427
395
|
) -> tuple:
|
428
396
|
"""
|
429
397
|
Evaluates the neural network model using the given test data.
|
@@ -436,11 +404,15 @@ def evaluate(
|
|
436
404
|
W (cp.ndarray): Neural net weight matrix.
|
437
405
|
|
438
406
|
activation_potentiation (list): Activation list. Default = ['linear'].
|
407
|
+
|
408
|
+
auto_normalization (bool, optional): Normalization for x_test ? Default = False.
|
439
409
|
|
440
410
|
Returns:
|
441
411
|
tuple: Model (list).
|
442
412
|
"""
|
443
413
|
|
414
|
+
if auto_normalization: x_test = normalization(x_test, dtype=x_test.dtype)
|
415
|
+
|
444
416
|
x_test = apply_activation(x_test, activation_potentiation)
|
445
417
|
|
446
418
|
result = x_test @ W.T
|
pyerualjetwork/planeat.py
CHANGED
@@ -35,7 +35,7 @@ def define_genomes(input_shape, output_shape, population_size, dtype=np.float32)
|
|
35
35
|
|
36
36
|
population_size (int): The number of genomes (individuals) in the population.
|
37
37
|
|
38
|
-
dtype (numpy.dtype): Data type for the arrays. np.float32 by default. Example: np.float64 or np.float16.
|
38
|
+
dtype (numpy.dtype): Data type for the arrays. np.float32 by default. Example: np.float64 or np.float16.
|
39
39
|
|
40
40
|
Returns:
|
41
41
|
tuple: A tuple containing:
|
pyerualjetwork/planeat_cuda.py
CHANGED
@@ -37,7 +37,7 @@ def define_genomes(input_shape, output_shape, population_size, dtype=cp.float32)
|
|
37
37
|
|
38
38
|
population_size (int): The number of genomes (individuals) in the population.
|
39
39
|
|
40
|
-
dtype (cupy.dtype): Data type for the arrays. np.float32 by default. Example: cp.float64 or cp.float16.
|
40
|
+
dtype (cupy.dtype): Data type for the arrays. np.float32 by default. Example: cp.float64 or cp.float16.
|
41
41
|
|
42
42
|
Returns:
|
43
43
|
tuple: A tuple containing:
|
@@ -97,7 +97,7 @@ def evolver(weights,
|
|
97
97
|
weight_mutate_prob=1,
|
98
98
|
dtype=cp.float32):
|
99
99
|
"""
|
100
|
-
|
100
|
+
Applies the evolving process of a population of genomes using selection, crossover, mutation, and activation function potentiation.
|
101
101
|
The function modifies the population's weights and activation functions based on a specified policy, mutation probabilities, and strategy.
|
102
102
|
|
103
103
|
'selection' args effects cross-over.
|
@@ -218,7 +218,7 @@ def evolver(weights,
|
|
218
218
|
|
219
219
|
Example:
|
220
220
|
```python
|
221
|
-
weights, activation_potentiations =
|
221
|
+
weights, activation_potentiations = planeat_cuda.evolver(weights, activation_potentiations, 1, fitness, show_info=True, strategy='normal_selective', policy='aggressive')
|
222
222
|
```
|
223
223
|
|
224
224
|
- The function returns the updated weights and activations after processing based on the chosen strategy, policy, and mutation parameters.
|
pyerualjetwork/ui.py
CHANGED
@@ -1,22 +1,23 @@
|
|
1
1
|
from tqdm import tqdm
|
2
2
|
|
3
|
-
|
4
|
-
|
5
|
-
|
6
|
-
RESET = "\033[0m"
|
7
|
-
|
8
|
-
bar_format_normal = f"{GREEN}{{bar}}{GREEN} {RESET} {{l_bar}} {{remaining}} {{postfix}}"
|
9
|
-
bar_format_learner = f"{GREEN}{{bar}}{GREEN} {RESET} {{remaining}} {{postfix}}"
|
3
|
+
GREY = "\033[90m"
|
4
|
+
GREEN = "\033[92m"
|
5
|
+
RESET = "\033[0m"
|
10
6
|
|
7
|
+
def loading_bars():
|
8
|
+
bar_format_normal = "{bar} {l_bar} {remaining} {postfix}"
|
9
|
+
bar_format_learner = "{bar} {remaining} {postfix}"
|
11
10
|
return bar_format_normal, bar_format_learner
|
12
11
|
|
12
|
+
def get_loading_bar_style():
|
13
|
+
return (f"{GREY}━{RESET}", f"{GREEN}━{RESET}")
|
13
14
|
|
14
|
-
def initialize_loading_bar(total, desc, ncols, bar_format, leave=True):
|
15
|
+
def initialize_loading_bar(total, desc, ncols, bar_format, loading_bar_style=get_loading_bar_style(), leave=True):
|
15
16
|
return tqdm(
|
16
17
|
total=total,
|
17
18
|
leave=leave,
|
18
19
|
desc=desc,
|
19
|
-
ascii=
|
20
|
+
ascii=loading_bar_style,
|
20
21
|
bar_format=bar_format,
|
21
22
|
ncols=ncols,
|
22
23
|
)
|
pyerualjetwork/visualizations.py
CHANGED
@@ -9,27 +9,27 @@ def draw_neural_web(W, ax, G, return_objs=False):
|
|
9
9
|
"""
|
10
10
|
Visualizes a neural web by drawing the neural network structure.
|
11
11
|
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
12
|
+
Args:
|
13
|
+
W : numpy.ndarray
|
14
|
+
A 2D array representing the connection weights of the neural network.
|
15
|
+
ax : matplotlib.axes.Axes
|
16
|
+
The matplotlib axes where the graph will be drawn.
|
17
|
+
G : networkx.Graph
|
18
|
+
The NetworkX graph representing the neural network structure.
|
19
|
+
return_objs : bool, optional
|
20
|
+
If True, returns the drawn objects (nodes and edges). Default is False.
|
21
21
|
|
22
22
|
Returns:
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
23
|
+
art1 : matplotlib.collections.PathCollection or None
|
24
|
+
Returns the node collection if return_objs is True; otherwise, returns None.
|
25
|
+
art2 : matplotlib.collections.LineCollection or None
|
26
|
+
Returns the edge collection if return_objs is True; otherwise, returns None.
|
27
|
+
art3 : matplotlib.collections.TextCollection or None
|
28
|
+
Returns the label collection if return_objs is True; otherwise, returns None.
|
29
29
|
|
30
30
|
Example:
|
31
|
-
|
32
|
-
|
31
|
+
art1, art2, art3 = draw_neural_web(W, ax, G, return_objs=True)
|
32
|
+
plt.show()
|
33
33
|
"""
|
34
34
|
|
35
35
|
for i in range(W.shape[0]):
|
@@ -9,27 +9,27 @@ def draw_neural_web(W, ax, G, return_objs=False):
|
|
9
9
|
"""
|
10
10
|
Visualizes a neural web by drawing the neural network structure.
|
11
11
|
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
12
|
+
Args:
|
13
|
+
W : numpy.ndarray
|
14
|
+
A 2D array representing the connection weights of the neural network.
|
15
|
+
ax : matplotlib.axes.Axes
|
16
|
+
The matplotlib axes where the graph will be drawn.
|
17
|
+
G : networkx.Graph
|
18
|
+
The NetworkX graph representing the neural network structure.
|
19
|
+
return_objs : bool, optional
|
20
|
+
If True, returns the drawn objects (nodes and edges). Default is False.
|
21
21
|
|
22
22
|
Returns:
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
23
|
+
art1 : matplotlib.collections.PathCollection or None
|
24
|
+
Returns the node collection if return_objs is True; otherwise, returns None.
|
25
|
+
art2 : matplotlib.collections.LineCollection or None
|
26
|
+
Returns the edge collection if return_objs is True; otherwise, returns None.
|
27
|
+
art3 : matplotlib.collections.TextCollection or None
|
28
|
+
Returns the label collection if return_objs is True; otherwise, returns None.
|
29
29
|
|
30
30
|
Example:
|
31
|
-
|
32
|
-
|
31
|
+
art1, art2, art3 = draw_neural_web(W, ax, G, return_objs=True)
|
32
|
+
plt.show()
|
33
33
|
"""
|
34
34
|
W = W.get()
|
35
35
|
for i in range(W.shape[0]):
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.5
|
3
|
+
Version: 4.5.2
|
4
4
|
Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -0,0 +1,25 @@
|
|
1
|
+
pyerualjetwork/__init__.py,sha256=gLefqpCFeKrA5712LsxchV-J2cN2QfDpGNwouaCaoAM,1279
|
2
|
+
pyerualjetwork/activation_functions.py,sha256=Ms0AGBqkJuCA42ht64MSQnO54Td_1eDGquedpoBDVbc,7642
|
3
|
+
pyerualjetwork/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
|
4
|
+
pyerualjetwork/data_operations.py,sha256=Y_RdxkjLEszFgeo4VDWIX1keF2syP-88KesLXA5sRyY,15280
|
5
|
+
pyerualjetwork/data_operations_cuda.py,sha256=9tyD3Bbv5__stuUampgh3_GbMhb_kmTTJmZi7BJsvuA,17381
|
6
|
+
pyerualjetwork/fitness_functions.py,sha256=urRdeMvUhNgWxD4ZGHCRdQlIf9cTWYMvF3_aVBojRqY,1235
|
7
|
+
pyerualjetwork/help.py,sha256=nQ_YbYA2RtuafhuvkreNpX0WWL1I_nzlelwCtvei0_Y,775
|
8
|
+
pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
|
9
|
+
pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
|
10
|
+
pyerualjetwork/memory_operations.py,sha256=0yCOHcgiNyF4ccMcRlL1Q9F_byG4nzjhmkbpXE_yU6E,13401
|
11
|
+
pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
|
12
|
+
pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
|
13
|
+
pyerualjetwork/model_operations.py,sha256=BLRL_5s_KSs8iCiLsEwWvhRcGiWCP_TD9lsjYWM7Zek,12746
|
14
|
+
pyerualjetwork/model_operations_cuda.py,sha256=b3Bkobbrhq28AmYZ0vGxf2Hf8V2LPvoiM0xaPAApqec,13254
|
15
|
+
pyerualjetwork/plan.py,sha256=UyIvPmvHCHwczlc9KHolE4y6CPEeBfhnRN5yznSbnoM,23028
|
16
|
+
pyerualjetwork/plan_cuda.py,sha256=iteqgv7x9Z2Pj4vGOZs6HXS3r0bNaF_smr7ZXaOdRnw,23990
|
17
|
+
pyerualjetwork/planeat.py,sha256=_dnGRVBzdRUgvVCnHZ721tdXYV9PSvCz-aUnj--5VpU,38697
|
18
|
+
pyerualjetwork/planeat_cuda.py,sha256=v-R_ZpnSeIFeSxfYOvSTXfetnfaECap2f84jBEu7X-Q,38736
|
19
|
+
pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
|
20
|
+
pyerualjetwork/visualizations.py,sha256=utnX9zQhzmtvBJLOLNGm2jecVVk4zHXABQdjb0XzJac,28352
|
21
|
+
pyerualjetwork/visualizations_cuda.py,sha256=gnoaaazZ-nc9E1ImqXrZBRgQ4Rnpi2qh2yGJ2eLKMlE,28807
|
22
|
+
pyerualjetwork-4.5.2.dist-info/METADATA,sha256=mLFwYOUwuZ7czsv52GiAMdtP59QAORXBOVrefWXadfw,7505
|
23
|
+
pyerualjetwork-4.5.2.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
24
|
+
pyerualjetwork-4.5.2.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
25
|
+
pyerualjetwork-4.5.2.dist-info/RECORD,,
|
@@ -1,25 +0,0 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=xOgL47nXk4gItE1UKQ_uEBevdRI2RUjN5RVuB-BRlHM,1277
|
2
|
-
pyerualjetwork/activation_functions.py,sha256=Ms0AGBqkJuCA42ht64MSQnO54Td_1eDGquedpoBDVbc,7642
|
3
|
-
pyerualjetwork/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
|
4
|
-
pyerualjetwork/data_operations.py,sha256=c2FWIdHJQw_h6QP_ir0yx22zP7a9CtRp249V8Ro9V-0,15357
|
5
|
-
pyerualjetwork/data_operations_cuda.py,sha256=IqS0JoXGM0XiYfoFSAj9li1WWiBroNXIcN52JWhlNFk,18224
|
6
|
-
pyerualjetwork/fitness_functions.py,sha256=GisM8mDJAivw8YailXXDAw2M-lW1MHwRnIlWUVe-UEg,1261
|
7
|
-
pyerualjetwork/help.py,sha256=nQ_YbYA2RtuafhuvkreNpX0WWL1I_nzlelwCtvei0_Y,775
|
8
|
-
pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
|
9
|
-
pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
|
10
|
-
pyerualjetwork/memory_operations.py,sha256=I7QiZ--xSyRkFF0wcckPwZV7K9emEvyx5aJ3DiRHZFI,13468
|
11
|
-
pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
|
12
|
-
pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
|
13
|
-
pyerualjetwork/model_operations.py,sha256=MCSCNYiiICRVZITobtS3ZIWmH5Q9gjyELuH32sAdgg4,12649
|
14
|
-
pyerualjetwork/model_operations_cuda.py,sha256=NT01BK5nrDYE7H1x3KnSI8gmx0QTGGB0mP_LqEb1uuU,13157
|
15
|
-
pyerualjetwork/plan.py,sha256=XEptIEWfWbqXEy92Eil5q_uujEiIBWnjejAGD7Lh0-w,22975
|
16
|
-
pyerualjetwork/plan_cuda.py,sha256=rFHZa8jsgfol0uUo1rfCKAGtb-B4ivfzqqlnynsfMzQ,23966
|
17
|
-
pyerualjetwork/planeat.py,sha256=DVJGptIPYKyz4ePwqRnbbwgHwQzbxMoBci0Te8kfCzk,38802
|
18
|
-
pyerualjetwork/planeat_cuda.py,sha256=-GxZY8aMPayuYhwhcsRVn4LWq604o36VxkEtdoBum98,38835
|
19
|
-
pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
20
|
-
pyerualjetwork/visualizations.py,sha256=1QSisYAaGnO5kug6qo1qOssTkQM-MgR7L8h4c3sczzU,28294
|
21
|
-
pyerualjetwork/visualizations_cuda.py,sha256=PYRqj4QYUbuYMYcNwO8yaTPB-jK7E6kZHhTrAi0lwPU,28749
|
22
|
-
pyerualjetwork-4.5.dist-info/METADATA,sha256=njuvH-FdU7-KudHvxUEJvBeyOvDWzyWi52ZIpRjR9K4,7503
|
23
|
-
pyerualjetwork-4.5.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
24
|
-
pyerualjetwork-4.5.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
25
|
-
pyerualjetwork-4.5.dist-info/RECORD,,
|
File without changes
|
File without changes
|