pyerualjetwork 4.5__py3-none-any.whl → 4.5.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,4 +1,4 @@
1
- __version__ = "4.5"
1
+ __version__ = "4.5.2"
2
2
  __update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
3
3
  * PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
4
4
  * PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
@@ -17,9 +17,6 @@ def encode_one_hot(y_train, y_test=None, summary=False):
17
17
  tuple: One-hot encoded y_train and (if given) y_test.
18
18
  """
19
19
  from .memory_operations import optimize_labels
20
-
21
- y_train = optimize_labels(y_train, one_hot_encoded=False, cuda=False)
22
- y_test = optimize_labels(y_test, one_hot_encoded=False, cuda=False)
23
20
 
24
21
  classes = np.unique(y_train)
25
22
  class_count = len(classes)
@@ -34,11 +31,14 @@ def encode_one_hot(y_train, y_test=None, summary=False):
34
31
  y_train_encoded = np.zeros((y_train.shape[0], class_count), dtype=y_train.dtype)
35
32
  for i, label in enumerate(y_train):
36
33
  y_train_encoded[i, class_to_index[label]] = 1
34
+ y_train_encoded = optimize_labels(y_train_encoded, one_hot_encoded=True, cuda=False)
37
35
 
38
36
  if y_test is not None:
39
37
  y_test_encoded = np.zeros((y_test.shape[0], class_count), dtype=y_test.dtype)
40
38
  for i, label in enumerate(y_test):
41
39
  y_test_encoded[i, class_to_index[label]] = 1
40
+ y_test_encoded = optimize_labels(y_test_encoded, one_hot_encoded=True, cuda=False)
41
+
42
42
  return y_train_encoded, y_test_encoded
43
43
 
44
44
  return y_train_encoded
@@ -77,11 +77,7 @@ def split(X, y, test_size, random_state=42, dtype=np.float32):
77
77
  Returns:
78
78
  tuple: x_train, x_test, y_train, y_test as ordered training and testing data subsets.
79
79
  """
80
- from .memory_operations import transfer_to_cpu, optimize_labels
81
-
82
- X = transfer_to_cpu(X, dtype=dtype)
83
- y = optimize_labels(y, one_hot_encoded=False, cuda=False)
84
-
80
+
85
81
  num_samples = X.shape[0]
86
82
 
87
83
  if isinstance(test_size, float):
@@ -114,17 +110,23 @@ def manuel_balancer(x_train, y_train, target_samples_per_class, dtype=np.float32
114
110
  """
115
111
  Generates synthetic examples to balance classes to the specified number of examples per class.
116
112
 
117
- Arguments:
118
- x_train -- Input dataset (examples) - NumPy array format
119
- y_train -- Class labels (one-hot encoded) - NumPy array format
120
- target_samples_per_class -- Desired number of samples per class
121
- dtype (numpy.dtype): Data type for the arrays. np.float32 by default. Example: np.float64 or np.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!]
113
+ Args:
114
+
115
+ x_train: numpy array format
116
+
117
+ y_train (one-hot encoded): numpy array format
118
+
119
+ target_samples_per_class (int): Desired number of samples per class
120
+
121
+ dtype (numpy.dtype): Data type for the arrays. np.float32 by default. Example: np.float64 or np.float16.
122
+
123
+ shuffle_in_cpu (bool): If True, output will be same cpu's manuel_balancer function. Default: False. (Use this for direct comparison of cpu training.)
122
124
 
123
125
  Returns:
124
- x_balanced -- Balanced input dataset (NumPy array format)
125
- y_balanced -- Balanced class labels (one-hot encoded, NumPy array format)
126
+ x_balanced -- Balanced input dataset (numpy array format)
127
+ y_balanced -- Balanced class labels (one-hot encoded, numpy array format)
126
128
  """
127
- from .ui import loading_bars
129
+ from .ui import loading_bars, get_loading_bar_style
128
130
  from .memory_operations import transfer_to_cpu
129
131
 
130
132
  x_train = transfer_to_cpu(x_train, dtype=dtype)
@@ -136,7 +138,7 @@ def manuel_balancer(x_train, y_train, target_samples_per_class, dtype=np.float32
136
138
  x_balanced = []
137
139
  y_balanced = []
138
140
 
139
- for class_label in tqdm(range(class_count),leave=False, ascii="▱▰",
141
+ for class_label in tqdm(range(class_count),leave=False, ascii=get_loading_bar_style(),
140
142
  bar_format=bar_format,desc='Augmenting Data',ncols= 52):
141
143
  class_indices = np.where(np.argmax(y_train, axis=1) == class_label)[0]
142
144
  num_samples = len(class_indices)
@@ -185,17 +187,21 @@ def manuel_balancer(x_train, y_train, target_samples_per_class, dtype=np.float32
185
187
  def auto_balancer(x_train, y_train, dtype=np.float32):
186
188
 
187
189
  """
188
- Function to balance the training data across different classes.
190
+ Function to balance (to min) the training data across different classes.
189
191
 
190
- Arguments:
191
- x_train (list): Input data for training.
192
- y_train (list): Labels corresponding to the input data. one-hot encoded.
193
- dtype (numpy.dtype): Data type for the arrays. np.float32 by default. Example: np.float64 or np.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!]
192
+ Args:
193
+ x_train (list): Input data for training.
194
+
195
+ y_train (list): Labels corresponding to the input data. (one-hot encoded)
196
+
197
+ dtype (numpy.dtype): Data type for the arrays. np.float32 by default. Example: np.float64 or np.float16.
194
198
 
195
- Returns:
196
- tuple: A tuple containing balanced input data and labels.
199
+ shuffle_in_cpu (bool): If True, output will be same cpu's auto_balancer function. Default: False. (Use this for direct comparison of cpu training.)
200
+
201
+ Returns:
202
+ tuple: A tuple containing balanced input data and labels.
197
203
  """
198
- from .ui import loading_bars
204
+ from .ui import loading_bars, get_loading_bar_style
199
205
  from .memory_operations import transfer_to_cpu
200
206
 
201
207
  x_train = transfer_to_cpu(x_train, dtype=dtype)
@@ -216,7 +222,7 @@ def auto_balancer(x_train, y_train, dtype=np.float32):
216
222
  MinCount = min(classes)
217
223
 
218
224
  BalancedIndices = []
219
- for i in tqdm(range(class_count),leave=False, ascii="▱▰",
225
+ for i in tqdm(range(class_count),leave=False, ascii=get_loading_bar_style(),
220
226
  bar_format= bar_format, desc='Balancing Data',ncols=70):
221
227
  if len(ClassIndices[i]) > MinCount:
222
228
  SelectedIndices = np.random.choice(
@@ -248,18 +254,20 @@ def auto_balancer(x_train, y_train, dtype=np.float32):
248
254
 
249
255
  def synthetic_augmentation(x, y, dtype=np.float32):
250
256
  """
251
- Generates synthetic examples to balance classes with fewer examples.
257
+ Generates synthetic examples to balance classes with fewer examples using numpy.
258
+ Args:
259
+ x_train: numpy array format
252
260
 
253
- Arguments:
254
- x -- Input dataset (examples) - array format
255
- y -- Class labels (one-hot encoded) - array format
256
- dtype (numpy.dtype): Data type for the arrays. np.float32 by default. Example: np.float64 or np.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!]
261
+ y_train: numpy array format
262
+
263
+ dtype (numpy.dtype): Data type for the arrays. cp.float32 by default. Example: cp.float64 or cp.float16.
264
+
265
+ shuffle_in_cpu (bool): If True, output will be same cpu's synthetic_augmentation function. Default: False. (Use this for direct comparison of cpu training.)
257
266
 
258
267
  Returns:
259
- x_balanced -- Balanced input dataset (array format)
260
- y_balanced -- Balanced class labels (one-hot encoded, array format)
268
+ x_train_balanced, y_train_balanced (numpy array format)
261
269
  """
262
- from .ui import loading_bars
270
+ from .ui import loading_bars, get_loading_bar_style
263
271
  from .memory_operations import transfer_to_cpu
264
272
 
265
273
  x = transfer_to_cpu(x, dtype=dtype)
@@ -278,7 +286,7 @@ def synthetic_augmentation(x, y, dtype=np.float32):
278
286
  y_balanced = list(y)
279
287
 
280
288
 
281
- for class_label in tqdm(range(class_count), leave=False, ascii="▱▰",
289
+ for class_label in tqdm(range(class_count), leave=False, ascii=get_loading_bar_style(),
282
290
  bar_format=bar_format,desc='Augmenting Data',ncols= 52):
283
291
  class_indices = [i for i, label in enumerate(
284
292
  y) if np.argmax(label) == class_label]
@@ -313,19 +321,16 @@ def standard_scaler(x_train=None, x_test=None, scaler_params=None, dtype=np.floa
313
321
  Standardizes training and test datasets. x_test may be None.
314
322
 
315
323
  Args:
316
- x_train: numpy.ndarray
324
+ x_train (numpy.ndarray):
317
325
 
318
- x_test: numpy.ndarray (optional)
326
+ x_test (numpy.ndarray): (optional)
319
327
 
320
- scaler_params (optional for using model)
328
+ scaler_params (tuple): (optional for using model)
321
329
 
322
- dtype (numpy.dtype): Data type for the arrays. np.float32 by default. Example: np.float64 or np.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!]
330
+ dtype (numpy.dtype): Data type for the arrays. np.float32 by default. Example: np.float64 or np.float16.
323
331
 
324
332
  Returns:
325
- list:
326
- Scaler parameters: mean and std
327
- tuple
328
- Standardized training and test datasets
333
+ Scaler parameters, Standardized training (and if test given) datasets. (tuple)
329
334
  """
330
335
  if x_train is not None and scaler_params is None and x_test is not None:
331
336
  x_train = x_train.astype(dtype, copy=False)
@@ -381,12 +386,12 @@ def non_neg_normalization(
381
386
  Normalizes the input data [0-1] range.
382
387
 
383
388
  Args:
384
- Input (cupy): Input data to be normalized.
389
+ Input (numpy): Input data to be normalized.
385
390
 
386
- dtype (cupy.dtype): Data type for the arrays. cp.float32 by default. Example: cp.float64 or cp.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
391
+ dtype (numpy.dtype): Data type for the arrays. cp.float32 by default. Example: cp.float64 or cp.float16.
387
392
 
388
393
  Returns:
389
- (cupy) Scaled input data after normalization.
394
+ (numpy) Scaled input data after normalization.
390
395
  """
391
396
 
392
397
  MaxAbs = np.max(np.abs(Input.astype(dtype, copy=False)))
@@ -14,14 +14,11 @@ def encode_one_hot(y_train, y_test=None, summary=False):
14
14
  summary (bool): If True, prints the class-to-index mapping. Default: False
15
15
 
16
16
  Returns:
17
- tuple: One-hot encoded y_train and (if given) y_test.
17
+ tuple: One-hot encoded y_train and (if given: y_test).
18
18
  """
19
19
 
20
20
  from .memory_operations import optimize_labels, transfer_to_cpu
21
21
 
22
- y_train = optimize_labels(y_train, one_hot_encoded=False, cuda=True)
23
- y_test = optimize_labels(y_test, one_hot_encoded=False, cuda=True)
24
-
25
22
  y_train = transfer_to_cpu(y_train,dtype=y_train.dtype)
26
23
  y_test = transfer_to_cpu(y_test,dtype=y_test.dtype)
27
24
 
@@ -38,14 +35,17 @@ def encode_one_hot(y_train, y_test=None, summary=False):
38
35
  y_train_encoded = np.zeros((y_train.shape[0], class_count), dtype=y_train.dtype)
39
36
  for i, label in enumerate(y_train):
40
37
  y_train_encoded[i, class_to_index[label]] = 1
38
+ y_train_encoded = optimize_labels(y_train_encoded, one_hot_encoded=True, cuda=True)
41
39
 
42
40
  if y_test is not None:
43
41
  y_test_encoded = np.zeros((y_test.shape[0], class_count), dtype=y_test.dtype)
44
42
  for i, label in enumerate(y_test):
45
43
  y_test_encoded[i, class_to_index[label]] = 1
46
- return cp.array(y_train_encoded, dtype=y_train.dtype), cp.array(y_test_encoded, dtype=y_test.dtype)
44
+ y_test_encoded = optimize_labels(y_test_encoded, one_hot_encoded=True, cuda=True)
45
+
46
+ return y_train_encoded, y_test_encoded
47
47
 
48
- return cp.array(y_train_encoded, dtype=y_train.dtype)
48
+ return y_train_encoded
49
49
 
50
50
 
51
51
  def decode_one_hot(encoded_data):
@@ -77,7 +77,7 @@ def split(X, y, test_size, random_state=42, dtype=cp.float32, shuffle_in_cpu=Fal
77
77
 
78
78
  random_state (int or None): Seed for random state. Default: 42.
79
79
 
80
- dtype (cupy.dtype): Data type for the arrays. np.float32 by default. Example: cp.float64 or cp.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
80
+ dtype (cupy.dtype): Data type for the arrays. np.float32 by default. Example: cp.float64 or cp.float16.
81
81
 
82
82
  shuffle_in_cpu (bool): If True, output will be same cpu's split function. Default: False. (Use this for direct comparison of cpu training.)
83
83
  Returns:
@@ -126,23 +126,23 @@ def manuel_balancer(x_train, y_train, target_samples_per_class, dtype=cp.float32
126
126
  """
127
127
  Generates synthetic examples to balance classes to the specified number of examples per class.
128
128
 
129
- Arguments:
129
+ Args:
130
130
 
131
- x_train -- Input dataset (examples) - cupy array format
131
+ x_train: cupy array format
132
132
 
133
- y_train -- Class labels (one-hot encoded) - cupy array format
133
+ y_train (one-hot encoded): cupy array format
134
134
 
135
- target_samples_per_class -- Desired number of samples per class
135
+ target_samples_per_class (int): Desired number of samples per class
136
136
 
137
- dtype (cupy.dtype): Data type for the arrays. np.float32 by default. Example: cp.float64 or cp.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
137
+ dtype (cupy.dtype): Data type for the arrays. cp.float32 by default. Example: cp.float64 or cp.float16.
138
138
 
139
- shuffle_in_cpu (bool): If True, output will be same cpu's manuel_balancer function. Default: False. (Use this for direct comparison of cpu training.)
139
+ shuffle_in_cpu (bool): If True, output will be same cpu's manuel_balancer function. Default: False. (Use this for direct comparison of cpu training.)
140
140
 
141
141
  Returns:
142
- x_balanced -- Balanced input dataset (cupy array format)
143
- y_balanced -- Balanced class labels (one-hot encoded, cupy array format)
142
+ x_balanced -- Balanced input dataset (cupy array format)
143
+ y_balanced -- Balanced class labels (one-hot encoded, cupy array format)
144
144
  """
145
- from .ui import loading_bars
145
+ from .ui import loading_bars, get_loading_bar_style
146
146
  from .memory_operations import transfer_to_gpu
147
147
 
148
148
  bar_format = loading_bars()[0]
@@ -155,7 +155,7 @@ def manuel_balancer(x_train, y_train, target_samples_per_class, dtype=cp.float32
155
155
  x_balanced = []
156
156
  y_balanced = []
157
157
 
158
- for class_label in tqdm(range(class_count),leave=False, ascii="▱▰",
158
+ for class_label in tqdm(range(class_count),leave=False, ascii=get_loading_bar_style(),
159
159
  bar_format=bar_format,desc='Augmenting Data',ncols= 52):
160
160
  class_indices = cp.where(cp.argmax(y_train, axis=1) == class_label)[0]
161
161
  num_samples = len(class_indices)
@@ -216,20 +216,22 @@ def manuel_balancer(x_train, y_train, target_samples_per_class, dtype=cp.float32
216
216
  def auto_balancer(x_train, y_train, dtype=cp.float32, shuffle_in_cpu=False):
217
217
 
218
218
  """
219
- Function to balance the training data across different classes.
219
+ Function to balance (to min) the training data across different classes.
220
220
 
221
- Arguments:
222
- x_train (list): Input data for training.
223
-
224
- y_train (list): Labels corresponding to the input data. (one-hot encoded)
225
-
226
- dtype (cupy.dtype): Data type for the arrays. np.float32 by default. Example: cp.float64 or cp.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
221
+ Args:
222
+ x_train (list): Input data for training.
223
+
224
+ y_train (list): Labels corresponding to the input data. (one-hot encoded)
225
+
226
+ dtype (cupy.dtype): Data type for the arrays. cp.float32 by default. Example: cp.float64 or cp.float16.
227
+
228
+ shuffle_in_cpu (bool): If True, output will be same cpu's auto_balancer function. Default: False. (Use this for direct comparison of cpu training.)
227
229
 
228
- shuffle_in_cpu (bool): If True, output will be same cpu's auto_balancer function. Default: False. (Use this for direct comparison of cpu training.)
229
230
  Returns:
230
- tuple: A tuple containing balanced input data and labels.
231
+ tuple: A tuple containing balanced input data and labels.
231
232
  """
232
- from .ui import loading_bars
233
+
234
+ from .ui import loading_bars, get_loading_bar_style
233
235
  from .memory_operations import transfer_to_gpu
234
236
 
235
237
  x_train = transfer_to_gpu(x_train, dtype=dtype)
@@ -252,7 +254,7 @@ def auto_balancer(x_train, y_train, dtype=cp.float32, shuffle_in_cpu=False):
252
254
  MinCount = min(classes)
253
255
 
254
256
  BalancedIndices = []
255
- for i in tqdm(range(class_count),leave=False, ascii="▱▰",
257
+ for i in tqdm(range(class_count),leave=False, ascii=get_loading_bar_style(),
256
258
  bar_format= bar_format, desc='Balancing Data',ncols=70):
257
259
  if len(ClassIndices[i]) > MinCount:
258
260
  if shuffle_in_cpu:
@@ -287,21 +289,19 @@ def auto_balancer(x_train, y_train, dtype=cp.float32, shuffle_in_cpu=False):
287
289
  def synthetic_augmentation(x_train, y_train, dtype=cp.float32, shuffle_in_cpu=False):
288
290
  """
289
291
  Generates synthetic examples to balance classes with fewer examples using CuPy.
290
- Arguments:
291
-
292
- x_train -- Input dataset (examples) - cupy array format
293
-
294
- y_train -- Class labels (one-hot encoded) - cupy array format
295
-
296
- dtype (cupy.dtype): Data type for the arrays. np.float32 by default. Example: cp.float64 or cp.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
297
-
298
- shuffle_in_cpu (bool): If True, output will be same cpu's synthetic_augmentation function. Default: False. (Use this for direct comparison of cpu training.)
292
+ Args:
293
+ x_train: cupy array format
294
+
295
+ y_train: cupy array format
296
+
297
+ dtype (cupy.dtype): Data type for the arrays. cp.float32 by default. Example: cp.float64 or cp.float16.
298
+
299
+ shuffle_in_cpu (bool): If True, output will be same cpu's synthetic_augmentation function. Default: False. (Use this for direct comparison of cpu training.)
299
300
 
300
301
  Returns:
301
- x_train_balanced -- Balanced input dataset (cupy array format)
302
- y_train_balanced -- Balanced class labels (one-hot encoded, cupy array format)
302
+ x_train_balanced, y_train_balanced (cupy array format)
303
303
  """
304
- from .ui import loading_bars
304
+ from .ui import loading_bars, get_loading_bar_style
305
305
  from .memory_operations import transfer_to_gpu
306
306
 
307
307
  x = transfer_to_gpu(x_train, dtype=dtype)
@@ -320,7 +320,7 @@ def synthetic_augmentation(x_train, y_train, dtype=cp.float32, shuffle_in_cpu=Fa
320
320
  x_balanced = list(x)
321
321
  y_balanced = list(y)
322
322
 
323
- for class_label in tqdm(range(class_count), leave=False, ascii="▱▰",
323
+ for class_label in tqdm(range(class_count), leave=False, ascii=get_loading_bar_style(),
324
324
  bar_format=bar_format, desc='Augmenting Data', ncols=52):
325
325
  class_indices = [i for i, label in enumerate(y) if cp.argmax(label) == class_label]
326
326
  num_samples = len(class_indices)
@@ -360,19 +360,16 @@ def standard_scaler(x_train=None, x_test=None, scaler_params=None, dtype=cp.floa
360
360
  Standardizes training and test datasets. x_test may be None.
361
361
 
362
362
  Args:
363
- x_train: cupy.ndarray
363
+ x_train (cupy.ndarray):
364
364
 
365
- x_test: cupy.ndarray (optional)
365
+ x_test (cupy.ndarray): (optional)
366
366
 
367
- scaler_params (optional for using model)
367
+ scaler_params (tuple): (optional for using model)
368
368
 
369
- dtype (cupy.dtype): Data type for the arrays. cp.float32 by default. Example: cp.float64 or cp.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
369
+ dtype (cupy.dtype): Data type for the arrays. cp.float32 by default. Example: cp.float64 or cp.float16.
370
370
 
371
371
  Returns:
372
- list:
373
- Scaler parameters: mean and std
374
- tuple
375
- Standardized training and test datasets
372
+ Scaler parameters, Standardized training (and if test given) datasets. (tuple)
376
373
  """
377
374
  if x_train is not None and scaler_params is None and x_test is not None:
378
375
  x_train = x_train.astype(dtype, copy=False)
@@ -412,7 +409,7 @@ def normalization(
412
409
  Args:
413
410
  Input (num): Input data to be normalized.
414
411
 
415
- dtype (cupy.dtype): Data type for the arrays. cp.float32 by default. Example: cp.float64 or cp.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
412
+ dtype (cupy.dtype): Data type for the arrays. cp.float32 by default. Example: cp.float64 or cp.float16.
416
413
 
417
414
  Returns:
418
415
  (num) Scaled input data after normalization.
@@ -432,7 +429,7 @@ def non_neg_normalization(
432
429
  Args:
433
430
  Input (cupy): Input data to be normalized.
434
431
 
435
- dtype (cupy.dtype): Data type for the arrays. cp.float32 by default. Example: cp.float64 or cp.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
432
+ dtype (cupy.dtype): Data type for the arrays. cp.float32 by default. Example: cp.float64 or cp.float16.
436
433
 
437
434
  Returns:
438
435
  (cupy) Scaled input data after normalization.
@@ -5,14 +5,9 @@ def wals(acc, loss, acc_impact, loss_impact):
5
5
  The WALS(weighted accuracy-loss score) function calculates a weighted sum of accuracy and loss based on their respective impacts.
6
6
 
7
7
  :param acc: The `acc` parameter represents the accuracy of a model or system
8
- :param loss: The `loss` parameter in the `wals` function represents the amount of loss incurred. It
9
- is used in the calculation to determine the overall impact based on the accuracy and loss impacts
10
- provided
11
- :param acc_impact: The `acc_impact` parameter represents the impact of accuracy on the overall score
12
- calculation in the `wals` function. It is a multiplier that determines how much the accuracy
13
- contributes to the final result
14
- :param loss_impact: The `loss_impact` parameter in the `wals` function represents the weight of loss value when calculating the overall impact. It is used to determine how
15
- much the loss affects the final result compared to the accuracy impact
8
+ :param loss: The `loss` parameter in the `wals` function represents the amount of loss incurred. It is used in the calculation to determine the overall impact based on the accuracy and loss impacts provided
9
+ :param acc_impact: The `acc_impact` parameter represents the impact of accuracy on the overall score calculation in the `wals` function. It is a multiplier that determines how much the accuracy contributes to the final result
10
+ :param loss_impact: The `loss_impact` parameter in the `wals` function represents the weight of loss value when calculating the overall impact. It is used to determine how much the loss affects the final result compared to the accuracy impact
16
11
  :return: the weighted sum of accuracy and loss based on their respective impacts.
17
12
  """
18
13
  loss += np.finfo(float).eps
@@ -34,11 +34,11 @@ def transfer_to_cpu(x, dtype=np.float32):
34
34
  The `transfer_to_cpu` function converts data to a specified data type on the CPU, handling memory constraints
35
35
  by batching the conversion process and ensuring complete GPU memory cleanup.
36
36
 
37
- param x: Input data to transfer to CPU (CuPy array)
37
+ :param x: Input data to transfer to CPU (CuPy array)
38
38
 
39
- param dtype: Target NumPy dtype for the output array (default: np.float32)
39
+ :param dtype: Target NumPy dtype for the output array (default: np.float32)
40
40
 
41
- return: NumPy array with the specified dtype
41
+ :return: NumPy array with the specified dtype
42
42
  """
43
43
  from .ui import loading_bars, initialize_loading_bar
44
44
  try:
@@ -125,11 +125,8 @@ def get_optimal_batch_size_for_gpu(x, data_size_bytes):
125
125
  The function calculates the optimal batch size for a GPU based on available memory and data size.
126
126
 
127
127
  :param x: A list or array containing the data elements that will be processed on the GPU
128
- :param data_size_bytes: The `data_size_bytes` parameter represents the total size of the data in
129
- bytes that you want to process on the GPU. This could be the size of a single batch of data or the
130
- total size of the dataset, depending on how you are structuring your computations
131
- :return: the optimal batch size that can be used for processing the given data on the GPU, based on
132
- the available free memory on the GPU and the size of the data elements.
128
+ :param data_size_bytes: The `data_size_bytes` parameter represents the total size of the data in bytes that you want to process on the GPU. This could be the size of a single batch of data or the total size of the dataset, depending on how you are structuring your computations
129
+ :return: the optimal batch size that can be used for processing the given data on the GPU, based on the available free memory on the GPU and the size of the data elements.
133
130
  """
134
131
  free_memory = cp.get_default_memory_pool().free_bytes()
135
132
  device_memory = cp.cuda.runtime.memGetInfo()[0]
@@ -246,21 +243,10 @@ def optimize_labels(y, one_hot_encoded=True, cuda=False):
246
243
  The function `optimize_labels` optimizes the data type of labels based on their length and encoding
247
244
  format.
248
245
 
249
- :param y: The `optimize_labels` function is designed to optimize the data type of the input labels
250
- `y` based on certain conditions. The function checks if the labels are in one-hot encoded format or
251
- not, and then based on the length of the labels and the specified data types (`uint8`, `uint
252
- :param one_hot_encoded: The `one_hot_encoded` parameter in the `optimize_labels` function indicates
253
- whether the labels are in one-hot encoded format or not. If `one_hot_encoded` is set to `True`, it
254
- means that the labels are in one-hot encoded format, and the function will check the length of the,
255
- defaults to True (optional)
256
- :param cuda: The `cuda` parameter in the `optimize_labels` function is a boolean flag that indicates
257
- whether to use CUDA for computations. If `cuda` is set to `True`, the function will use the CuPy
258
- library for array operations, which can leverage GPU acceleration. If `cuda` is `False, defaults to
259
- False (optional)
260
- :return: The function `optimize_labels` returns the input array `y` after optimizing its data type
261
- based on the specified conditions. If `one_hot_encoded` is True, it checks the length of the
262
- elements in `y` and converts the data type to uint8, uint16, or uint32 accordingly. If
263
- `one_hot_encoded` is False, it checks the length of `y` itself and
246
+ :param y: The `optimize_labels` function is designed to optimize the data type of the input labels `y` based on certain conditions. The function checks if the labels are in one-hot encoded format or not, and then based on the length of the labels and the specified data types (`uint8`, `uint
247
+ :param one_hot_encoded: The `one_hot_encoded` parameter in the `optimize_labels` function indicates whether the labels are in one-hot encoded format or not. If `one_hot_encoded` is set to `True`, it means that the labels are in one-hot encoded format, and the function will check the length of the, defaults to True (optional)
248
+ :param cuda: The `cuda` parameter in the `optimize_labels` function is a boolean flag that indicates whether to use CUDA for computations. If `cuda` is set to `True`, the function will use the CuPy library for array operations, which can leverage GPU acceleration. If `cuda` is `False, defaults to False (optional)
249
+ :return: The function `optimize_labels` returns the input array `y` after optimizing its data type based on the specified conditions. If `one_hot_encoded` is True, it checks the length of the elements in `y` and converts the data type to uint8, uint16, or uint32 accordingly. If `one_hot_encoded` is False, it checks the length of `y` itself and
264
250
  """
265
251
 
266
252
  if cuda: array_type = cp