pyerualjetwork 4.5.2__py3-none-any.whl → 4.5.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,4 +1,4 @@
1
- __version__ = "4.5.2"
1
+ __version__ = "4.5.3"
2
2
  __update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
3
3
  * PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
4
4
  * PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
pyerualjetwork/planeat.py CHANGED
@@ -88,9 +88,9 @@ def evolver(weights,
88
88
  activation_mutate_change_prob=0.5,
89
89
  activation_selection_add_prob=0.5,
90
90
  activation_selection_change_prob=0.5,
91
- activation_selection_threshold=2,
91
+ activation_selection_threshold=20,
92
92
  activation_mutate_prob=1,
93
- activation_mutate_threshold=2,
93
+ activation_mutate_threshold=20,
94
94
  weight_mutate_threshold=16,
95
95
  weight_mutate_prob=1,
96
96
  dtype=np.float32):
@@ -175,9 +175,9 @@ def evolver(weights,
175
175
  activation_selection_change_prob (float, optional): The probability of changing an activation function in the genome for crossover.
176
176
  Must be in the range [0, 1]. Default is 0.5.
177
177
 
178
- activation_mutate_threshold (int, optional): Determines max how much activation mutaiton operation applying. (Function automaticly determines to min) Default: 2
178
+ activation_mutate_threshold (int, optional): Determines max how much activation mutaiton operation applying. (Function automaticly determines to min) Default: 20
179
179
 
180
- activation_selection_threshold (int, optional): Determines max how much activaton transferable to child from undominant parent. (Function automaticly determines to min) Default: 2
180
+ activation_selection_threshold (int, optional): Determines max how much activaton transferable to child from undominant parent. (Function automaticly determines to min) Default: 20
181
181
 
182
182
  dtype (numpy.dtype, optional): Data type for the arrays. Default: np.float32.
183
183
  Example: np.float64 or np.float16 [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not recommended!].
@@ -408,14 +408,14 @@ def evolver(weights,
408
408
  return weights, activation_potentiations
409
409
 
410
410
 
411
- def evaluate(x_population, weights, activation_potentiations):
411
+ def evaluate(Input, weights, activation_potentiations):
412
412
  """
413
413
  Evaluates the performance of a population of genomes, applying different activation functions
414
414
  and weights depending on whether reinforcement learning mode is enabled or not.
415
415
 
416
416
  Args:
417
- x_population (list or numpy.ndarray): A list or 2D numpy array where each element represents
418
- a genome (A list of input features for each genome, or a single set of input features for one genome (only in rl_mode)).
417
+ Input (list or numpy.ndarray): A list or 2D numpy array where each element represents
418
+ a genome (A list of input features for each genome, or a single set of input features for one genome).
419
419
  weights (list or numpy.ndarray): A list or 2D numpy array of weights corresponding to each genome
420
420
  in `x_population`. This determines the strength of connections.
421
421
  activation_potentiations (list or str): A list where each entry represents an activation function
@@ -427,22 +427,21 @@ def evaluate(x_population, weights, activation_potentiations):
427
427
 
428
428
  Example:
429
429
  ```python
430
- outputs = evaluate(x_population, weights, activation_potentiations)
430
+ outputs = evaluate(Input, weights, activation_potentiations)
431
431
  ```
432
432
 
433
433
  - The function returns a list of outputs after processing the population, where each element corresponds to
434
- the output for each genome in `x_population`.
434
+ the output for each genome in population.
435
435
  """
436
436
  ### THE OUTPUTS ARE RETURNED, WHERE EACH GENOME'S OUTPUT MATCHES ITS INDEX:
437
-
438
437
 
439
438
  if isinstance(activation_potentiations, str):
440
439
  activation_potentiations = [activation_potentiations]
441
440
  else:
442
441
  activation_potentiations = [item if isinstance(item, list) else [item] for item in activation_potentiations]
443
442
 
444
- x_population = apply_activation(x_population, activation_potentiations)
445
- result = x_population @ weights.T
443
+ Input = apply_activation(Input, activation_potentiations)
444
+ result = Input @ weights.T
446
445
 
447
446
  return result
448
447
 
@@ -90,9 +90,9 @@ def evolver(weights,
90
90
  activation_mutate_change_prob=0.5,
91
91
  activation_selection_add_prob=0.5,
92
92
  activation_selection_change_prob=0.5,
93
- activation_selection_threshold=2,
93
+ activation_selection_threshold=20,
94
94
  activation_mutate_prob=1,
95
- activation_mutate_threshold=2,
95
+ activation_mutate_threshold=20,
96
96
  weight_mutate_threshold=16,
97
97
  weight_mutate_prob=1,
98
98
  dtype=cp.float32):
@@ -177,9 +177,9 @@ def evolver(weights,
177
177
  activation_selection_change_prob (float, optional): The probability of changing an activation function in the genome for crossover.
178
178
  Must be in the range [0, 1]. Default is 0.5.
179
179
 
180
- activation_mutate_threshold (int): Determines max how much activation mutaiton operation applying. (Function automaticly determines to min) Default: 2
180
+ activation_mutate_threshold (int): Determines max how much activation mutaiton operation applying. (Function automaticly determines to min) Default: 20
181
181
 
182
- activation_selection_threshold (int, optional): Determines max how much activaton transferable to child from undominant parent. (Function automaticly determines to min) Default: 2
182
+ activation_selection_threshold (int, optional): Determines max how much activaton transferable to child from undominant parent. (Function automaticly determines to min) Default: 20
183
183
 
184
184
  dtype (cupy.dtype): Data type for the arrays. Default: cp.float32.
185
185
  Example: cp.float64 or cp.float16 [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not recommended!].
@@ -408,14 +408,14 @@ def evolver(weights,
408
408
  return weights, activation_potentiations
409
409
 
410
410
 
411
- def evaluate(x_population, weights, activation_potentiations):
411
+ def evaluate(Input, weights, activation_potentiations):
412
412
  """
413
413
  Evaluates the performance of a population of genomes, applying different activation functions
414
414
  and weights depending on whether reinforcement learning mode is enabled or not.
415
415
 
416
416
  Args:
417
- x_population (list or cupy.ndarray): A list or 2D numpy or cupy array where each element represents
418
- a genome (A list of input features for each genome, or a single set of input features for one genome (only in rl_mode)).
417
+ Input (list or cupy.ndarray): A list or 2D numpy or cupy array where each element represents
418
+ a genome (A list of input features for each genome, or a single set of input features for one genome).
419
419
 
420
420
  weights (list or cupy.ndarray): A list or 2D numpy array of weights corresponding to each genome
421
421
  in `x_population`. This determines the strength of connections.
@@ -429,11 +429,11 @@ def evaluate(x_population, weights, activation_potentiations):
429
429
 
430
430
  Example:
431
431
  ```python
432
- outputs = evaluate(x_population, weights, activation_potentiations)
432
+ outputs = evaluate(Input, weights, activation_potentiations)
433
433
  ```
434
434
 
435
435
  - The function returns a list of outputs after processing the population, where each element corresponds to
436
- the output for each genome in `x_population`.
436
+ the output for each genome in population.
437
437
  """
438
438
  ### THE OUTPUTS ARE RETURNED WHERE EACH GENOME'S OUTPUT MATCHES ITS INDEX:
439
439
 
@@ -442,8 +442,8 @@ def evaluate(x_population, weights, activation_potentiations):
442
442
  else:
443
443
  activation_potentiations = [item if isinstance(item, list) else [item] for item in activation_potentiations]
444
444
 
445
- x_population = apply_activation(x_population, activation_potentiations)
446
- result = x_population @ weights.T
445
+ Input = apply_activation(Input, activation_potentiations)
446
+ result = Input @ weights.T
447
447
 
448
448
  return result
449
449
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.5.2
3
+ Version: 4.5.3
4
4
  Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,4 +1,4 @@
1
- pyerualjetwork/__init__.py,sha256=gLefqpCFeKrA5712LsxchV-J2cN2QfDpGNwouaCaoAM,1279
1
+ pyerualjetwork/__init__.py,sha256=TdzilnzcR7WrAFk69ujThtXkM5baDMO-tPM2D_ZwTeM,1279
2
2
  pyerualjetwork/activation_functions.py,sha256=Ms0AGBqkJuCA42ht64MSQnO54Td_1eDGquedpoBDVbc,7642
3
3
  pyerualjetwork/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
4
4
  pyerualjetwork/data_operations.py,sha256=Y_RdxkjLEszFgeo4VDWIX1keF2syP-88KesLXA5sRyY,15280
@@ -14,12 +14,12 @@ pyerualjetwork/model_operations.py,sha256=BLRL_5s_KSs8iCiLsEwWvhRcGiWCP_TD9lsjYW
14
14
  pyerualjetwork/model_operations_cuda.py,sha256=b3Bkobbrhq28AmYZ0vGxf2Hf8V2LPvoiM0xaPAApqec,13254
15
15
  pyerualjetwork/plan.py,sha256=UyIvPmvHCHwczlc9KHolE4y6CPEeBfhnRN5yznSbnoM,23028
16
16
  pyerualjetwork/plan_cuda.py,sha256=iteqgv7x9Z2Pj4vGOZs6HXS3r0bNaF_smr7ZXaOdRnw,23990
17
- pyerualjetwork/planeat.py,sha256=_dnGRVBzdRUgvVCnHZ721tdXYV9PSvCz-aUnj--5VpU,38697
18
- pyerualjetwork/planeat_cuda.py,sha256=v-R_ZpnSeIFeSxfYOvSTXfetnfaECap2f84jBEu7X-Q,38736
17
+ pyerualjetwork/planeat.py,sha256=mOAdmoXQI8APNrpq9OlebkXDme5uu-Q4kFBhkiDZcbA,38632
18
+ pyerualjetwork/planeat_cuda.py,sha256=unBeaaSN6rLcbjbRn97vG2yz8pZkcRX8pU8LTBY57ao,38676
19
19
  pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
20
20
  pyerualjetwork/visualizations.py,sha256=utnX9zQhzmtvBJLOLNGm2jecVVk4zHXABQdjb0XzJac,28352
21
21
  pyerualjetwork/visualizations_cuda.py,sha256=gnoaaazZ-nc9E1ImqXrZBRgQ4Rnpi2qh2yGJ2eLKMlE,28807
22
- pyerualjetwork-4.5.2.dist-info/METADATA,sha256=mLFwYOUwuZ7czsv52GiAMdtP59QAORXBOVrefWXadfw,7505
23
- pyerualjetwork-4.5.2.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
24
- pyerualjetwork-4.5.2.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
25
- pyerualjetwork-4.5.2.dist-info/RECORD,,
22
+ pyerualjetwork-4.5.3.dist-info/METADATA,sha256=lZGj9ylqsyFAi3iUiWCRxDkrHLlCPubLterHaMm3QGk,7505
23
+ pyerualjetwork-4.5.3.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
24
+ pyerualjetwork-4.5.3.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
25
+ pyerualjetwork-4.5.3.dist-info/RECORD,,