pyerualjetwork 4.5.2__py3-none-any.whl → 4.5.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/planeat.py +11 -12
- pyerualjetwork/planeat_cuda.py +11 -11
- {pyerualjetwork-4.5.2.dist-info → pyerualjetwork-4.5.3.dist-info}/METADATA +1 -1
- {pyerualjetwork-4.5.2.dist-info → pyerualjetwork-4.5.3.dist-info}/RECORD +7 -7
- {pyerualjetwork-4.5.2.dist-info → pyerualjetwork-4.5.3.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.5.2.dist-info → pyerualjetwork-4.5.3.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
__version__ = "4.5.
|
1
|
+
__version__ = "4.5.3"
|
2
2
|
__update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
|
3
3
|
* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
|
4
4
|
* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
|
pyerualjetwork/planeat.py
CHANGED
@@ -88,9 +88,9 @@ def evolver(weights,
|
|
88
88
|
activation_mutate_change_prob=0.5,
|
89
89
|
activation_selection_add_prob=0.5,
|
90
90
|
activation_selection_change_prob=0.5,
|
91
|
-
activation_selection_threshold=
|
91
|
+
activation_selection_threshold=20,
|
92
92
|
activation_mutate_prob=1,
|
93
|
-
activation_mutate_threshold=
|
93
|
+
activation_mutate_threshold=20,
|
94
94
|
weight_mutate_threshold=16,
|
95
95
|
weight_mutate_prob=1,
|
96
96
|
dtype=np.float32):
|
@@ -175,9 +175,9 @@ def evolver(weights,
|
|
175
175
|
activation_selection_change_prob (float, optional): The probability of changing an activation function in the genome for crossover.
|
176
176
|
Must be in the range [0, 1]. Default is 0.5.
|
177
177
|
|
178
|
-
activation_mutate_threshold (int, optional): Determines max how much activation mutaiton operation applying. (Function automaticly determines to min) Default:
|
178
|
+
activation_mutate_threshold (int, optional): Determines max how much activation mutaiton operation applying. (Function automaticly determines to min) Default: 20
|
179
179
|
|
180
|
-
activation_selection_threshold (int, optional): Determines max how much activaton transferable to child from undominant parent. (Function automaticly determines to min) Default:
|
180
|
+
activation_selection_threshold (int, optional): Determines max how much activaton transferable to child from undominant parent. (Function automaticly determines to min) Default: 20
|
181
181
|
|
182
182
|
dtype (numpy.dtype, optional): Data type for the arrays. Default: np.float32.
|
183
183
|
Example: np.float64 or np.float16 [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not recommended!].
|
@@ -408,14 +408,14 @@ def evolver(weights,
|
|
408
408
|
return weights, activation_potentiations
|
409
409
|
|
410
410
|
|
411
|
-
def evaluate(
|
411
|
+
def evaluate(Input, weights, activation_potentiations):
|
412
412
|
"""
|
413
413
|
Evaluates the performance of a population of genomes, applying different activation functions
|
414
414
|
and weights depending on whether reinforcement learning mode is enabled or not.
|
415
415
|
|
416
416
|
Args:
|
417
|
-
|
418
|
-
a genome (A list of input features for each genome, or a single set of input features for one genome
|
417
|
+
Input (list or numpy.ndarray): A list or 2D numpy array where each element represents
|
418
|
+
a genome (A list of input features for each genome, or a single set of input features for one genome).
|
419
419
|
weights (list or numpy.ndarray): A list or 2D numpy array of weights corresponding to each genome
|
420
420
|
in `x_population`. This determines the strength of connections.
|
421
421
|
activation_potentiations (list or str): A list where each entry represents an activation function
|
@@ -427,22 +427,21 @@ def evaluate(x_population, weights, activation_potentiations):
|
|
427
427
|
|
428
428
|
Example:
|
429
429
|
```python
|
430
|
-
outputs = evaluate(
|
430
|
+
outputs = evaluate(Input, weights, activation_potentiations)
|
431
431
|
```
|
432
432
|
|
433
433
|
- The function returns a list of outputs after processing the population, where each element corresponds to
|
434
|
-
the output for each genome in
|
434
|
+
the output for each genome in population.
|
435
435
|
"""
|
436
436
|
### THE OUTPUTS ARE RETURNED, WHERE EACH GENOME'S OUTPUT MATCHES ITS INDEX:
|
437
|
-
|
438
437
|
|
439
438
|
if isinstance(activation_potentiations, str):
|
440
439
|
activation_potentiations = [activation_potentiations]
|
441
440
|
else:
|
442
441
|
activation_potentiations = [item if isinstance(item, list) else [item] for item in activation_potentiations]
|
443
442
|
|
444
|
-
|
445
|
-
result =
|
443
|
+
Input = apply_activation(Input, activation_potentiations)
|
444
|
+
result = Input @ weights.T
|
446
445
|
|
447
446
|
return result
|
448
447
|
|
pyerualjetwork/planeat_cuda.py
CHANGED
@@ -90,9 +90,9 @@ def evolver(weights,
|
|
90
90
|
activation_mutate_change_prob=0.5,
|
91
91
|
activation_selection_add_prob=0.5,
|
92
92
|
activation_selection_change_prob=0.5,
|
93
|
-
activation_selection_threshold=
|
93
|
+
activation_selection_threshold=20,
|
94
94
|
activation_mutate_prob=1,
|
95
|
-
activation_mutate_threshold=
|
95
|
+
activation_mutate_threshold=20,
|
96
96
|
weight_mutate_threshold=16,
|
97
97
|
weight_mutate_prob=1,
|
98
98
|
dtype=cp.float32):
|
@@ -177,9 +177,9 @@ def evolver(weights,
|
|
177
177
|
activation_selection_change_prob (float, optional): The probability of changing an activation function in the genome for crossover.
|
178
178
|
Must be in the range [0, 1]. Default is 0.5.
|
179
179
|
|
180
|
-
activation_mutate_threshold (int): Determines max how much activation mutaiton operation applying. (Function automaticly determines to min) Default:
|
180
|
+
activation_mutate_threshold (int): Determines max how much activation mutaiton operation applying. (Function automaticly determines to min) Default: 20
|
181
181
|
|
182
|
-
activation_selection_threshold (int, optional): Determines max how much activaton transferable to child from undominant parent. (Function automaticly determines to min) Default:
|
182
|
+
activation_selection_threshold (int, optional): Determines max how much activaton transferable to child from undominant parent. (Function automaticly determines to min) Default: 20
|
183
183
|
|
184
184
|
dtype (cupy.dtype): Data type for the arrays. Default: cp.float32.
|
185
185
|
Example: cp.float64 or cp.float16 [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not recommended!].
|
@@ -408,14 +408,14 @@ def evolver(weights,
|
|
408
408
|
return weights, activation_potentiations
|
409
409
|
|
410
410
|
|
411
|
-
def evaluate(
|
411
|
+
def evaluate(Input, weights, activation_potentiations):
|
412
412
|
"""
|
413
413
|
Evaluates the performance of a population of genomes, applying different activation functions
|
414
414
|
and weights depending on whether reinforcement learning mode is enabled or not.
|
415
415
|
|
416
416
|
Args:
|
417
|
-
|
418
|
-
a genome (A list of input features for each genome, or a single set of input features for one genome
|
417
|
+
Input (list or cupy.ndarray): A list or 2D numpy or cupy array where each element represents
|
418
|
+
a genome (A list of input features for each genome, or a single set of input features for one genome).
|
419
419
|
|
420
420
|
weights (list or cupy.ndarray): A list or 2D numpy array of weights corresponding to each genome
|
421
421
|
in `x_population`. This determines the strength of connections.
|
@@ -429,11 +429,11 @@ def evaluate(x_population, weights, activation_potentiations):
|
|
429
429
|
|
430
430
|
Example:
|
431
431
|
```python
|
432
|
-
outputs = evaluate(
|
432
|
+
outputs = evaluate(Input, weights, activation_potentiations)
|
433
433
|
```
|
434
434
|
|
435
435
|
- The function returns a list of outputs after processing the population, where each element corresponds to
|
436
|
-
the output for each genome in
|
436
|
+
the output for each genome in population.
|
437
437
|
"""
|
438
438
|
### THE OUTPUTS ARE RETURNED WHERE EACH GENOME'S OUTPUT MATCHES ITS INDEX:
|
439
439
|
|
@@ -442,8 +442,8 @@ def evaluate(x_population, weights, activation_potentiations):
|
|
442
442
|
else:
|
443
443
|
activation_potentiations = [item if isinstance(item, list) else [item] for item in activation_potentiations]
|
444
444
|
|
445
|
-
|
446
|
-
result =
|
445
|
+
Input = apply_activation(Input, activation_potentiations)
|
446
|
+
result = Input @ weights.T
|
447
447
|
|
448
448
|
return result
|
449
449
|
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.5.
|
3
|
+
Version: 4.5.3
|
4
4
|
Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -1,4 +1,4 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=
|
1
|
+
pyerualjetwork/__init__.py,sha256=TdzilnzcR7WrAFk69ujThtXkM5baDMO-tPM2D_ZwTeM,1279
|
2
2
|
pyerualjetwork/activation_functions.py,sha256=Ms0AGBqkJuCA42ht64MSQnO54Td_1eDGquedpoBDVbc,7642
|
3
3
|
pyerualjetwork/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
|
4
4
|
pyerualjetwork/data_operations.py,sha256=Y_RdxkjLEszFgeo4VDWIX1keF2syP-88KesLXA5sRyY,15280
|
@@ -14,12 +14,12 @@ pyerualjetwork/model_operations.py,sha256=BLRL_5s_KSs8iCiLsEwWvhRcGiWCP_TD9lsjYW
|
|
14
14
|
pyerualjetwork/model_operations_cuda.py,sha256=b3Bkobbrhq28AmYZ0vGxf2Hf8V2LPvoiM0xaPAApqec,13254
|
15
15
|
pyerualjetwork/plan.py,sha256=UyIvPmvHCHwczlc9KHolE4y6CPEeBfhnRN5yznSbnoM,23028
|
16
16
|
pyerualjetwork/plan_cuda.py,sha256=iteqgv7x9Z2Pj4vGOZs6HXS3r0bNaF_smr7ZXaOdRnw,23990
|
17
|
-
pyerualjetwork/planeat.py,sha256=
|
18
|
-
pyerualjetwork/planeat_cuda.py,sha256=
|
17
|
+
pyerualjetwork/planeat.py,sha256=mOAdmoXQI8APNrpq9OlebkXDme5uu-Q4kFBhkiDZcbA,38632
|
18
|
+
pyerualjetwork/planeat_cuda.py,sha256=unBeaaSN6rLcbjbRn97vG2yz8pZkcRX8pU8LTBY57ao,38676
|
19
19
|
pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
|
20
20
|
pyerualjetwork/visualizations.py,sha256=utnX9zQhzmtvBJLOLNGm2jecVVk4zHXABQdjb0XzJac,28352
|
21
21
|
pyerualjetwork/visualizations_cuda.py,sha256=gnoaaazZ-nc9E1ImqXrZBRgQ4Rnpi2qh2yGJ2eLKMlE,28807
|
22
|
-
pyerualjetwork-4.5.
|
23
|
-
pyerualjetwork-4.5.
|
24
|
-
pyerualjetwork-4.5.
|
25
|
-
pyerualjetwork-4.5.
|
22
|
+
pyerualjetwork-4.5.3.dist-info/METADATA,sha256=lZGj9ylqsyFAi3iUiWCRxDkrHLlCPubLterHaMm3QGk,7505
|
23
|
+
pyerualjetwork-4.5.3.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
24
|
+
pyerualjetwork-4.5.3.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
25
|
+
pyerualjetwork-4.5.3.dist-info/RECORD,,
|
File without changes
|
File without changes
|