pyerualjetwork 4.3.8.dev14__py3-none-any.whl → 4.3.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (42) hide show
  1. pyerualjetwork/__init__.py +1 -1
  2. pyerualjetwork/activation_functions.py +2 -2
  3. pyerualjetwork/activation_functions_cuda.py +63 -114
  4. pyerualjetwork/data_operations_cuda.py +1 -1
  5. pyerualjetwork/fitness_functions.py +72 -0
  6. pyerualjetwork/fitness_functions_cuda.py +85 -0
  7. pyerualjetwork/model_operations.py +14 -14
  8. pyerualjetwork/model_operations_cuda.py +16 -17
  9. pyerualjetwork/plan.py +159 -382
  10. pyerualjetwork/plan_cuda.py +149 -387
  11. pyerualjetwork/planeat.py +24 -54
  12. pyerualjetwork/planeat_cuda.py +11 -47
  13. pyerualjetwork/visualizations.py +33 -30
  14. pyerualjetwork/visualizations_cuda.py +22 -24
  15. {pyerualjetwork-4.3.8.dev14.dist-info → pyerualjetwork-4.3.9.dist-info}/METADATA +3 -19
  16. pyerualjetwork-4.3.9.dist-info/RECORD +24 -0
  17. pyerualjetwork-4.3.9.dist-info/top_level.txt +1 -0
  18. pyerualjetwork/loss_functions.py +0 -21
  19. pyerualjetwork/loss_functions_cuda.py +0 -21
  20. pyerualjetwork-4.3.8.dev14.dist-info/RECORD +0 -44
  21. pyerualjetwork-4.3.8.dev14.dist-info/top_level.txt +0 -2
  22. pyerualjetwork_afterburner/__init__.py +0 -11
  23. pyerualjetwork_afterburner/activation_functions.py +0 -290
  24. pyerualjetwork_afterburner/activation_functions_cuda.py +0 -289
  25. pyerualjetwork_afterburner/data_operations.py +0 -406
  26. pyerualjetwork_afterburner/data_operations_cuda.py +0 -461
  27. pyerualjetwork_afterburner/help.py +0 -17
  28. pyerualjetwork_afterburner/loss_functions.py +0 -21
  29. pyerualjetwork_afterburner/loss_functions_cuda.py +0 -21
  30. pyerualjetwork_afterburner/memory_operations.py +0 -298
  31. pyerualjetwork_afterburner/metrics.py +0 -190
  32. pyerualjetwork_afterburner/metrics_cuda.py +0 -163
  33. pyerualjetwork_afterburner/model_operations.py +0 -408
  34. pyerualjetwork_afterburner/model_operations_cuda.py +0 -420
  35. pyerualjetwork_afterburner/plan.py +0 -432
  36. pyerualjetwork_afterburner/plan_cuda.py +0 -441
  37. pyerualjetwork_afterburner/planeat.py +0 -793
  38. pyerualjetwork_afterburner/planeat_cuda.py +0 -840
  39. pyerualjetwork_afterburner/ui.py +0 -22
  40. pyerualjetwork_afterburner/visualizations.py +0 -823
  41. pyerualjetwork_afterburner/visualizations_cuda.py +0 -825
  42. {pyerualjetwork-4.3.8.dev14.dist-info → pyerualjetwork-4.3.9.dist-info}/WHEEL +0 -0
@@ -1,825 +0,0 @@
1
- import networkx as nx
2
- import matplotlib.pyplot as plt
3
- import cupy as cp
4
- from scipy.spatial import ConvexHull
5
- import seaborn as sns
6
- from matplotlib.animation import ArtistAnimation
7
-
8
- def draw_neural_web(W, ax, G, return_objs=False):
9
- """
10
- Visualizes a neural web by drawing the neural network structure.
11
-
12
- Parameters:
13
- W : numpy.ndarray
14
- A 2D array representing the connection weights of the neural network.
15
- ax : matplotlib.axes.Axes
16
- The matplotlib axes where the graph will be drawn.
17
- G : networkx.Graph
18
- The NetworkX graph representing the neural network structure.
19
- return_objs : bool, optional
20
- If True, returns the drawn objects (nodes and edges). Default is False.
21
-
22
- Returns:
23
- art1 : matplotlib.collections.PathCollection or None
24
- Returns the node collection if return_objs is True; otherwise, returns None.
25
- art2 : matplotlib.collections.LineCollection or None
26
- Returns the edge collection if return_objs is True; otherwise, returns None.
27
- art3 : matplotlib.collections.TextCollection or None
28
- Returns the label collection if return_objs is True; otherwise, returns None.
29
-
30
- Example:
31
- art1, art2, art3 = draw_neural_web(W, ax, G, return_objs=True)
32
- plt.show()
33
- """
34
- W = W.get()
35
- for i in range(W.shape[0]):
36
- for j in range(W.shape[1]):
37
- if W[i, j] != 0:
38
- G.add_edge(f'Output{i}', f'Input{j}', ltpw=W[i, j])
39
-
40
- edges = G.edges(data=True)
41
- weights = [edata['ltpw'] for _, _, edata in edges]
42
- pos = {}
43
-
44
- num_motor_neurons = W.shape[0]
45
- num_sensory_neurons = W.shape[1]
46
-
47
- for j in range(num_sensory_neurons):
48
- pos[f'Input{j}'] = (0, j)
49
-
50
- motor_y_start = (num_sensory_neurons - num_motor_neurons) / 2
51
- for i in range(num_motor_neurons):
52
- pos[f'Output{i}'] = (1, motor_y_start + i)
53
-
54
-
55
- art1 = nx.draw_networkx_nodes(G, pos, ax=ax, node_size=1000, node_color='lightblue')
56
- art2 = nx.draw_networkx_edges(G, pos, ax=ax, edge_color=weights, edge_cmap=plt.cm.Blues, width=2)
57
- art3 = nx.draw_networkx_labels(G, pos, ax=ax, font_size=10, font_weight='bold')
58
-
59
- ax.spines['top'].set_visible(False)
60
- ax.spines['right'].set_visible(False)
61
- ax.spines['left'].set_visible(False)
62
- ax.spines['bottom'].set_visible(False)
63
- ax.get_xaxis().set_visible(False)
64
- ax.get_yaxis().set_visible(False)
65
- ax.set_title('Neural Web')
66
-
67
- if return_objs == True:
68
-
69
- return art1, art2, art3
70
-
71
-
72
- def draw_model_architecture(model_name, model_path=''):
73
- """
74
- The `draw_model_architecture` function visualizes the architecture of a neural network model with
75
- multiple inputs based on activation functions.
76
-
77
- :param model_name: The `model_name` parameter in the `draw_model_architecture` function is used to
78
- specify the name of the neural network model whose architecture you want to visualize. This function
79
- visualizes the architecture of a neural network model with multiple inputs based on activation
80
- functions
81
- :param model_path: The `model_path` parameter in the `draw_model_architecture` function is used to
82
- specify the path where the neural network model is saved. If the model is saved in a specific
83
- directory or file location, you can provide that path as a string when calling the function. If the
84
- model is saved
85
- """
86
- """
87
- Visualizes the architecture of a neural network model with multiple inputs based on activation functions.
88
- """
89
-
90
- from .model_operations_cuda import load_model, get_scaler, get_act_pot, get_weights
91
-
92
- model = load_model(model_name=model_name, model_path=model_path)
93
-
94
- W = model[get_weights()]
95
- activation_potentiation = model[get_act_pot()]
96
- scaler_params = model[get_scaler()]
97
-
98
- # Calculate dimensions based on number of activation functions
99
- num_activations = len(activation_potentiation)
100
- input_groups = num_activations # Number of input groups equals number of activations
101
- num_inputs = W.shape[1]
102
-
103
- # Create figure
104
- fig = plt.figure(figsize=(15, 10))
105
-
106
- # Calculate positions for nodes
107
- def get_node_positions():
108
- positions = {}
109
-
110
- # Input layer positions
111
- total_height = 0.8 # Maksimum dikey alan
112
- group_height = total_height / input_groups # Her grup için ayrılan dikey alan
113
- input_spacing = min(group_height / (num_inputs + 1), 0.1) # Her girdi arasındaki mesafe
114
-
115
- for group in range(input_groups):
116
- group_start_y = 0.9 - (group * group_height) # Grubun başlangıç y koordinatı
117
- for i in range(num_inputs):
118
- y_pos = group_start_y - ((i + 1) * input_spacing)
119
- positions[f'input_{group}_{i}'] = (0.2, y_pos)
120
-
121
- # Aggregation layer positions
122
- agg_spacing = total_height / (num_inputs + 1)
123
- for i in range(num_inputs):
124
- positions[f'summed_{i}'] = (0.5, 0.9 - ((i + 1) * agg_spacing))
125
-
126
- # Output layer positions
127
- output_spacing = total_height / (W.shape[0] + 1)
128
- for i in range(W.shape[0]):
129
- positions[f'output_{i}'] = (0.8, 0.9 - ((i + 1) * output_spacing))
130
-
131
- return positions
132
-
133
- # Draw the network
134
- pos = get_node_positions()
135
-
136
- # Draw nodes
137
- for group in range(input_groups):
138
- # Draw input nodes
139
- for i in range(num_inputs):
140
- plt.plot(*pos[f'input_{group}_{i}'], 'o', color='lightgreen', markersize=20)
141
- plt.text(pos[f'input_{group}_{i}'][0] - 0.05, pos[f'input_{group}_{i}'][1],
142
- f'Input #{i+1} ({activation_potentiation[group]})', ha='right', va='center')
143
-
144
- # Draw connections from input to summed input directly
145
- plt.plot([pos[f'input_{group}_{i}'][0], pos[f'summed_{i}'][0]],
146
- [pos[f'input_{group}_{i}'][1], pos[f'summed_{i}'][1]], 'k-')
147
- # Draw aggregation nodes
148
- if group == 0:
149
- plt.plot(*pos[f'summed_{i}'], 'o', color='lightgreen', markersize=20)
150
- plt.text(pos[f'summed_{i}'][0], pos[f'summed_{i}'][1] + 0.02,
151
- f'Summed\nInput #{i+1}', ha='center', va='bottom')
152
-
153
- # Draw output nodes and connections
154
- for i in range(W.shape[0]):
155
- plt.plot(*pos[f'output_{i}'], 'o', color='gold', markersize=20)
156
- plt.text(pos[f'output_{i}'][0] + 0.05, pos[f'output_{i}'][1],
157
- f'Output #{i+1}', ha='left', va='center', color='purple')
158
-
159
- # Connect all aggregation nodes to each output
160
- for group in range(num_inputs):
161
- plt.plot([pos[f'summed_{group}'][0], pos[f'output_{i}'][0]],
162
- [pos[f'summed_{group}'][1], pos[f'output_{i}'][1]], 'k-')
163
-
164
- # Add labels and annotations
165
- plt.text(0.2, 0.95, 'Input Layer', ha='center', va='bottom', fontsize=12)
166
- plt.text(0.5, 0.95, 'Aggregation\nLayer', ha='center', va='bottom', fontsize=12)
167
- plt.text(0.8, 0.95, 'Output Layer', ha='center', va='bottom', fontsize=12)
168
-
169
- # Remove axes
170
- plt.axis('off')
171
-
172
- # Add model information
173
- if scaler_params is None:
174
- plt.text(0.95, 0.05, 'Standard Scaler=No', fontsize=10, ha='right', va='bottom')
175
- else:
176
- plt.text(0.95, 0.05, 'Standard Scaler=Yes', fontsize=10, ha='right', va='bottom')
177
-
178
- # Add model architecture title
179
- plt.text(0.95, 0.1, f"PLAN Model Architecture: {model_name}", fontsize=12, ha='right', va='bottom', fontweight='bold')
180
- plt.tight_layout()
181
- plt.show()
182
-
183
-
184
- def draw_activations(x_train, activation):
185
-
186
- from . import activation_functions_cuda as af
187
-
188
- if activation == 'sigmoid':
189
- result = af.Sigmoid(x_train)
190
-
191
- elif activation == 'swish':
192
- result = af.swish(x_train)
193
-
194
- elif activation == 'circular':
195
- result = af.circular_activation(x_train)
196
-
197
- elif activation == 'mod_circular':
198
- result = af.modular_circular_activation(x_train)
199
-
200
- elif activation == 'tanh_circular':
201
- result = af.tanh_circular_activation(x_train)
202
-
203
- elif activation == 'leaky_relu':
204
- result = af.leaky_relu(x_train)
205
-
206
- elif activation == 'relu':
207
- result = af.Relu(x_train)
208
-
209
- elif activation == 'softplus':
210
- result = af.softplus(x_train)
211
-
212
- elif activation == 'elu':
213
- result = af.elu(x_train)
214
-
215
- elif activation == 'gelu':
216
- result = af.gelu(x_train)
217
-
218
- elif activation == 'selu':
219
- result = af.selu(x_train)
220
-
221
- elif activation == 'softmax':
222
- result = af.Softmax(x_train)
223
-
224
- elif activation == 'tanh':
225
- result = af.tanh(x_train)
226
-
227
- elif activation == 'sinakt':
228
- result = af.sinakt(x_train)
229
-
230
- elif activation == 'p_squared':
231
- result = af.p_squared(x_train)
232
-
233
- elif activation == 'sglu':
234
- result = af.sglu(x_train, alpha=1.0)
235
-
236
- elif activation == 'dlrelu':
237
- result = af.dlrelu(x_train)
238
-
239
- elif activation == 'exsig':
240
- result = af.exsig(x_train)
241
-
242
- elif activation == 'sin_plus':
243
- result = af.sin_plus(x_train)
244
-
245
- elif activation == 'acos':
246
- result = af.acos(x_train, alpha=1.0, beta=0.0)
247
-
248
- elif activation == 'gla':
249
- result = af.gla(x_train, alpha=1.0, mu=0.0)
250
-
251
- elif activation == 'srelu':
252
- result = af.srelu(x_train)
253
-
254
- elif activation == 'qelu':
255
- result = af.qelu(x_train)
256
-
257
- elif activation == 'isra':
258
- result = af.isra(x_train)
259
-
260
- elif activation == 'waveakt':
261
- result = af.waveakt(x_train)
262
-
263
- elif activation == 'arctan':
264
- result = af.arctan(x_train)
265
-
266
- elif activation == 'bent_identity':
267
- result = af.bent_identity(x_train)
268
-
269
- elif activation == 'sech':
270
- result = af.sech(x_train)
271
-
272
- elif activation == 'softsign':
273
- result = af.softsign(x_train)
274
-
275
- elif activation == 'pwl':
276
- result = af.pwl(x_train)
277
-
278
- elif activation == 'cubic':
279
- result = af.cubic(x_train)
280
-
281
- elif activation == 'gaussian':
282
- result = af.gaussian(x_train)
283
-
284
- elif activation == 'sine':
285
- result = af.sine(x_train)
286
-
287
- elif activation == 'tanh_square':
288
- result = af.tanh_square(x_train)
289
-
290
- elif activation == 'mod_sigmoid':
291
- result = af.mod_sigmoid(x_train)
292
-
293
- elif activation == 'linear':
294
- result = x_train
295
-
296
- elif activation == 'quartic':
297
- result = af.quartic(x_train)
298
-
299
- elif activation == 'square_quartic':
300
- result = af.square_quartic(x_train)
301
-
302
- elif activation == 'cubic_quadratic':
303
- result = af.cubic_quadratic(x_train)
304
-
305
- elif activation == 'exp_cubic':
306
- result = af.exp_cubic(x_train)
307
-
308
- elif activation == 'sine_square':
309
- result = af.sine_square(x_train)
310
-
311
- elif activation == 'logarithmic':
312
- result = af.logarithmic(x_train)
313
-
314
- elif activation == 'scaled_cubic':
315
- result = af.scaled_cubic(x_train, 1.0)
316
-
317
- elif activation == 'sine_offset':
318
- result = af.sine_offset(x_train, 1.0)
319
-
320
- elif activation == 'spiral':
321
- result = af.spiral_activation(x_train)
322
-
323
- try: return result
324
- except:
325
- print('\rWARNING: error in drawing some activation.', end='')
326
- return x_train
327
-
328
-
329
- def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation):
330
-
331
- from .metrics_cuda import metrics, confusion_matrix, roc_curve
332
- from .ui import loading_bars, initialize_loading_bar
333
- from .data_operations_cuda import decode_one_hot
334
- from .model_operations_cuda import predict_model_ram
335
-
336
- bar_format_normal = loading_bars()[0]
337
-
338
- acc = acc_list[len(acc_list) - 1]
339
- y_true = decode_one_hot(y_test)
340
-
341
- y_true = cp.array(y_true, copy=True)
342
- y_preds = cp.array(y_preds, copy=True)
343
- Class = cp.unique(decode_one_hot(y_test))
344
-
345
- precision, recall, f1 = metrics(y_test, y_preds)
346
-
347
-
348
- cm = confusion_matrix(y_true, y_preds, len(Class))
349
- fig, axs = plt.subplots(2, 2, figsize=(16, 12))
350
-
351
- sns.heatmap(cm.get(), annot=True, fmt='d', ax=axs[0, 0])
352
- axs[0, 0].set_title("Confusion Matrix")
353
- axs[0, 0].set_xlabel("Predicted Class")
354
- axs[0, 0].set_ylabel("Actual Class")
355
-
356
- if len(Class) == 2:
357
- fpr, tpr, thresholds = roc_curve(y_true, y_preds)
358
-
359
- roc_auc = cp.trapz(tpr, fpr)
360
- axs[1, 0].plot(fpr.get(), tpr.get(), color='darkorange', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
361
- axs[1, 0].plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
362
- axs[1, 0].set_xlim([0.0, 1.0])
363
- axs[1, 0].set_ylim([0.0, 1.05])
364
- axs[1, 0].set_xlabel('False Positive Rate')
365
- axs[1, 0].set_ylabel('True Positive Rate')
366
- axs[1, 0].set_title('Receiver Operating Characteristic (ROC) Curve')
367
- axs[1, 0].legend(loc="lower right")
368
- axs[1, 0].legend(loc="lower right")
369
- else:
370
-
371
- for i in range(len(Class)):
372
-
373
- y_true_copy = cp.copy(y_true)
374
- y_preds_copy = cp.copy(y_preds)
375
-
376
- y_true_copy[y_true_copy == i] = 0
377
- y_true_copy[y_true_copy != 0] = 1
378
-
379
- y_preds_copy[y_preds_copy == i] = 0
380
- y_preds_copy[y_preds_copy != 0] = 1
381
-
382
-
383
- fpr, tpr, thresholds = roc_curve(y_true_copy, y_preds_copy)
384
-
385
- roc_auc = cp.trapz(tpr, fpr)
386
- axs[1, 0].plot(fpr.get(), tpr.get(), color='darkorange', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
387
- axs[1, 0].plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
388
- axs[1, 0].set_xlim([0.0, 1.0])
389
- axs[1, 0].set_ylim([0.0, 1.05])
390
- axs[1, 0].set_xlabel('False Positive Rate')
391
- axs[1, 0].set_ylabel('True Positive Rate')
392
- axs[1, 0].set_title('Receiver Operating Characteristic (ROC) Curve')
393
- axs[1, 0].legend(loc="lower right")
394
- axs[1, 0].legend(loc="lower right")
395
-
396
-
397
- metric = ['Precision', 'Recall', 'F1 Score', 'Accuracy']
398
- values = [precision, recall, f1, acc.get()]
399
- colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728']
400
-
401
-
402
- bars = axs[0, 1].bar(metric, values, color=colors)
403
-
404
-
405
- for bar, value in zip(bars, values):
406
- axs[0, 1].text(bar.get_x() + bar.get_width() / 2, bar.get_height() - 0.05, f'{value:.2f}',
407
- ha='center', va='bottom', fontsize=12, color='white', weight='bold')
408
-
409
- axs[0, 1].set_ylim(0, 1)
410
- axs[0, 1].set_xlabel('Metrics')
411
- axs[0, 1].set_ylabel('Score')
412
- axs[0, 1].set_title('Precision, Recall, F1 Score, and Accuracy (Weighted)')
413
- axs[0, 1].grid(True, axis='y', linestyle='--', alpha=0.7)
414
-
415
- feature_indices=[0, 1]
416
-
417
- h = .02
418
- x_min, x_max = x_test[:, feature_indices[0]].min() - 1, x_test[:, feature_indices[0]].max() + 1
419
- y_min, y_max = x_test[:, feature_indices[1]].min() - 1, x_test[:, feature_indices[1]].max() + 1
420
- xx, yy = cp.meshgrid(cp.arange(x_min, x_max, h),
421
- cp.arange(y_min, y_max, h))
422
-
423
- grid = cp.c_[xx.ravel(), yy.ravel()]
424
-
425
- grid_full = cp.zeros((grid.shape[0], x_test.shape[1]), dtype=cp.float32)
426
- grid_full[:, feature_indices] = grid
427
-
428
- Z = [None] * len(grid_full)
429
-
430
- predict_progress = initialize_loading_bar(total=len(grid_full),leave=False,
431
- bar_format=bar_format_normal ,desc="Predicts For Decision Boundary",ncols= 65)
432
-
433
- for i in range(len(grid_full)):
434
-
435
- Z[i] = cp.argmax(predict_model_ram(grid_full[i], W=W, activation_potentiation=activation_potentiation))
436
- predict_progress.update(1)
437
-
438
- predict_progress.close()
439
-
440
- Z = cp.array(Z)
441
- Z = Z.reshape(xx.shape)
442
-
443
- axs[1,1].contourf(xx.get(), yy.get(), Z.get(), alpha=0.8)
444
- axs[1,1].scatter(x_test[:, feature_indices[0]].get(), x_test[:, feature_indices[1]].get(), c=decode_one_hot(y_test).get(), edgecolors='k', marker='o', s=20, alpha=0.9)
445
- axs[1,1].set_xlabel(f'Feature {0 + 1}')
446
- axs[1,1].set_ylabel(f'Feature {1 + 1}')
447
- axs[1,1].set_title('Decision Boundary')
448
-
449
- plt.show()
450
-
451
-
452
- def plot_decision_boundary(x, y, activation_potentiation, W, artist=None, ax=None):
453
-
454
- from .model_operations_cuda import predict_model_ram
455
- from .data_operations_cuda import decode_one_hot
456
-
457
- feature_indices = [0, 1]
458
-
459
- h = .02
460
- x_min, x_max = x[:, feature_indices[0]].min() - 1, x[:, feature_indices[0]].max() + 1
461
- y_min, y_max = x[:, feature_indices[1]].min() - 1, x[:, feature_indices[1]].max() + 1
462
- xx, yy = cp.meshgrid(cp.arange(x_min, x_max, h),
463
- cp.arange(y_min, y_max, h))
464
-
465
- grid = cp.c_[xx.ravel(), yy.ravel()]
466
- grid_full = cp.zeros((grid.shape[0], x.shape[1]))
467
- grid_full[:, feature_indices] = grid
468
-
469
- Z = [None] * len(grid_full)
470
-
471
- for i in range(len(grid_full)):
472
- Z[i] = cp.argmax(predict_model_ram(grid_full[i], W=W, activation_potentiation=activation_potentiation))
473
-
474
- Z = cp.array(Z, dtype=cp.int32)
475
- Z = Z.reshape(xx.shape)
476
-
477
- if ax is None:
478
-
479
- plt.contourf(xx.get(), yy.get(), Z.get(), alpha=0.8)
480
- plt.scatter(x[:, feature_indices[0]].get(), x[:, feature_indices[1]].get(), c=decode_one_hot(y).get(), edgecolors='k', marker='o', s=20, alpha=0.9)
481
- plt.xlabel(f'Feature {0 + 1}')
482
- plt.ylabel(f'Feature {1 + 1}')
483
- plt.title('Decision Boundary')
484
-
485
- plt.show()
486
-
487
- else:
488
-
489
- try:
490
- art1_1 = ax[1, 0].contourf(xx.get(), yy.get(), Z.get(), alpha=0.8)
491
- art1_2 = ax[1, 0].scatter(x[:, feature_indices[0]].get(), x[:, feature_indices[1]].get(), c=decode_one_hot(y).get(), edgecolors='k', marker='o', s=20, alpha=0.9)
492
- ax[1, 0].set_xlabel(f'Feature {0 + 1}')
493
- ax[1, 0].set_ylabel(f'Feature {1 + 1}')
494
- ax[1, 0].set_title('Decision Boundary')
495
-
496
- return art1_1, art1_2
497
-
498
- except:
499
-
500
- art1_1 = ax.contourf(xx.get(), yy.get(), Z.get(), alpha=0.8)
501
- art1_2 = ax.scatter(x[:, feature_indices[0]].get(), x[:, feature_indices[1]].get(), c=decode_one_hot(y).get(), edgecolors='k', marker='o', s=20, alpha=0.9)
502
- ax.set_xlabel(f'Feature {0 + 1}')
503
- ax.set_ylabel(f'Feature {1 + 1}')
504
- ax.set_title('Decision Boundary')
505
-
506
-
507
- return art1_1, art1_2
508
-
509
-
510
- def plot_decision_space(x, y, y_preds=None, s=100, color='tab20'):
511
-
512
- from .metrics_cuda import pca
513
- from .data_operations_cuda import decode_one_hot
514
-
515
- if x.shape[1] > 2:
516
-
517
- X_pca = pca(x, n_components=2)
518
- else:
519
- X_pca = x
520
-
521
- if y_preds == None:
522
- y_preds = decode_one_hot(y)
523
-
524
- y = decode_one_hot(y)
525
- num_classes = len(cp.unique(y))
526
-
527
- cmap = plt.get_cmap(color)
528
-
529
-
530
- norm = plt.Normalize(vmin=0, vmax=num_classes - 1)
531
-
532
-
533
- plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y, edgecolor='k', s=50, cmap=cmap, norm=norm)
534
-
535
-
536
- for cls in range(num_classes):
537
-
538
- class_points = []
539
-
540
-
541
- for i in range(len(y)):
542
- if y_preds[i] == cls:
543
- class_points.append(X_pca[i])
544
-
545
- class_points = cp.array(class_points, dtype=y.dtype)
546
-
547
-
548
- if len(class_points) > 2:
549
- hull = ConvexHull(class_points)
550
- hull_points = class_points[hull.vertices]
551
-
552
- hull_points = cp.vstack([hull_points, hull_points[0]])
553
-
554
- plt.fill(hull_points[:, 0], hull_points[:, 1], color=cmap(norm(cls)), alpha=0.3, edgecolor='k', label=f'Class {cls} Hull')
555
-
556
- plt.title("Decision Space (Data Distribution)")
557
-
558
- plt.draw()
559
-
560
-
561
- def update_neuron_history(LTPW, ax1, row, col, class_count, artist5, fig1, acc=False, loss=False):
562
-
563
- for j in range(class_count):
564
-
565
- if acc != False and loss != False:
566
- suptitle_info = ' Accuracy:' + str(acc) + '\n' + '\nNeurons Memory:'
567
- else:
568
- suptitle_info = 'Neurons Memory:'
569
-
570
- mat = LTPW[j,:].reshape(row, col).get()
571
-
572
- title_info = f'{j+1}. Neuron'
573
-
574
- art5 = ax1[j].imshow(mat, interpolation='sinc', cmap='viridis')
575
-
576
- ax1[j].set_aspect('equal')
577
- ax1[j].set_xticks([])
578
- ax1[j].set_yticks([])
579
- ax1[j].set_title(title_info)
580
-
581
-
582
- artist5.append([art5])
583
-
584
- fig1.suptitle(suptitle_info, fontsize=16)
585
-
586
-
587
- def initialize_visualization_for_fit(val, show_training, neurons_history, x_train, y_train):
588
- """Initializes the visualization setup based on the parameters."""
589
- from .data_operations_cuda import find_closest_factors
590
- visualization_objects = {}
591
-
592
- if show_training or neurons_history:
593
- if not val:
594
- raise ValueError("For showing training or neurons history, 'val' parameter must be True.")
595
-
596
- G = nx.Graph()
597
- fig, ax = plt.subplots(2, 2)
598
- fig.suptitle('Train History')
599
- visualization_objects.update({
600
- 'G': G,
601
- 'fig': fig,
602
- 'ax': ax,
603
- 'artist1': [],
604
- 'artist2': [],
605
- 'artist3': [],
606
- 'artist4': []
607
- })
608
-
609
- if neurons_history:
610
- row, col = find_closest_factors(len(x_train[0]))
611
- fig1, ax1 = plt.subplots(1, len(y_train[0]), figsize=(18, 14))
612
- visualization_objects.update({
613
- 'fig1': fig1,
614
- 'ax1': ax1,
615
- 'artist5': [],
616
- 'row': row,
617
- 'col': col
618
- })
619
-
620
- return visualization_objects
621
-
622
-
623
- def update_weight_visualization_for_fit(ax, LTPW, artist2):
624
- """Updates the weight visualization plot."""
625
- art2 = ax.imshow(LTPW.get(), interpolation='sinc', cmap='viridis')
626
- artist2.append([art2])
627
-
628
- def show():
629
- plt.tight_layout()
630
- plt.show()
631
-
632
- def update_neural_web_for_fit(W, ax, G, artist):
633
- """
634
- The function `update_neural_web_for_fit` updates a neural web visualization for fitting.
635
- """
636
- art5_1, art5_2, art5_3 = draw_neural_web(W=W, ax=ax, G=G, return_objs=True)
637
- art5_list = [art5_1] + [art5_2] + list(art5_3.values())
638
- artist.append(art5_list)
639
-
640
- def update_decision_boundary_for_fit(ax, x_val, y_val, activation_potentiation, LTPW, artist1):
641
- """Updates the decision boundary visualization."""
642
- art1_1, art1_2 = plot_decision_boundary(x_val, y_val, activation_potentiation, LTPW, artist=artist1, ax=ax)
643
- artist1.append([*art1_1.collections, art1_2])
644
-
645
-
646
- def update_validation_history_for_fit(ax, val_list, artist3):
647
- """Updates the validation accuracy history plot."""
648
- val_list_cpu = []
649
- for i in range(len(val_list)):
650
- val_list_cpu.append(val_list[i].get())
651
- period = list(range(1, len(val_list_cpu) + 1))
652
- art3 = ax.plot(
653
- period,
654
- val_list_cpu,
655
- linestyle='--',
656
- color='g',
657
- marker='o',
658
- markersize=6,
659
- linewidth=2,
660
- label='Validation Accuracy'
661
- )
662
- ax.set_title('Validation History')
663
- ax.set_xlabel('Time')
664
- ax.set_ylabel('Validation Accuracy')
665
- ax.set_ylim([0, 1])
666
- artist3.append(art3)
667
-
668
-
669
- def display_visualization_for_fit(fig, artist_list, interval):
670
- """Displays the animation for the given artist list."""
671
- ani = ArtistAnimation(fig, artist_list, interval=interval, blit=True)
672
- return ani
673
-
674
- def update_neuron_history_for_learner(LTPW, ax1, row, col, class_count, artist5, data, fig1, acc=False, loss=False):
675
-
676
- for j in range(len(class_count)):
677
-
678
- if acc != False and loss != False:
679
- suptitle_info = data + ' Accuracy:' + str(acc) + '\n' + data + ' Loss:' + str(loss) + '\nNeurons Memory:'
680
- else:
681
- suptitle_info = 'Neurons Memory:'
682
-
683
- mat = LTPW[j,:].reshape(row, col)
684
-
685
- title_info = f'{j+1}. Neuron'
686
-
687
- art5 = ax1[j].imshow(mat.get(), interpolation='sinc', cmap='viridis')
688
-
689
- ax1[j].set_aspect('equal')
690
- ax1[j].set_xticks([])
691
- ax1[j].set_yticks([])
692
- ax1[j].set_title(title_info)
693
-
694
-
695
- artist5.append([art5])
696
-
697
- fig1.suptitle(suptitle_info, fontsize=16)
698
-
699
- return artist5
700
-
701
- def initialize_visualization_for_learner(show_history, neurons_history, neural_web_history, x_train, y_train):
702
- """Initialize all visualization components"""
703
- from .data_operations_cuda import find_closest_factors
704
- viz_objects = {}
705
-
706
- if show_history:
707
- fig, ax = plt.subplots(3, 1, figsize=(6, 8))
708
- fig.suptitle('Learner History')
709
- viz_objects['history'] = {
710
- 'fig': fig,
711
- 'ax': ax,
712
- 'artist1': [],
713
- 'artist2': [],
714
- 'artist3': []
715
- }
716
-
717
- if neurons_history:
718
- row, col = find_closest_factors(len(x_train[0]))
719
- if row != 0:
720
- fig1, ax1 = plt.subplots(1, len(y_train[0]), figsize=(18, 14))
721
- else:
722
- fig1, ax1 = plt.subplots(1, 1, figsize=(18, 14))
723
- viz_objects['neurons'] = {
724
- 'fig': fig1,
725
- 'ax': ax1,
726
- 'artists': [],
727
- 'row': row,
728
- 'col': col
729
- }
730
-
731
- if neural_web_history:
732
- G = nx.Graph()
733
- fig2, ax2 = plt.subplots(figsize=(18, 4))
734
- viz_objects['web'] = {
735
- 'fig': fig2,
736
- 'ax': ax2,
737
- 'G': G,
738
- 'artists': []
739
- }
740
-
741
- return viz_objects
742
-
743
- def update_history_plots_for_learner(viz_objects, depth_list, loss_list, best_acc_per_depth_list, x_train, final_activations):
744
- """Update history visualization plots"""
745
- if 'history' not in viz_objects:
746
- return
747
-
748
- hist = viz_objects['history']
749
- for i in range(len(loss_list)):
750
- loss_list[i] = loss_list[i].get()
751
-
752
- # Loss plot
753
- art1 = hist['ax'][0].plot(depth_list, loss_list, color='r', markersize=6, linewidth=2)
754
- hist['ax'][0].set_title('Train Loss Over Gen')
755
- hist['artist1'].append(art1)
756
-
757
- # Accuracy plot
758
-
759
- for i in range(len(best_acc_per_depth_list)):
760
- best_acc_per_depth_list[i] = best_acc_per_depth_list[i].get()
761
-
762
- art2 = hist['ax'][1].plot(depth_list, best_acc_per_depth_list, color='g', markersize=6, linewidth=2)
763
- hist['ax'][1].set_title('Train Accuracy Over Gen')
764
- hist['artist2'].append(art2)
765
-
766
- # Activation shape plot
767
- x = cp.linspace(cp.min(x_train), cp.max(x_train), len(x_train))
768
- translated_x_train = cp.copy(x)
769
- for activation in final_activations:
770
- translated_x_train += draw_activations(x, activation)
771
-
772
- art3 = hist['ax'][2].plot(x.get(), translated_x_train.get(), color='b', markersize=6, linewidth=2)
773
- hist['ax'][2].set_title('Potentiation Shape Over Gen')
774
- hist['artist3'].append(art3)
775
-
776
- def display_visualizations_for_learner(viz_objects, best_weights, data, best_acc, test_loss, y_train, interval):
777
- """Display all final visualizations"""
778
- if 'history' in viz_objects:
779
- hist = viz_objects['history']
780
- for _ in range(30):
781
- hist['artist1'].append(hist['artist1'][-1])
782
- hist['artist2'].append(hist['artist2'][-1])
783
- hist['artist3'].append(hist['artist3'][-1])
784
-
785
- ani1 = ArtistAnimation(hist['fig'], hist['artist1'], interval=interval, blit=True)
786
- ani2 = ArtistAnimation(hist['fig'], hist['artist2'], interval=interval, blit=True)
787
- ani3 = ArtistAnimation(hist['fig'], hist['artist3'], interval=interval, blit=True)
788
- plt.tight_layout()
789
- plt.show()
790
-
791
- if 'neurons' in viz_objects:
792
- neurons = viz_objects['neurons']
793
- for _ in range(10):
794
- neurons['artists'] = update_neuron_history_for_learner(
795
- cp.copy(best_weights),
796
- neurons['ax'],
797
- neurons['row'],
798
- neurons['col'],
799
- y_train[0],
800
- neurons['artists'],
801
- data=data,
802
- fig1=neurons['fig'],
803
- acc=best_acc,
804
- loss=test_loss
805
- )
806
-
807
- ani4 = ArtistAnimation(neurons['fig'], neurons['artists'], interval=interval, blit=True)
808
- plt.tight_layout()
809
- plt.show()
810
-
811
- if 'web' in viz_objects:
812
- web = viz_objects['web']
813
- for _ in range(30):
814
- art5_1, art5_2, art5_3 = draw_neural_web(
815
- W=best_weights,
816
- ax=web['ax'],
817
- G=web['G'],
818
- return_objs=True
819
- )
820
- art5_list = [art5_1] + [art5_2] + list(art5_3.values())
821
- web['artists'].append(art5_list)
822
-
823
- ani5 = ArtistAnimation(web['fig'], web['artists'], interval=interval, blit=True)
824
- plt.tight_layout()
825
- plt.show()