pyerualjetwork 4.5.2b0__py3-none-any.whl → 4.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/data_operations.py +30 -1
- pyerualjetwork/data_operations_cuda.py +31 -1
- pyerualjetwork/model_operations.py +177 -101
- pyerualjetwork/model_operations_cuda.py +183 -105
- pyerualjetwork/planeat.py +175 -34
- pyerualjetwork/planeat_cuda.py +181 -39
- {pyerualjetwork-4.5.2b0.dist-info → pyerualjetwork-4.6.dist-info}/METADATA +1 -1
- {pyerualjetwork-4.5.2b0.dist-info → pyerualjetwork-4.6.dist-info}/RECORD +11 -11
- {pyerualjetwork-4.5.2b0.dist-info → pyerualjetwork-4.6.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.5.2b0.dist-info → pyerualjetwork-4.6.dist-info}/top_level.txt +0 -0
pyerualjetwork/planeat_cuda.py
CHANGED
@@ -19,11 +19,11 @@ import math
|
|
19
19
|
|
20
20
|
|
21
21
|
### LIBRARY IMPORTS ###
|
22
|
-
from .data_operations_cuda import normalization, non_neg_normalization
|
22
|
+
from .data_operations_cuda import normalization, non_neg_normalization, split_nested_arrays, reconstruct_nested_arrays
|
23
23
|
from .ui import loading_bars, initialize_loading_bar
|
24
24
|
from .activation_functions_cuda import apply_activation, all_activations
|
25
25
|
|
26
|
-
def define_genomes(input_shape, output_shape, population_size, dtype=cp.float32):
|
26
|
+
def define_genomes(input_shape, output_shape, population_size, hidden=0, neurons=None, activation_functions=None, dtype=cp.float32):
|
27
27
|
"""
|
28
28
|
Initializes a population of genomes, where each genome is represented by a set of weights
|
29
29
|
and an associated activation function. Each genome is created with random weights and activation
|
@@ -36,6 +36,12 @@ def define_genomes(input_shape, output_shape, population_size, dtype=cp.float32)
|
|
36
36
|
output_shape (int): The number of output features for the neural network.
|
37
37
|
|
38
38
|
population_size (int): The number of genomes (individuals) in the population.
|
39
|
+
|
40
|
+
hidden (int, optional): If you dont want train PLAN model this parameter represents a hidden layer count for MLP model. Default: 0 (PLAN)
|
41
|
+
|
42
|
+
neurons (list[int], optional): If you dont want train PLAN model this parameter represents neuron count of each hidden layer for MLP. Default: None (PLAN)
|
43
|
+
|
44
|
+
activation_functions (list[str], optional): If you dont want train PLAN model this parameter represents activation function of each hidden layer for MLP. Default: None (PLAN) NOTE: THIS EFFECTS HIDDEN LAYERS OUTPUT. NOT OUTPUT LAYER!
|
39
45
|
|
40
46
|
dtype (cupy.dtype): Data type for the arrays. np.float32 by default. Example: cp.float64 or cp.float16.
|
41
47
|
|
@@ -51,25 +57,59 @@ def define_genomes(input_shape, output_shape, population_size, dtype=cp.float32)
|
|
51
57
|
The weights for each genome are then modified by applying the corresponding activation function
|
52
58
|
and normalized using the `normalization()` function. (Max abs normalization.)
|
53
59
|
"""
|
54
|
-
|
55
|
-
|
60
|
+
if hidden > 0:
|
61
|
+
population_weights = [[0] * (hidden + 1) for _ in range(population_size)]
|
62
|
+
population_activations = [[0] * (hidden) for _ in range(population_size)]
|
63
|
+
|
64
|
+
if len(neurons) != hidden:
|
65
|
+
raise ValueError('hidden parameter and neurons list length must be equal.')
|
66
|
+
|
67
|
+
|
68
|
+
for i in range(len(population_weights)):
|
69
|
+
|
70
|
+
for l in range(hidden + 1):
|
71
|
+
|
72
|
+
if l == 0:
|
73
|
+
population_weights[i][l] = cp.random.uniform(-1, 1, (neurons[l], input_shape)).astype(dtype)
|
74
|
+
|
75
|
+
elif l == hidden:
|
76
|
+
population_weights[i][l] = cp.random.uniform(-1, 1, (output_shape, neurons[l-1])).astype(dtype)
|
77
|
+
|
78
|
+
else:
|
79
|
+
population_weights[i][l] = cp.random.uniform(-1, 1, (neurons[l], neurons[l-1])).astype(dtype)
|
80
|
+
|
81
|
+
if l != hidden:
|
82
|
+
population_activations[i][l] = activation_functions[l]
|
83
|
+
|
84
|
+
# ACTIVATIONS APPLYING IN WEIGHTS SPECIFIC OUTPUT CONNECTIONS (MORE PLAN LIKE FEATURES(FOR NON-LINEARITY)):
|
85
|
+
|
86
|
+
for j in range(population_weights[i][l].shape[0]):
|
87
|
+
|
88
|
+
population_weights[i][l][j,:] = apply_activation(population_weights[i][l][j,:], population_activations[i])
|
89
|
+
population_weights[i][l][j,:] = normalization(population_weights[i][l][j,:], dtype=dtype)
|
90
|
+
|
91
|
+
return population_weights, population_activations
|
92
|
+
|
93
|
+
else:
|
94
|
+
population_weights = [0] * population_size
|
95
|
+
population_activations = [0] * population_size
|
56
96
|
|
57
|
-
|
58
|
-
|
97
|
+
except_this = ['spiral', 'circular']
|
98
|
+
activations = [item for item in all_activations() if item not in except_this] # SPIRAL AND CIRCULAR ACTIVATION DISCARDED
|
59
99
|
|
60
|
-
|
100
|
+
for i in range(len(population_weights)):
|
61
101
|
|
62
|
-
|
63
|
-
|
102
|
+
population_weights[i] = cp.random.uniform(-1, 1, (output_shape, input_shape)).astype(dtype, copy=False)
|
103
|
+
population_activations[i] = activations[int(random.uniform(0, len(activations)-1))]
|
64
104
|
|
65
|
-
|
105
|
+
# ACTIVATIONS APPLYING IN WEIGHTS SPECIFIC OUTPUT CONNECTIONS (MORE PLAN LIKE FEATURES(FOR NON-LINEARITY)):
|
66
106
|
|
67
|
-
|
107
|
+
for j in range(population_weights[i].shape[0]):
|
68
108
|
|
69
|
-
|
70
|
-
|
109
|
+
population_weights[i][j,:] = apply_activation(population_weights[i][j,:], population_activations[i])
|
110
|
+
population_weights[i][j,:] = normalization(population_weights[i][j,:], dtype=dtype)
|
71
111
|
|
72
|
-
|
112
|
+
return cp.array(population_weights, dtype=dtype), population_activations
|
73
113
|
|
74
114
|
|
75
115
|
def evolver(weights,
|
@@ -90,11 +130,12 @@ def evolver(weights,
|
|
90
130
|
activation_mutate_change_prob=0.5,
|
91
131
|
activation_selection_add_prob=0.5,
|
92
132
|
activation_selection_change_prob=0.5,
|
93
|
-
activation_selection_threshold=
|
133
|
+
activation_selection_threshold=20,
|
94
134
|
activation_mutate_prob=1,
|
95
|
-
activation_mutate_threshold=
|
135
|
+
activation_mutate_threshold=20,
|
96
136
|
weight_mutate_threshold=16,
|
97
|
-
weight_mutate_prob=1,
|
137
|
+
weight_mutate_prob=1,
|
138
|
+
is_mlp=False,
|
98
139
|
dtype=cp.float32):
|
99
140
|
"""
|
100
141
|
Applies the evolving process of a population of genomes using selection, crossover, mutation, and activation function potentiation.
|
@@ -107,8 +148,8 @@ def evolver(weights,
|
|
107
148
|
weights (cupy.ndarray): Array of weights for each genome.
|
108
149
|
(first returned value of define_genomes function)
|
109
150
|
|
110
|
-
activation_potentiations (list): A list of activation functions for each genome.
|
111
|
-
(second returned value of define_genomes function)
|
151
|
+
activation_potentiations (list[str]): A list of activation functions for each genome.
|
152
|
+
(second returned value of define_genomes function) NOTE!: 'activation potentiations' for PLAN 'activation functions' for MLP.
|
112
153
|
|
113
154
|
what_gen (int): The current generation number, used for informational purposes or logging.
|
114
155
|
|
@@ -177,9 +218,11 @@ def evolver(weights,
|
|
177
218
|
activation_selection_change_prob (float, optional): The probability of changing an activation function in the genome for crossover.
|
178
219
|
Must be in the range [0, 1]. Default is 0.5.
|
179
220
|
|
180
|
-
activation_mutate_threshold (int): Determines max how much activation mutaiton operation applying. (Function automaticly determines to min) Default:
|
221
|
+
activation_mutate_threshold (int): Determines max how much activation mutaiton operation applying. (Function automaticly determines to min) Default: 20
|
181
222
|
|
182
|
-
activation_selection_threshold (int, optional): Determines max how much activaton transferable to child from undominant parent. (Function automaticly determines to min) Default:
|
223
|
+
activation_selection_threshold (int, optional): Determines max how much activaton transferable to child from undominant parent. (Function automaticly determines to min) Default: 20
|
224
|
+
|
225
|
+
is_mlp (bool, optional): Evolve PLAN model or MLP model ? Default: False (PLAN)
|
183
226
|
|
184
227
|
dtype (cupy.dtype): Data type for the arrays. Default: cp.float32.
|
185
228
|
Example: cp.float64 or cp.float16 [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not recommended!].
|
@@ -218,7 +261,7 @@ def evolver(weights,
|
|
218
261
|
|
219
262
|
Example:
|
220
263
|
```python
|
221
|
-
weights, activation_potentiations =
|
264
|
+
weights, activation_potentiations = planeat_cuda.evolver(weights, activation_potentiations, 1, fitness, show_info=True, strategy='normal_selective', policy='aggressive')
|
222
265
|
```
|
223
266
|
|
224
267
|
- The function returns the updated weights and activations after processing based on the chosen strategy, policy, and mutation parameters.
|
@@ -267,6 +310,34 @@ def evolver(weights,
|
|
267
310
|
|
268
311
|
if weight_evolve is False: origin_weights = cp.copy(weights)
|
269
312
|
|
313
|
+
if is_mlp: ### IF EACH GENOME HAVE MORE THEN 1 WEIGHT MATRIX IT IS NOT PLAN MODEL. IT IS MLP MODEL.
|
314
|
+
|
315
|
+
activations = activation_potentiations.copy()
|
316
|
+
|
317
|
+
return mlp_evolver(weights,
|
318
|
+
activations,
|
319
|
+
what_gen,
|
320
|
+
dtype,
|
321
|
+
fitness,
|
322
|
+
policy,
|
323
|
+
bad_genomes_selection_prob,
|
324
|
+
bar_status,
|
325
|
+
strategy,
|
326
|
+
bad_genomes_mutation_prob,
|
327
|
+
fitness_bias,
|
328
|
+
cross_over_mode,
|
329
|
+
activation_mutate_change_prob,
|
330
|
+
activation_selection_change_prob,
|
331
|
+
activation_selection_threshold,
|
332
|
+
activation_mutate_prob,
|
333
|
+
activation_mutate_threshold,
|
334
|
+
weight_mutate_threshold,
|
335
|
+
show_info,
|
336
|
+
weight_mutate_prob,
|
337
|
+
)
|
338
|
+
|
339
|
+
if isinstance(weights, list): weights = cp.array(weights, dtype=dtype)
|
340
|
+
|
270
341
|
### FITNESS LIST IS SORTED IN ASCENDING ORDER, AND THE WEIGHT AND ACTIVATIONS OF EACH GENOME ARE SORTED ACCORDING TO THIS ORDER:
|
271
342
|
|
272
343
|
sort_indices = cp.argsort(fitness)
|
@@ -408,14 +479,14 @@ def evolver(weights,
|
|
408
479
|
return weights, activation_potentiations
|
409
480
|
|
410
481
|
|
411
|
-
def evaluate(
|
482
|
+
def evaluate(Input, weights, activation_potentiations, is_mlp=False):
|
412
483
|
"""
|
413
484
|
Evaluates the performance of a population of genomes, applying different activation functions
|
414
485
|
and weights depending on whether reinforcement learning mode is enabled or not.
|
415
486
|
|
416
487
|
Args:
|
417
|
-
|
418
|
-
a genome (A list of input features for each genome, or a single set of input features for one genome
|
488
|
+
Input (list or cupy.ndarray): A list or 2D numpy or cupy array where each element represents
|
489
|
+
a genome (A list of input features for each genome, or a single set of input features for one genome).
|
419
490
|
|
420
491
|
weights (list or cupy.ndarray): A list or 2D numpy array of weights corresponding to each genome
|
421
492
|
in `x_population`. This determines the strength of connections.
|
@@ -423,17 +494,19 @@ def evaluate(x_population, weights, activation_potentiations):
|
|
423
494
|
activation_potentiations (list or str): A list where each entry represents an activation function
|
424
495
|
or a potentiation strategy applied to each genome. If only one
|
425
496
|
activation function is used, this can be a single string.
|
497
|
+
is_mlp (bool, optional): Evaluate PLAN model or MLP model ? Default: False (PLAN)
|
498
|
+
|
426
499
|
Returns:
|
427
500
|
list: A list of outputs corresponding to each genome in the population after applying the respective
|
428
501
|
activation function and weights.
|
429
502
|
|
430
503
|
Example:
|
431
504
|
```python
|
432
|
-
outputs = evaluate(
|
505
|
+
outputs = evaluate(Input, weights, activation_potentiations)
|
433
506
|
```
|
434
507
|
|
435
508
|
- The function returns a list of outputs after processing the population, where each element corresponds to
|
436
|
-
the output for each genome in
|
509
|
+
the output for each genome in population.
|
437
510
|
"""
|
438
511
|
### THE OUTPUTS ARE RETURNED WHERE EACH GENOME'S OUTPUT MATCHES ITS INDEX:
|
439
512
|
|
@@ -442,11 +515,80 @@ def evaluate(x_population, weights, activation_potentiations):
|
|
442
515
|
else:
|
443
516
|
activation_potentiations = [item if isinstance(item, list) else [item] for item in activation_potentiations]
|
444
517
|
|
445
|
-
|
446
|
-
|
518
|
+
if is_mlp:
|
519
|
+
|
520
|
+
layer = Input
|
521
|
+
for i in range(len(weights)):
|
522
|
+
if i != len(weights) - 1: layer = apply_activation(layer, activation_potentiations[i])
|
523
|
+
layer = layer @ weights[i].T
|
524
|
+
|
525
|
+
return layer
|
526
|
+
|
527
|
+
else:
|
447
528
|
|
448
|
-
|
529
|
+
Input = apply_activation(Input, activation_potentiations)
|
530
|
+
result = Input @ weights.T
|
531
|
+
|
532
|
+
return result
|
533
|
+
|
534
|
+
def mlp_evolver(weights,
|
535
|
+
activations,
|
536
|
+
generation,
|
537
|
+
dtype,
|
538
|
+
fitness,
|
539
|
+
policy,
|
540
|
+
bad_genomes_selection_prob,
|
541
|
+
bar_status,
|
542
|
+
strategy,
|
543
|
+
bad_genomes_mutation_prob,
|
544
|
+
fitness_bias,
|
545
|
+
cross_over_mode,
|
546
|
+
activation_mutate_change_prob,
|
547
|
+
activation_selection_change_prob,
|
548
|
+
activation_selection_threshold,
|
549
|
+
activation_mutate_prob,
|
550
|
+
activation_mutate_threshold,
|
551
|
+
weight_mutate_threshold,
|
552
|
+
show_info,
|
553
|
+
weight_mutate_prob,
|
554
|
+
):
|
555
|
+
|
556
|
+
weights = split_nested_arrays(weights)
|
449
557
|
|
558
|
+
for layer in range(len(weights)):
|
559
|
+
if show_info == True:
|
560
|
+
if layer == len(weights) - 1:
|
561
|
+
show = True
|
562
|
+
else:
|
563
|
+
show = False
|
564
|
+
else:
|
565
|
+
show = False
|
566
|
+
|
567
|
+
weights[layer], activations = evolver(weights[layer], activations,
|
568
|
+
fitness=fitness,
|
569
|
+
what_gen=generation,
|
570
|
+
show_info=show,
|
571
|
+
policy=policy,
|
572
|
+
bad_genomes_selection_prob=bad_genomes_selection_prob,
|
573
|
+
bar_status=bar_status,
|
574
|
+
strategy=strategy,
|
575
|
+
bad_genomes_mutation_prob=bad_genomes_mutation_prob,
|
576
|
+
fitness_bias=fitness_bias,
|
577
|
+
cross_over_mode=cross_over_mode,
|
578
|
+
activation_mutate_add_prob=0,
|
579
|
+
activation_mutate_delete_prob=0,
|
580
|
+
activation_mutate_change_prob=activation_mutate_change_prob,
|
581
|
+
activation_selection_add_prob=0,
|
582
|
+
activation_selection_change_prob=activation_selection_change_prob,
|
583
|
+
activation_selection_threshold=activation_selection_threshold,
|
584
|
+
activation_mutate_prob=activation_mutate_prob,
|
585
|
+
activation_mutate_threshold=activation_mutate_threshold,
|
586
|
+
weight_mutate_threshold=weight_mutate_threshold,
|
587
|
+
weight_mutate_prob=weight_mutate_prob,
|
588
|
+
dtype=dtype
|
589
|
+
)
|
590
|
+
|
591
|
+
return reconstruct_nested_arrays(weights), activations
|
450
592
|
|
451
593
|
def cross_over(first_parent_W,
|
452
594
|
second_parent_W,
|
@@ -603,7 +745,7 @@ def cross_over(first_parent_W,
|
|
603
745
|
|
604
746
|
while True:
|
605
747
|
|
606
|
-
random_index = int(random.uniform(0, len(undominant_parent_act)
|
748
|
+
random_index = int(random.uniform(0, len(undominant_parent_act)))
|
607
749
|
random_undominant_activation = undominant_parent_act[random_index]
|
608
750
|
|
609
751
|
child_act.append(random_undominant_activation)
|
@@ -625,8 +767,8 @@ def cross_over(first_parent_W,
|
|
625
767
|
|
626
768
|
while True:
|
627
769
|
|
628
|
-
random_index_undominant = int(random.uniform(0, len(undominant_parent_act)
|
629
|
-
random_index_dominant = int(random.uniform(0, len(dominant_parent_act)
|
770
|
+
random_index_undominant = int(random.uniform(0, len(undominant_parent_act)))
|
771
|
+
random_index_dominant = int(random.uniform(0, len(dominant_parent_act)))
|
630
772
|
random_undominant_activation = undominant_parent_act[random_index_undominant]
|
631
773
|
|
632
774
|
child_act[random_index_dominant] = random_undominant_activation
|
@@ -749,7 +891,7 @@ def mutation(weight,
|
|
749
891
|
|
750
892
|
if potential_activation_delete_prob > activation_delete_prob and len(activations) > 1:
|
751
893
|
|
752
|
-
random_index = random.randint(0, len(activations)
|
894
|
+
random_index = random.randint(0, len(activations))
|
753
895
|
activations.pop(random_index)
|
754
896
|
|
755
897
|
|
@@ -757,7 +899,7 @@ def mutation(weight,
|
|
757
899
|
|
758
900
|
try:
|
759
901
|
|
760
|
-
random_index_all_act = int(random.uniform(0, len(all_acts)
|
902
|
+
random_index_all_act = int(random.uniform(0, len(all_acts)))
|
761
903
|
activations.append(all_acts[random_index_all_act])
|
762
904
|
|
763
905
|
except:
|
@@ -766,12 +908,12 @@ def mutation(weight,
|
|
766
908
|
activations = []
|
767
909
|
|
768
910
|
activations.append(activation)
|
769
|
-
activations.append(all_acts[int(random.uniform(0, len(all_acts)
|
911
|
+
activations.append(all_acts[int(random.uniform(0, len(all_acts)))])
|
770
912
|
|
771
913
|
if potential_activation_change_prob > activation_change_prob:
|
772
914
|
|
773
|
-
random_index_all_act = int(random.uniform(0, len(all_acts)
|
774
|
-
random_index_genom_act = int(random.uniform(0, len(activations)
|
915
|
+
random_index_all_act = int(random.uniform(0, len(all_acts)))
|
916
|
+
random_index_genom_act = int(random.uniform(0, len(activations)))
|
775
917
|
|
776
918
|
activations[random_index_genom_act] = all_acts[random_index_all_act]
|
777
919
|
|
@@ -786,7 +928,7 @@ def mutation(weight,
|
|
786
928
|
def second_parent_selection(good_weights, bad_weights, good_activations, bad_activations, bad_genomes_selection_prob):
|
787
929
|
|
788
930
|
selection_prob = random.uniform(0, 1)
|
789
|
-
random_index = int(random.uniform(0, len(good_weights)
|
931
|
+
random_index = int(random.uniform(0, len(good_weights)))
|
790
932
|
|
791
933
|
if selection_prob > bad_genomes_selection_prob:
|
792
934
|
second_selected_W = good_weights[random_index]
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.
|
3
|
+
Version: 4.6
|
4
4
|
Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -1,8 +1,8 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=
|
1
|
+
pyerualjetwork/__init__.py,sha256=x-t4HMHrI5Jkh28DDHqIbhtTCHe6IaNhH1zLkC38phI,1277
|
2
2
|
pyerualjetwork/activation_functions.py,sha256=Ms0AGBqkJuCA42ht64MSQnO54Td_1eDGquedpoBDVbc,7642
|
3
3
|
pyerualjetwork/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
|
4
|
-
pyerualjetwork/data_operations.py,sha256=
|
5
|
-
pyerualjetwork/data_operations_cuda.py,sha256=
|
4
|
+
pyerualjetwork/data_operations.py,sha256=TxfpwHWUpJ2E7IVF2uSmigrwpVL_JxrvGPOrMg2lNuI,15981
|
5
|
+
pyerualjetwork/data_operations_cuda.py,sha256=5e8EO-XRplSmmXcZJxxEISdxO3297ShsAKHswTh3kGQ,18084
|
6
6
|
pyerualjetwork/fitness_functions.py,sha256=urRdeMvUhNgWxD4ZGHCRdQlIf9cTWYMvF3_aVBojRqY,1235
|
7
7
|
pyerualjetwork/help.py,sha256=nQ_YbYA2RtuafhuvkreNpX0WWL1I_nzlelwCtvei0_Y,775
|
8
8
|
pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
|
@@ -10,16 +10,16 @@ pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqd
|
|
10
10
|
pyerualjetwork/memory_operations.py,sha256=0yCOHcgiNyF4ccMcRlL1Q9F_byG4nzjhmkbpXE_yU6E,13401
|
11
11
|
pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
|
12
12
|
pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
|
13
|
-
pyerualjetwork/model_operations.py,sha256=
|
14
|
-
pyerualjetwork/model_operations_cuda.py,sha256=
|
13
|
+
pyerualjetwork/model_operations.py,sha256=cL0dGhsRxVnftNgMoghU03prw32czOgdSJM00jGASEk,15174
|
14
|
+
pyerualjetwork/model_operations_cuda.py,sha256=70SN64I6NnJzUm0IrOwHSw93oS4j_Vhi7pkk540DMXM,15780
|
15
15
|
pyerualjetwork/plan.py,sha256=UyIvPmvHCHwczlc9KHolE4y6CPEeBfhnRN5yznSbnoM,23028
|
16
16
|
pyerualjetwork/plan_cuda.py,sha256=iteqgv7x9Z2Pj4vGOZs6HXS3r0bNaF_smr7ZXaOdRnw,23990
|
17
|
-
pyerualjetwork/planeat.py,sha256=
|
18
|
-
pyerualjetwork/planeat_cuda.py,sha256=
|
17
|
+
pyerualjetwork/planeat.py,sha256=hZIzDbdRjyCA-wdraD0yJyG-Y8J2KadEqlITs-M_jPQ,45281
|
18
|
+
pyerualjetwork/planeat_cuda.py,sha256=uOvhTxG36jVu8_uHN8jSxGQqbwpSIPKqbXT1sFl0kU8,45326
|
19
19
|
pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
|
20
20
|
pyerualjetwork/visualizations.py,sha256=utnX9zQhzmtvBJLOLNGm2jecVVk4zHXABQdjb0XzJac,28352
|
21
21
|
pyerualjetwork/visualizations_cuda.py,sha256=gnoaaazZ-nc9E1ImqXrZBRgQ4Rnpi2qh2yGJ2eLKMlE,28807
|
22
|
-
pyerualjetwork-4.
|
23
|
-
pyerualjetwork-4.
|
24
|
-
pyerualjetwork-4.
|
25
|
-
pyerualjetwork-4.
|
22
|
+
pyerualjetwork-4.6.dist-info/METADATA,sha256=aPR80cOeYMf7cRbWopJqwMUzvvZqvZOouaGV__rKu8I,7503
|
23
|
+
pyerualjetwork-4.6.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
24
|
+
pyerualjetwork-4.6.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
25
|
+
pyerualjetwork-4.6.dist-info/RECORD,,
|
File without changes
|
File without changes
|