pyerualjetwork 4.5.2b0__py3-none-any.whl → 4.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/data_operations.py +30 -1
- pyerualjetwork/data_operations_cuda.py +31 -1
- pyerualjetwork/model_operations.py +177 -101
- pyerualjetwork/model_operations_cuda.py +183 -105
- pyerualjetwork/planeat.py +175 -34
- pyerualjetwork/planeat_cuda.py +181 -39
- {pyerualjetwork-4.5.2b0.dist-info → pyerualjetwork-4.6.dist-info}/METADATA +1 -1
- {pyerualjetwork-4.5.2b0.dist-info → pyerualjetwork-4.6.dist-info}/RECORD +11 -11
- {pyerualjetwork-4.5.2b0.dist-info → pyerualjetwork-4.6.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.5.2b0.dist-info → pyerualjetwork-4.6.dist-info}/top_level.txt +0 -0
pyerualjetwork/planeat.py
CHANGED
@@ -17,11 +17,11 @@ import random
|
|
17
17
|
import math
|
18
18
|
|
19
19
|
### LIBRARY IMPORTS ###
|
20
|
-
from .data_operations import normalization, non_neg_normalization
|
20
|
+
from .data_operations import normalization, non_neg_normalization, split_nested_arrays, reconstruct_nested_arrays
|
21
21
|
from .ui import loading_bars, initialize_loading_bar
|
22
22
|
from .activation_functions import apply_activation, all_activations
|
23
23
|
|
24
|
-
def define_genomes(input_shape, output_shape, population_size, dtype=np.float32):
|
24
|
+
def define_genomes(input_shape, output_shape, population_size, hidden=0, neurons=None, activation_functions=None, dtype=np.float32):
|
25
25
|
"""
|
26
26
|
Initializes a population of genomes, where each genome is represented by a set of weights
|
27
27
|
and an associated activation function. Each genome is created with random weights and activation
|
@@ -35,6 +35,12 @@ def define_genomes(input_shape, output_shape, population_size, dtype=np.float32)
|
|
35
35
|
|
36
36
|
population_size (int): The number of genomes (individuals) in the population.
|
37
37
|
|
38
|
+
hidden (int, optional): If you dont want train PLAN model this parameter represents a hidden layer count for MLP model. Default: 0 (PLAN)
|
39
|
+
|
40
|
+
neurons (list[int], optional): If you dont want train PLAN model this parameter represents neuron count of each hidden layer for MLP. Default: None (PLAN)
|
41
|
+
|
42
|
+
activation_functions (list[str], optional): If you dont want train PLAN model this parameter represents activation function of each hidden layer for MLP. Default: None (PLAN) NOTE: THIS EFFECTS HIDDEN LAYERS OUTPUT. NOT OUTPUT LAYER!
|
43
|
+
|
38
44
|
dtype (numpy.dtype): Data type for the arrays. np.float32 by default. Example: np.float64 or np.float16.
|
39
45
|
|
40
46
|
Returns:
|
@@ -42,36 +48,70 @@ def define_genomes(input_shape, output_shape, population_size, dtype=np.float32)
|
|
42
48
|
- population_weights (numpy.ndarray): A 2D numpy array of shape (population_size, output_shape, input_shape) representing the
|
43
49
|
weight matrices for each genome.
|
44
50
|
- population_activations (list): A list of activation functions applied to each genome.
|
45
|
-
|
51
|
+
|
46
52
|
Notes:
|
47
53
|
The weights are initialized randomly within the range [-1, 1].
|
48
54
|
Activation functions are selected randomly from a predefined list `all_activations()`.
|
49
55
|
The weights for each genome are then modified by applying the corresponding activation function
|
50
56
|
and normalized using the `normalization()` function. (Max abs normalization.)
|
51
57
|
"""
|
52
|
-
|
53
|
-
|
58
|
+
if hidden > 0:
|
59
|
+
population_weights = [[0] * (hidden + 1) for _ in range(population_size)]
|
60
|
+
population_activations = [[0] * (hidden) for _ in range(population_size)]
|
61
|
+
|
62
|
+
if len(neurons) != hidden:
|
63
|
+
raise ValueError('hidden parameter and neurons list length must be equal.')
|
64
|
+
|
65
|
+
|
66
|
+
for i in range(len(population_weights)):
|
67
|
+
|
68
|
+
for l in range(hidden + 1):
|
69
|
+
|
70
|
+
if l == 0:
|
71
|
+
population_weights[i][l] = np.random.uniform(-1, 1, (neurons[l], input_shape)).astype(dtype)
|
72
|
+
|
73
|
+
elif l == hidden:
|
74
|
+
population_weights[i][l] = np.random.uniform(-1, 1, (output_shape, neurons[l-1])).astype(dtype)
|
75
|
+
|
76
|
+
else:
|
77
|
+
population_weights[i][l] = np.random.uniform(-1, 1, (neurons[l], neurons[l-1])).astype(dtype)
|
78
|
+
|
79
|
+
if l != hidden:
|
80
|
+
population_activations[i][l] = activation_functions[l]
|
81
|
+
|
82
|
+
# ACTIVATIONS APPLYING IN WEIGHTS SPECIFIC OUTPUT CONNECTIONS (MORE PLAN LIKE FEATURES(FOR NON-LINEARITY)):
|
83
|
+
|
84
|
+
for j in range(population_weights[i][l].shape[0]):
|
85
|
+
|
86
|
+
population_weights[i][l][j,:] = apply_activation(population_weights[i][l][j,:], population_activations[i])
|
87
|
+
population_weights[i][l][j,:] = normalization(population_weights[i][l][j,:], dtype=dtype)
|
88
|
+
|
89
|
+
return population_weights, population_activations
|
90
|
+
|
91
|
+
else:
|
92
|
+
population_weights = [0] * population_size
|
93
|
+
population_activations = [0] * population_size
|
54
94
|
|
55
|
-
|
56
|
-
|
95
|
+
except_this = ['spiral', 'circular']
|
96
|
+
activations = [item for item in all_activations() if item not in except_this] # SPIRAL AND CIRCULAR ACTIVATION DISCARDED
|
57
97
|
|
58
|
-
|
98
|
+
for i in range(len(population_weights)):
|
59
99
|
|
60
|
-
|
61
|
-
|
100
|
+
population_weights[i] = np.random.uniform(-1, 1, (output_shape, input_shape)).astype(dtype)
|
101
|
+
population_activations[i] = activations[int(random.uniform(0, len(activations)-1))]
|
62
102
|
|
63
|
-
|
103
|
+
# ACTIVATIONS APPLYING IN WEIGHTS SPECIFIC OUTPUT CONNECTIONS (MORE PLAN LIKE FEATURES(FOR NON-LINEARITY)):
|
64
104
|
|
65
|
-
|
105
|
+
for j in range(population_weights[i].shape[0]):
|
66
106
|
|
67
|
-
|
68
|
-
|
107
|
+
population_weights[i][j,:] = apply_activation(population_weights[i][j,:], population_activations[i])
|
108
|
+
population_weights[i][j,:] = normalization(population_weights[i][j,:], dtype=dtype)
|
69
109
|
|
70
|
-
|
110
|
+
return np.array(population_weights, dtype=dtype), population_activations
|
71
111
|
|
72
112
|
|
73
113
|
def evolver(weights,
|
74
|
-
activation_potentiations,
|
114
|
+
activation_potentiations,
|
75
115
|
what_gen,
|
76
116
|
fitness,
|
77
117
|
weight_evolve=True,
|
@@ -88,11 +128,12 @@ def evolver(weights,
|
|
88
128
|
activation_mutate_change_prob=0.5,
|
89
129
|
activation_selection_add_prob=0.5,
|
90
130
|
activation_selection_change_prob=0.5,
|
91
|
-
activation_selection_threshold=
|
131
|
+
activation_selection_threshold=20,
|
92
132
|
activation_mutate_prob=1,
|
93
|
-
activation_mutate_threshold=
|
133
|
+
activation_mutate_threshold=20,
|
94
134
|
weight_mutate_threshold=16,
|
95
135
|
weight_mutate_prob=1,
|
136
|
+
is_mlp=False,
|
96
137
|
dtype=np.float32):
|
97
138
|
"""
|
98
139
|
Applies the evolving process of a population of genomes using selection, crossover, mutation, and activation function potentiation.
|
@@ -105,8 +146,8 @@ def evolver(weights,
|
|
105
146
|
weights (numpy.ndarray): Array of weights for each genome.
|
106
147
|
(first returned value of define_genomes function)
|
107
148
|
|
108
|
-
activation_potentiations (list): A list of activation functions for each genome.
|
109
|
-
(second returned value of define_genomes function)
|
149
|
+
activation_potentiations (list[str]): A list of activation functions for each genome.
|
150
|
+
(second returned value of define_genomes function) NOTE!: 'activation potentiations' for PLAN 'activation functions' for MLP.
|
110
151
|
|
111
152
|
what_gen (int): The current generation number, used for informational purposes or logging.
|
112
153
|
|
@@ -175,10 +216,12 @@ def evolver(weights,
|
|
175
216
|
activation_selection_change_prob (float, optional): The probability of changing an activation function in the genome for crossover.
|
176
217
|
Must be in the range [0, 1]. Default is 0.5.
|
177
218
|
|
178
|
-
activation_mutate_threshold (int, optional): Determines max how much activation mutaiton operation applying. (Function automaticly determines to min) Default:
|
219
|
+
activation_mutate_threshold (int, optional): Determines max how much activation mutaiton operation applying. (Function automaticly determines to min) Default: 20
|
179
220
|
|
180
|
-
activation_selection_threshold (int, optional): Determines max how much activaton transferable to child from undominant parent. (Function automaticly determines to min) Default:
|
221
|
+
activation_selection_threshold (int, optional): Determines max how much activaton transferable to child from undominant parent. (Function automaticly determines to min) Default: 20
|
181
222
|
|
223
|
+
is_mlp (bool, optional): Evolve PLAN model or MLP model ? Default: False (PLAN)
|
224
|
+
|
182
225
|
dtype (numpy.dtype, optional): Data type for the arrays. Default: np.float32.
|
183
226
|
Example: np.float64 or np.float16 [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not recommended!].
|
184
227
|
|
@@ -266,6 +309,34 @@ def evolver(weights,
|
|
266
309
|
|
267
310
|
if weight_evolve is False: origin_weights = np.copy(weights)
|
268
311
|
|
312
|
+
if is_mlp: ### IF EACH GENOME HAVE MORE THEN 1 WEIGHT MATRIX IT IS NOT PLAN MODEL. IT IS MLP MODEL.
|
313
|
+
|
314
|
+
activations = activation_potentiations.copy()
|
315
|
+
|
316
|
+
return mlp_evolver(weights,
|
317
|
+
activations,
|
318
|
+
what_gen,
|
319
|
+
dtype,
|
320
|
+
fitness,
|
321
|
+
policy,
|
322
|
+
bad_genomes_selection_prob,
|
323
|
+
bar_status,
|
324
|
+
strategy,
|
325
|
+
bad_genomes_mutation_prob,
|
326
|
+
fitness_bias,
|
327
|
+
cross_over_mode,
|
328
|
+
activation_mutate_change_prob,
|
329
|
+
activation_selection_change_prob,
|
330
|
+
activation_selection_threshold,
|
331
|
+
activation_mutate_prob,
|
332
|
+
activation_mutate_threshold,
|
333
|
+
weight_mutate_threshold,
|
334
|
+
show_info,
|
335
|
+
weight_mutate_prob,
|
336
|
+
)
|
337
|
+
|
338
|
+
if isinstance(weights, list): weights = np.array(weights, dtype=dtype)
|
339
|
+
|
269
340
|
### FITNESS IS SORTED IN ASCENDING ORDER, AND THE WEIGHT AND ACTIVATIONS OF EACH GENOME ARE SORTED ACCORDING TO THIS ORDER:
|
270
341
|
|
271
342
|
sort_indices = np.argsort(fitness)
|
@@ -408,44 +479,114 @@ def evolver(weights,
|
|
408
479
|
return weights, activation_potentiations
|
409
480
|
|
410
481
|
|
411
|
-
def evaluate(
|
482
|
+
def evaluate(Input, weights, activation_potentiations, is_mlp=False):
|
412
483
|
"""
|
413
484
|
Evaluates the performance of a population of genomes, applying different activation functions
|
414
485
|
and weights depending on whether reinforcement learning mode is enabled or not.
|
415
486
|
|
416
487
|
Args:
|
417
|
-
|
418
|
-
a genome (A list of input features for each genome, or a single set of input features for one genome
|
488
|
+
Input (list or numpy.ndarray): A list or 2D numpy array where each element represents
|
489
|
+
a genome (A list of input features for each genome, or a single set of input features for one genome).
|
419
490
|
weights (list or numpy.ndarray): A list or 2D numpy array of weights corresponding to each genome
|
420
491
|
in `x_population`. This determines the strength of connections.
|
421
492
|
activation_potentiations (list or str): A list where each entry represents an activation function
|
422
493
|
or a potentiation strategy applied to each genome. If only one
|
423
494
|
activation function is used, this can be a single string.
|
495
|
+
is_mlp (bool, optional): Evaluate PLAN model or MLP model ? Default: False (PLAN)
|
496
|
+
|
424
497
|
Returns:
|
425
498
|
list: A list of outputs corresponding to each genome in the population after applying the respective
|
426
499
|
activation function and weights.
|
427
500
|
|
428
501
|
Example:
|
429
502
|
```python
|
430
|
-
outputs = evaluate(
|
503
|
+
outputs = evaluate(Input, weights, activation_potentiations)
|
431
504
|
```
|
432
505
|
|
433
506
|
- The function returns a list of outputs after processing the population, where each element corresponds to
|
434
|
-
the output for each genome in
|
435
|
-
"""
|
507
|
+
the output for each genome in population.
|
508
|
+
"""
|
436
509
|
### THE OUTPUTS ARE RETURNED, WHERE EACH GENOME'S OUTPUT MATCHES ITS INDEX:
|
437
|
-
|
510
|
+
|
438
511
|
|
439
512
|
if isinstance(activation_potentiations, str):
|
440
513
|
activation_potentiations = [activation_potentiations]
|
441
514
|
else:
|
442
515
|
activation_potentiations = [item if isinstance(item, list) else [item] for item in activation_potentiations]
|
443
516
|
|
444
|
-
|
445
|
-
|
517
|
+
if is_mlp:
|
518
|
+
layer = Input
|
519
|
+
for i in range(len(weights)):
|
520
|
+
if i != len(weights) - 1: layer = apply_activation(layer, activation_potentiations[i])
|
521
|
+
layer = layer @ weights[i].T
|
522
|
+
|
523
|
+
return layer
|
446
524
|
|
447
|
-
|
525
|
+
else:
|
448
526
|
|
527
|
+
Input = apply_activation(Input, activation_potentiations)
|
528
|
+
result = Input @ weights.T
|
529
|
+
|
530
|
+
return result
|
531
|
+
|
532
|
+
def mlp_evolver(weights,
|
533
|
+
activations,
|
534
|
+
generation,
|
535
|
+
dtype,
|
536
|
+
fitness,
|
537
|
+
policy,
|
538
|
+
bad_genomes_selection_prob,
|
539
|
+
bar_status,
|
540
|
+
strategy,
|
541
|
+
bad_genomes_mutation_prob,
|
542
|
+
fitness_bias,
|
543
|
+
cross_over_mode,
|
544
|
+
activation_mutate_change_prob,
|
545
|
+
activation_selection_change_prob,
|
546
|
+
activation_selection_threshold,
|
547
|
+
activation_mutate_prob,
|
548
|
+
activation_mutate_threshold,
|
549
|
+
weight_mutate_threshold,
|
550
|
+
show_info,
|
551
|
+
weight_mutate_prob,
|
552
|
+
):
|
553
|
+
|
554
|
+
weights = split_nested_arrays(weights)
|
555
|
+
|
556
|
+
for layer in range(len(weights)):
|
557
|
+
if show_info == True:
|
558
|
+
if layer == len(weights) - 1:
|
559
|
+
show = True
|
560
|
+
else:
|
561
|
+
show = False
|
562
|
+
else:
|
563
|
+
show = False
|
564
|
+
|
565
|
+
weights[layer], activations = evolver(weights[layer], activations,
|
566
|
+
fitness=fitness,
|
567
|
+
what_gen=generation,
|
568
|
+
show_info=show,
|
569
|
+
policy=policy,
|
570
|
+
bad_genomes_selection_prob=bad_genomes_selection_prob,
|
571
|
+
bar_status=bar_status,
|
572
|
+
strategy=strategy,
|
573
|
+
bad_genomes_mutation_prob=bad_genomes_mutation_prob,
|
574
|
+
fitness_bias=fitness_bias,
|
575
|
+
cross_over_mode=cross_over_mode,
|
576
|
+
activation_mutate_add_prob=0,
|
577
|
+
activation_mutate_delete_prob=0,
|
578
|
+
activation_mutate_change_prob=activation_mutate_change_prob,
|
579
|
+
activation_selection_add_prob=0,
|
580
|
+
activation_selection_change_prob=activation_selection_change_prob,
|
581
|
+
activation_selection_threshold=activation_selection_threshold,
|
582
|
+
activation_mutate_prob=activation_mutate_prob,
|
583
|
+
activation_mutate_threshold=activation_mutate_threshold,
|
584
|
+
weight_mutate_threshold=weight_mutate_threshold,
|
585
|
+
weight_mutate_prob=weight_mutate_prob,
|
586
|
+
dtype=dtype
|
587
|
+
)
|
588
|
+
|
589
|
+
return reconstruct_nested_arrays(weights), activations
|
449
590
|
|
450
591
|
def cross_over(first_parent_W,
|
451
592
|
second_parent_W,
|
@@ -748,7 +889,7 @@ def mutation(weight,
|
|
748
889
|
|
749
890
|
if potential_activation_delete_prob > activation_delete_prob and len(activations) > 1:
|
750
891
|
|
751
|
-
random_index = random.randint(0, len(activations)
|
892
|
+
random_index = random.randint(0, len(activations)-1)
|
752
893
|
activations.pop(random_index)
|
753
894
|
|
754
895
|
|
@@ -785,7 +926,7 @@ def mutation(weight,
|
|
785
926
|
def second_parent_selection(good_weights, bad_weights, good_activations, bad_activations, bad_genomes_selection_prob):
|
786
927
|
|
787
928
|
selection_prob = random.uniform(0, 1)
|
788
|
-
random_index = int(random.uniform(0, len(good_weights)
|
929
|
+
random_index = int(random.uniform(0, len(good_weights)-1))
|
789
930
|
|
790
931
|
if selection_prob > bad_genomes_selection_prob:
|
791
932
|
second_selected_W = good_weights[random_index]
|