pyerualjetwork 4.5.2b0__py3-none-any.whl → 4.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -19,11 +19,11 @@ import math
19
19
 
20
20
 
21
21
  ### LIBRARY IMPORTS ###
22
- from .data_operations_cuda import normalization, non_neg_normalization
22
+ from .data_operations_cuda import normalization, non_neg_normalization, split_nested_arrays, reconstruct_nested_arrays
23
23
  from .ui import loading_bars, initialize_loading_bar
24
24
  from .activation_functions_cuda import apply_activation, all_activations
25
25
 
26
- def define_genomes(input_shape, output_shape, population_size, dtype=cp.float32):
26
+ def define_genomes(input_shape, output_shape, population_size, hidden=0, neurons=None, activation_functions=None, dtype=cp.float32):
27
27
  """
28
28
  Initializes a population of genomes, where each genome is represented by a set of weights
29
29
  and an associated activation function. Each genome is created with random weights and activation
@@ -36,6 +36,12 @@ def define_genomes(input_shape, output_shape, population_size, dtype=cp.float32)
36
36
  output_shape (int): The number of output features for the neural network.
37
37
 
38
38
  population_size (int): The number of genomes (individuals) in the population.
39
+
40
+ hidden (int, optional): If you dont want train PLAN model this parameter represents a hidden layer count for MLP model. Default: 0 (PLAN)
41
+
42
+ neurons (list[int], optional): If you dont want train PLAN model this parameter represents neuron count of each hidden layer for MLP. Default: None (PLAN)
43
+
44
+ activation_functions (list[str], optional): If you dont want train PLAN model this parameter represents activation function of each hidden layer for MLP. Default: None (PLAN) NOTE: THIS EFFECTS HIDDEN LAYERS OUTPUT. NOT OUTPUT LAYER!
39
45
 
40
46
  dtype (cupy.dtype): Data type for the arrays. np.float32 by default. Example: cp.float64 or cp.float16.
41
47
 
@@ -51,25 +57,59 @@ def define_genomes(input_shape, output_shape, population_size, dtype=cp.float32)
51
57
  The weights for each genome are then modified by applying the corresponding activation function
52
58
  and normalized using the `normalization()` function. (Max abs normalization.)
53
59
  """
54
- population_weights = [0] * population_size
55
- population_activations = [0] * population_size
60
+ if hidden > 0:
61
+ population_weights = [[0] * (hidden + 1) for _ in range(population_size)]
62
+ population_activations = [[0] * (hidden) for _ in range(population_size)]
63
+
64
+ if len(neurons) != hidden:
65
+ raise ValueError('hidden parameter and neurons list length must be equal.')
66
+
67
+
68
+ for i in range(len(population_weights)):
69
+
70
+ for l in range(hidden + 1):
71
+
72
+ if l == 0:
73
+ population_weights[i][l] = cp.random.uniform(-1, 1, (neurons[l], input_shape)).astype(dtype)
74
+
75
+ elif l == hidden:
76
+ population_weights[i][l] = cp.random.uniform(-1, 1, (output_shape, neurons[l-1])).astype(dtype)
77
+
78
+ else:
79
+ population_weights[i][l] = cp.random.uniform(-1, 1, (neurons[l], neurons[l-1])).astype(dtype)
80
+
81
+ if l != hidden:
82
+ population_activations[i][l] = activation_functions[l]
83
+
84
+ # ACTIVATIONS APPLYING IN WEIGHTS SPECIFIC OUTPUT CONNECTIONS (MORE PLAN LIKE FEATURES(FOR NON-LINEARITY)):
85
+
86
+ for j in range(population_weights[i][l].shape[0]):
87
+
88
+ population_weights[i][l][j,:] = apply_activation(population_weights[i][l][j,:], population_activations[i])
89
+ population_weights[i][l][j,:] = normalization(population_weights[i][l][j,:], dtype=dtype)
90
+
91
+ return population_weights, population_activations
92
+
93
+ else:
94
+ population_weights = [0] * population_size
95
+ population_activations = [0] * population_size
56
96
 
57
- except_this = ['spiral', 'circular']
58
- activations = [item for item in all_activations() if item not in except_this] # SPIRAL AND CIRCULAR ACTIVATION DISCARDED
97
+ except_this = ['spiral', 'circular']
98
+ activations = [item for item in all_activations() if item not in except_this] # SPIRAL AND CIRCULAR ACTIVATION DISCARDED
59
99
 
60
- for i in range(len(population_weights)):
100
+ for i in range(len(population_weights)):
61
101
 
62
- population_weights[i] = cp.random.uniform(-1, 1, (output_shape, input_shape)).astype(dtype, copy=False)
63
- population_activations[i] = activations[int(random.uniform(0, len(activations)-1))]
102
+ population_weights[i] = cp.random.uniform(-1, 1, (output_shape, input_shape)).astype(dtype, copy=False)
103
+ population_activations[i] = activations[int(random.uniform(0, len(activations)-1))]
64
104
 
65
- # ACTIVATIONS APPLYING IN WEIGHTS SPECIFIC OUTPUT CONNECTIONS (MORE PLAN LIKE FEATURES(FOR NON-LINEARITY)):
105
+ # ACTIVATIONS APPLYING IN WEIGHTS SPECIFIC OUTPUT CONNECTIONS (MORE PLAN LIKE FEATURES(FOR NON-LINEARITY)):
66
106
 
67
- for j in range(population_weights[i].shape[0]):
107
+ for j in range(population_weights[i].shape[0]):
68
108
 
69
- population_weights[i][j,:] = apply_activation(population_weights[i][j,:], population_activations[i])
70
- population_weights[i][j,:] = normalization(population_weights[i][j,:], dtype=dtype)
109
+ population_weights[i][j,:] = apply_activation(population_weights[i][j,:], population_activations[i])
110
+ population_weights[i][j,:] = normalization(population_weights[i][j,:], dtype=dtype)
71
111
 
72
- return cp.array(population_weights, dtype=dtype), population_activations
112
+ return cp.array(population_weights, dtype=dtype), population_activations
73
113
 
74
114
 
75
115
  def evolver(weights,
@@ -90,11 +130,12 @@ def evolver(weights,
90
130
  activation_mutate_change_prob=0.5,
91
131
  activation_selection_add_prob=0.5,
92
132
  activation_selection_change_prob=0.5,
93
- activation_selection_threshold=2,
133
+ activation_selection_threshold=20,
94
134
  activation_mutate_prob=1,
95
- activation_mutate_threshold=2,
135
+ activation_mutate_threshold=20,
96
136
  weight_mutate_threshold=16,
97
- weight_mutate_prob=1,
137
+ weight_mutate_prob=1,
138
+ is_mlp=False,
98
139
  dtype=cp.float32):
99
140
  """
100
141
  Applies the evolving process of a population of genomes using selection, crossover, mutation, and activation function potentiation.
@@ -107,8 +148,8 @@ def evolver(weights,
107
148
  weights (cupy.ndarray): Array of weights for each genome.
108
149
  (first returned value of define_genomes function)
109
150
 
110
- activation_potentiations (list): A list of activation functions for each genome.
111
- (second returned value of define_genomes function)
151
+ activation_potentiations (list[str]): A list of activation functions for each genome.
152
+ (second returned value of define_genomes function) NOTE!: 'activation potentiations' for PLAN 'activation functions' for MLP.
112
153
 
113
154
  what_gen (int): The current generation number, used for informational purposes or logging.
114
155
 
@@ -177,9 +218,11 @@ def evolver(weights,
177
218
  activation_selection_change_prob (float, optional): The probability of changing an activation function in the genome for crossover.
178
219
  Must be in the range [0, 1]. Default is 0.5.
179
220
 
180
- activation_mutate_threshold (int): Determines max how much activation mutaiton operation applying. (Function automaticly determines to min) Default: 2
221
+ activation_mutate_threshold (int): Determines max how much activation mutaiton operation applying. (Function automaticly determines to min) Default: 20
181
222
 
182
- activation_selection_threshold (int, optional): Determines max how much activaton transferable to child from undominant parent. (Function automaticly determines to min) Default: 2
223
+ activation_selection_threshold (int, optional): Determines max how much activaton transferable to child from undominant parent. (Function automaticly determines to min) Default: 20
224
+
225
+ is_mlp (bool, optional): Evolve PLAN model or MLP model ? Default: False (PLAN)
183
226
 
184
227
  dtype (cupy.dtype): Data type for the arrays. Default: cp.float32.
185
228
  Example: cp.float64 or cp.float16 [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not recommended!].
@@ -218,7 +261,7 @@ def evolver(weights,
218
261
 
219
262
  Example:
220
263
  ```python
221
- weights, activation_potentiations = planeat.evolver(weights, activation_potentiations, 1, fitness, show_info=True, strategy='normal_selective', policy='aggressive')
264
+ weights, activation_potentiations = planeat_cuda.evolver(weights, activation_potentiations, 1, fitness, show_info=True, strategy='normal_selective', policy='aggressive')
222
265
  ```
223
266
 
224
267
  - The function returns the updated weights and activations after processing based on the chosen strategy, policy, and mutation parameters.
@@ -267,6 +310,34 @@ def evolver(weights,
267
310
 
268
311
  if weight_evolve is False: origin_weights = cp.copy(weights)
269
312
 
313
+ if is_mlp: ### IF EACH GENOME HAVE MORE THEN 1 WEIGHT MATRIX IT IS NOT PLAN MODEL. IT IS MLP MODEL.
314
+
315
+ activations = activation_potentiations.copy()
316
+
317
+ return mlp_evolver(weights,
318
+ activations,
319
+ what_gen,
320
+ dtype,
321
+ fitness,
322
+ policy,
323
+ bad_genomes_selection_prob,
324
+ bar_status,
325
+ strategy,
326
+ bad_genomes_mutation_prob,
327
+ fitness_bias,
328
+ cross_over_mode,
329
+ activation_mutate_change_prob,
330
+ activation_selection_change_prob,
331
+ activation_selection_threshold,
332
+ activation_mutate_prob,
333
+ activation_mutate_threshold,
334
+ weight_mutate_threshold,
335
+ show_info,
336
+ weight_mutate_prob,
337
+ )
338
+
339
+ if isinstance(weights, list): weights = cp.array(weights, dtype=dtype)
340
+
270
341
  ### FITNESS LIST IS SORTED IN ASCENDING ORDER, AND THE WEIGHT AND ACTIVATIONS OF EACH GENOME ARE SORTED ACCORDING TO THIS ORDER:
271
342
 
272
343
  sort_indices = cp.argsort(fitness)
@@ -408,14 +479,14 @@ def evolver(weights,
408
479
  return weights, activation_potentiations
409
480
 
410
481
 
411
- def evaluate(x_population, weights, activation_potentiations):
482
+ def evaluate(Input, weights, activation_potentiations, is_mlp=False):
412
483
  """
413
484
  Evaluates the performance of a population of genomes, applying different activation functions
414
485
  and weights depending on whether reinforcement learning mode is enabled or not.
415
486
 
416
487
  Args:
417
- x_population (list or cupy.ndarray): A list or 2D numpy or cupy array where each element represents
418
- a genome (A list of input features for each genome, or a single set of input features for one genome (only in rl_mode)).
488
+ Input (list or cupy.ndarray): A list or 2D numpy or cupy array where each element represents
489
+ a genome (A list of input features for each genome, or a single set of input features for one genome).
419
490
 
420
491
  weights (list or cupy.ndarray): A list or 2D numpy array of weights corresponding to each genome
421
492
  in `x_population`. This determines the strength of connections.
@@ -423,17 +494,19 @@ def evaluate(x_population, weights, activation_potentiations):
423
494
  activation_potentiations (list or str): A list where each entry represents an activation function
424
495
  or a potentiation strategy applied to each genome. If only one
425
496
  activation function is used, this can be a single string.
497
+ is_mlp (bool, optional): Evaluate PLAN model or MLP model ? Default: False (PLAN)
498
+
426
499
  Returns:
427
500
  list: A list of outputs corresponding to each genome in the population after applying the respective
428
501
  activation function and weights.
429
502
 
430
503
  Example:
431
504
  ```python
432
- outputs = evaluate(x_population, weights, activation_potentiations)
505
+ outputs = evaluate(Input, weights, activation_potentiations)
433
506
  ```
434
507
 
435
508
  - The function returns a list of outputs after processing the population, where each element corresponds to
436
- the output for each genome in `x_population`.
509
+ the output for each genome in population.
437
510
  """
438
511
  ### THE OUTPUTS ARE RETURNED WHERE EACH GENOME'S OUTPUT MATCHES ITS INDEX:
439
512
 
@@ -442,11 +515,80 @@ def evaluate(x_population, weights, activation_potentiations):
442
515
  else:
443
516
  activation_potentiations = [item if isinstance(item, list) else [item] for item in activation_potentiations]
444
517
 
445
- x_population = apply_activation(x_population, activation_potentiations)
446
- result = x_population @ weights.T
518
+ if is_mlp:
519
+
520
+ layer = Input
521
+ for i in range(len(weights)):
522
+ if i != len(weights) - 1: layer = apply_activation(layer, activation_potentiations[i])
523
+ layer = layer @ weights[i].T
524
+
525
+ return layer
526
+
527
+ else:
447
528
 
448
- return result
529
+ Input = apply_activation(Input, activation_potentiations)
530
+ result = Input @ weights.T
531
+
532
+ return result
533
+
534
+ def mlp_evolver(weights,
535
+ activations,
536
+ generation,
537
+ dtype,
538
+ fitness,
539
+ policy,
540
+ bad_genomes_selection_prob,
541
+ bar_status,
542
+ strategy,
543
+ bad_genomes_mutation_prob,
544
+ fitness_bias,
545
+ cross_over_mode,
546
+ activation_mutate_change_prob,
547
+ activation_selection_change_prob,
548
+ activation_selection_threshold,
549
+ activation_mutate_prob,
550
+ activation_mutate_threshold,
551
+ weight_mutate_threshold,
552
+ show_info,
553
+ weight_mutate_prob,
554
+ ):
555
+
556
+ weights = split_nested_arrays(weights)
449
557
 
558
+ for layer in range(len(weights)):
559
+ if show_info == True:
560
+ if layer == len(weights) - 1:
561
+ show = True
562
+ else:
563
+ show = False
564
+ else:
565
+ show = False
566
+
567
+ weights[layer], activations = evolver(weights[layer], activations,
568
+ fitness=fitness,
569
+ what_gen=generation,
570
+ show_info=show,
571
+ policy=policy,
572
+ bad_genomes_selection_prob=bad_genomes_selection_prob,
573
+ bar_status=bar_status,
574
+ strategy=strategy,
575
+ bad_genomes_mutation_prob=bad_genomes_mutation_prob,
576
+ fitness_bias=fitness_bias,
577
+ cross_over_mode=cross_over_mode,
578
+ activation_mutate_add_prob=0,
579
+ activation_mutate_delete_prob=0,
580
+ activation_mutate_change_prob=activation_mutate_change_prob,
581
+ activation_selection_add_prob=0,
582
+ activation_selection_change_prob=activation_selection_change_prob,
583
+ activation_selection_threshold=activation_selection_threshold,
584
+ activation_mutate_prob=activation_mutate_prob,
585
+ activation_mutate_threshold=activation_mutate_threshold,
586
+ weight_mutate_threshold=weight_mutate_threshold,
587
+ weight_mutate_prob=weight_mutate_prob,
588
+ dtype=dtype
589
+ )
590
+
591
+ return reconstruct_nested_arrays(weights), activations
450
592
 
451
593
  def cross_over(first_parent_W,
452
594
  second_parent_W,
@@ -603,7 +745,7 @@ def cross_over(first_parent_W,
603
745
 
604
746
  while True:
605
747
 
606
- random_index = int(random.uniform(0, len(undominant_parent_act)-1))
748
+ random_index = int(random.uniform(0, len(undominant_parent_act)))
607
749
  random_undominant_activation = undominant_parent_act[random_index]
608
750
 
609
751
  child_act.append(random_undominant_activation)
@@ -625,8 +767,8 @@ def cross_over(first_parent_W,
625
767
 
626
768
  while True:
627
769
 
628
- random_index_undominant = int(random.uniform(0, len(undominant_parent_act)-1))
629
- random_index_dominant = int(random.uniform(0, len(dominant_parent_act)-1))
770
+ random_index_undominant = int(random.uniform(0, len(undominant_parent_act)))
771
+ random_index_dominant = int(random.uniform(0, len(dominant_parent_act)))
630
772
  random_undominant_activation = undominant_parent_act[random_index_undominant]
631
773
 
632
774
  child_act[random_index_dominant] = random_undominant_activation
@@ -749,7 +891,7 @@ def mutation(weight,
749
891
 
750
892
  if potential_activation_delete_prob > activation_delete_prob and len(activations) > 1:
751
893
 
752
- random_index = random.randint(0, len(activations) - 1)
894
+ random_index = random.randint(0, len(activations))
753
895
  activations.pop(random_index)
754
896
 
755
897
 
@@ -757,7 +899,7 @@ def mutation(weight,
757
899
 
758
900
  try:
759
901
 
760
- random_index_all_act = int(random.uniform(0, len(all_acts)-1))
902
+ random_index_all_act = int(random.uniform(0, len(all_acts)))
761
903
  activations.append(all_acts[random_index_all_act])
762
904
 
763
905
  except:
@@ -766,12 +908,12 @@ def mutation(weight,
766
908
  activations = []
767
909
 
768
910
  activations.append(activation)
769
- activations.append(all_acts[int(random.uniform(0, len(all_acts)-1))])
911
+ activations.append(all_acts[int(random.uniform(0, len(all_acts)))])
770
912
 
771
913
  if potential_activation_change_prob > activation_change_prob:
772
914
 
773
- random_index_all_act = int(random.uniform(0, len(all_acts)-1))
774
- random_index_genom_act = int(random.uniform(0, len(activations)-1))
915
+ random_index_all_act = int(random.uniform(0, len(all_acts)))
916
+ random_index_genom_act = int(random.uniform(0, len(activations)))
775
917
 
776
918
  activations[random_index_genom_act] = all_acts[random_index_all_act]
777
919
 
@@ -786,7 +928,7 @@ def mutation(weight,
786
928
  def second_parent_selection(good_weights, bad_weights, good_activations, bad_activations, bad_genomes_selection_prob):
787
929
 
788
930
  selection_prob = random.uniform(0, 1)
789
- random_index = int(random.uniform(0, len(good_weights) - 1))
931
+ random_index = int(random.uniform(0, len(good_weights)))
790
932
 
791
933
  if selection_prob > bad_genomes_selection_prob:
792
934
  second_selected_W = good_weights[random_index]
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.5.2b0
3
+ Version: 4.6
4
4
  Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,8 +1,8 @@
1
- pyerualjetwork/__init__.py,sha256=4sn4PeP5OH6s4k1M-rZDt1RlahliTEVJ-5Bg3wyGIk0,1281
1
+ pyerualjetwork/__init__.py,sha256=x-t4HMHrI5Jkh28DDHqIbhtTCHe6IaNhH1zLkC38phI,1277
2
2
  pyerualjetwork/activation_functions.py,sha256=Ms0AGBqkJuCA42ht64MSQnO54Td_1eDGquedpoBDVbc,7642
3
3
  pyerualjetwork/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
4
- pyerualjetwork/data_operations.py,sha256=Y_RdxkjLEszFgeo4VDWIX1keF2syP-88KesLXA5sRyY,15280
5
- pyerualjetwork/data_operations_cuda.py,sha256=9tyD3Bbv5__stuUampgh3_GbMhb_kmTTJmZi7BJsvuA,17381
4
+ pyerualjetwork/data_operations.py,sha256=TxfpwHWUpJ2E7IVF2uSmigrwpVL_JxrvGPOrMg2lNuI,15981
5
+ pyerualjetwork/data_operations_cuda.py,sha256=5e8EO-XRplSmmXcZJxxEISdxO3297ShsAKHswTh3kGQ,18084
6
6
  pyerualjetwork/fitness_functions.py,sha256=urRdeMvUhNgWxD4ZGHCRdQlIf9cTWYMvF3_aVBojRqY,1235
7
7
  pyerualjetwork/help.py,sha256=nQ_YbYA2RtuafhuvkreNpX0WWL1I_nzlelwCtvei0_Y,775
8
8
  pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
@@ -10,16 +10,16 @@ pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqd
10
10
  pyerualjetwork/memory_operations.py,sha256=0yCOHcgiNyF4ccMcRlL1Q9F_byG4nzjhmkbpXE_yU6E,13401
11
11
  pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
12
12
  pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
13
- pyerualjetwork/model_operations.py,sha256=BLRL_5s_KSs8iCiLsEwWvhRcGiWCP_TD9lsjYWM7Zek,12746
14
- pyerualjetwork/model_operations_cuda.py,sha256=b3Bkobbrhq28AmYZ0vGxf2Hf8V2LPvoiM0xaPAApqec,13254
13
+ pyerualjetwork/model_operations.py,sha256=cL0dGhsRxVnftNgMoghU03prw32czOgdSJM00jGASEk,15174
14
+ pyerualjetwork/model_operations_cuda.py,sha256=70SN64I6NnJzUm0IrOwHSw93oS4j_Vhi7pkk540DMXM,15780
15
15
  pyerualjetwork/plan.py,sha256=UyIvPmvHCHwczlc9KHolE4y6CPEeBfhnRN5yznSbnoM,23028
16
16
  pyerualjetwork/plan_cuda.py,sha256=iteqgv7x9Z2Pj4vGOZs6HXS3r0bNaF_smr7ZXaOdRnw,23990
17
- pyerualjetwork/planeat.py,sha256=_dnGRVBzdRUgvVCnHZ721tdXYV9PSvCz-aUnj--5VpU,38697
18
- pyerualjetwork/planeat_cuda.py,sha256=CXBF4vsTZ-fE-3W8Zc6Zxe_oKuyJS02FaHsOzSwzLV8,38731
17
+ pyerualjetwork/planeat.py,sha256=hZIzDbdRjyCA-wdraD0yJyG-Y8J2KadEqlITs-M_jPQ,45281
18
+ pyerualjetwork/planeat_cuda.py,sha256=uOvhTxG36jVu8_uHN8jSxGQqbwpSIPKqbXT1sFl0kU8,45326
19
19
  pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
20
20
  pyerualjetwork/visualizations.py,sha256=utnX9zQhzmtvBJLOLNGm2jecVVk4zHXABQdjb0XzJac,28352
21
21
  pyerualjetwork/visualizations_cuda.py,sha256=gnoaaazZ-nc9E1ImqXrZBRgQ4Rnpi2qh2yGJ2eLKMlE,28807
22
- pyerualjetwork-4.5.2b0.dist-info/METADATA,sha256=NR5_4DsomrEJETWRlfpcIDaAJtlipTDe4rhI-DZ4h4o,7507
23
- pyerualjetwork-4.5.2b0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
24
- pyerualjetwork-4.5.2b0.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
25
- pyerualjetwork-4.5.2b0.dist-info/RECORD,,
22
+ pyerualjetwork-4.6.dist-info/METADATA,sha256=aPR80cOeYMf7cRbWopJqwMUzvvZqvZOouaGV__rKu8I,7503
23
+ pyerualjetwork-4.6.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
24
+ pyerualjetwork-4.6.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
25
+ pyerualjetwork-4.6.dist-info/RECORD,,