pyerualjetwork 4.3.8.dev14__py3-none-any.whl → 4.3.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (42) hide show
  1. pyerualjetwork/__init__.py +1 -1
  2. pyerualjetwork/activation_functions.py +2 -2
  3. pyerualjetwork/activation_functions_cuda.py +63 -114
  4. pyerualjetwork/data_operations_cuda.py +1 -1
  5. pyerualjetwork/fitness_functions.py +72 -0
  6. pyerualjetwork/fitness_functions_cuda.py +85 -0
  7. pyerualjetwork/model_operations.py +14 -14
  8. pyerualjetwork/model_operations_cuda.py +16 -17
  9. pyerualjetwork/plan.py +159 -382
  10. pyerualjetwork/plan_cuda.py +149 -387
  11. pyerualjetwork/planeat.py +24 -54
  12. pyerualjetwork/planeat_cuda.py +11 -47
  13. pyerualjetwork/visualizations.py +33 -30
  14. pyerualjetwork/visualizations_cuda.py +22 -24
  15. {pyerualjetwork-4.3.8.dev14.dist-info → pyerualjetwork-4.3.9.dist-info}/METADATA +3 -19
  16. pyerualjetwork-4.3.9.dist-info/RECORD +24 -0
  17. pyerualjetwork-4.3.9.dist-info/top_level.txt +1 -0
  18. pyerualjetwork/loss_functions.py +0 -21
  19. pyerualjetwork/loss_functions_cuda.py +0 -21
  20. pyerualjetwork-4.3.8.dev14.dist-info/RECORD +0 -44
  21. pyerualjetwork-4.3.8.dev14.dist-info/top_level.txt +0 -2
  22. pyerualjetwork_afterburner/__init__.py +0 -11
  23. pyerualjetwork_afterburner/activation_functions.py +0 -290
  24. pyerualjetwork_afterburner/activation_functions_cuda.py +0 -289
  25. pyerualjetwork_afterburner/data_operations.py +0 -406
  26. pyerualjetwork_afterburner/data_operations_cuda.py +0 -461
  27. pyerualjetwork_afterburner/help.py +0 -17
  28. pyerualjetwork_afterburner/loss_functions.py +0 -21
  29. pyerualjetwork_afterburner/loss_functions_cuda.py +0 -21
  30. pyerualjetwork_afterburner/memory_operations.py +0 -298
  31. pyerualjetwork_afterburner/metrics.py +0 -190
  32. pyerualjetwork_afterburner/metrics_cuda.py +0 -163
  33. pyerualjetwork_afterburner/model_operations.py +0 -408
  34. pyerualjetwork_afterburner/model_operations_cuda.py +0 -420
  35. pyerualjetwork_afterburner/plan.py +0 -432
  36. pyerualjetwork_afterburner/plan_cuda.py +0 -441
  37. pyerualjetwork_afterburner/planeat.py +0 -793
  38. pyerualjetwork_afterburner/planeat_cuda.py +0 -840
  39. pyerualjetwork_afterburner/ui.py +0 -22
  40. pyerualjetwork_afterburner/visualizations.py +0 -823
  41. pyerualjetwork_afterburner/visualizations_cuda.py +0 -825
  42. {pyerualjetwork-4.3.8.dev14.dist-info → pyerualjetwork-4.3.9.dist-info}/WHEEL +0 -0
@@ -1,432 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """
3
-
4
- MAIN MODULE FOR PLAN
5
-
6
- Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
7
-
8
- PLAN document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PLAN/PLAN.pdf
9
- PYERUALJETWORK document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
10
-
11
- @author: Hasan Can Beydili
12
- @YouTube: https://www.youtube.com/@HasanCanBeydili
13
- @Linkedin: https://www.linkedin.com/in/hasan-can-beydili-77a1b9270/
14
- @Instagram: https://www.instagram.com/canbeydilj/
15
- @contact: tchasancan@gmail.com
16
- """
17
-
18
- import numpy as np
19
-
20
- ### LIBRARY IMPORTS ###
21
- from .ui import loading_bars, initialize_loading_bar
22
- from .data_operations import normalization, batcher
23
- from .loss_functions import binary_crossentropy, categorical_crossentropy
24
- from .activation_functions import apply_activation, all_activations
25
- from .metrics import metrics
26
- from .model_operations import get_acc, get_preds, get_preds_softmax
27
- from .memory_operations import optimize_labels
28
- from .visualizations import (
29
- draw_neural_web,
30
- display_visualizations_for_learner,
31
- update_history_plots_for_learner,
32
- initialize_visualization_for_learner,
33
- update_neuron_history_for_learner
34
- )
35
-
36
- ### GLOBAL VARIABLES ###
37
- bar_format_normal = loading_bars()[0]
38
- bar_format_learner = loading_bars()[1]
39
-
40
- # BUILD -----
41
-
42
- def fit(
43
- x_train,
44
- y_train,
45
- activation_potentiation=['linear'],
46
- W=None,
47
- dtype=np.float32
48
- ):
49
- """
50
- Creates a model to fitting data.
51
-
52
- fit Args:
53
-
54
- x_train (aray-like[num]): List or numarray of input data.
55
-
56
- y_train (aray-like[num]): List or numarray of target labels. (one hot encoded)
57
-
58
- activation_potentiation (list): For deeper PLAN networks, activation function parameters. For more information please run this code: plan.activations_list() default: [None] (optional)
59
-
60
- W (numpy.ndarray): If you want to re-continue or update model
61
-
62
- dtype (numpy.dtype): Data type for the arrays. np.float32 by default. Example: np.float64 or np.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
63
-
64
- Returns:
65
- numpyarray: (Weight matrix).
66
- """
67
-
68
- # Pre-check
69
-
70
- if len(x_train) != len(y_train):
71
- raise ValueError("x_train and y_train must have the same length.")
72
-
73
- LTPW = np.zeros((len(y_train[0]), len(x_train[0].ravel()))).astype(dtype, copy=False) if W is None else W
74
-
75
- x_train = apply_activation(x_train, activation_potentiation)
76
- LTPW += np.array(y_train, dtype=optimize_labels(y_train, cuda=False).dtype).T @ x_train
77
-
78
- return normalization(LTPW, dtype=dtype)
79
-
80
-
81
- def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=None, batch_size=1, pop_size=None,
82
- neural_web_history=False, show_current_activations=False,
83
- neurons_history=False, early_stop=False, loss='categorical_crossentropy', show_history=False,
84
- interval=33.33, target_acc=None, target_loss=None,
85
- start_this_act=None, start_this_W=None, dtype=np.float32):
86
- """
87
- Optimizes the activation functions for a neural network by leveraging train data to find
88
- the most accurate combination of activation potentiation for the given dataset using genetic algorithm NEAT (Neuroevolution of Augmenting Topologies). But modifided for PLAN version. Created by me: PLANEAT.
89
-
90
- Why genetic optimization and not backpropagation?
91
- Because PLAN is different from other neural network architectures. In PLAN, the learnable parameters are not the weights; instead, the learnable parameters are the activation functions.
92
- Since activation functions are not differentiable, we cannot use gradient descent or backpropagation. However, I developed a more powerful genetic optimization algorithm: PLANEAT.
93
-
94
- Args:
95
-
96
- x_train (array-like): Training input data.
97
-
98
- y_train (array-like): Labels for training data. one-hot encoded.
99
-
100
- optimizer (function): PLAN optimization technique with hyperparameters. (PLAN using NEAT(PLANEAT) for optimization.) Please use this: from pyerualjetwork import planeat (and) optimizer = lambda *args, **kwargs: planeat.evolve(*args, 'here give your neat hyperparameters for example: activation_add_prob=0.85', **kwargs) Example:
101
- ```python
102
- genetic_optimizer = lambda *args, **kwargs: planeat.evolver(*args,
103
- activation_add_prob=0.85,
104
- strategy='aggressive',
105
- **kwargs)
106
-
107
- model = plan.learner(x_train,
108
- y_train,
109
- optimizer=genetic_optimizer,
110
- fit_start=True,
111
- strategy='accuracy',
112
- show_history=True,
113
- gen=15,
114
- batch_size=0.05,
115
- interval=16.67)
116
- ```
117
-
118
- fit_start (bool): If the fit_start parameter is set to True, the initial generation population undergoes a simple short training process using the PLAN algorithm. This allows for a very robust starting point, especially for large and complex datasets. However, for small or relatively simple datasets, it may result in unnecessary computational overhead. When fit_start is True, completing the first generation may take slightly longer (this increase in computational cost applies only to the first generation and does not affect subsequent generations). If fit_start is set to False, the initial population will be entirely random. Options: True or False. The fit_start parameter is MANDATORY and must be provided.
119
-
120
- strategy (str, optional): Learning strategy. (options: 'accuracy', 'f1', 'precision', 'recall'): 'accuracy', Maximizes train (or test if given) accuracy during learning. 'f1', Maximizes train (or test if given) f1 score during learning. 'precision', Maximizes train (or test if given) precision score during learning. 'recall', Maximizes train (or test if given) recall during learning. Default is 'accuracy'.
121
-
122
- gen (int, optional): The generation count for genetic optimization.
123
-
124
- batch_size (float, optional): Batch size is used in the prediction process to receive train feedback by dividing the test data into chunks and selecting activations based on randomly chosen partitions. This process reduces computational cost and time while still covering the entire test set due to random selection, so it doesn't significantly impact accuracy. For example, a batch size of 0.08 means each train batch represents 8% of the train set. Default is 1. (%100 of train)
125
-
126
- pop_size (int, optional): Population size of each generation. Default: count of activation functions
127
-
128
- early_stop (bool, optional): If True, implements early stopping during training.(If accuracy not improves in two gen stops learning.) Default is False.
129
-
130
- show_current_activations (bool, optional): Should it display the activations selected according to the current strategies during learning, or not? (True or False) This can be very useful if you want to cancel the learning process and resume from where you left off later. After canceling, you will need to view the live training activations in order to choose the activations to be given to the 'start_this' parameter. Default is False
131
-
132
- show_history (bool, optional): If True, displays the training history after optimization. Default is False.
133
-
134
- loss (str, optional): For visualizing and monitoring. PLAN neural networks doesn't need any loss function in training. options: ('categorical_crossentropy' or 'binary_crossentropy') Default is 'categorical_crossentropy'.
135
-
136
- interval (int, optional): The interval at which evaluations are conducted during training. (33.33 = 30 FPS, 16.67 = 60 FPS) Default is 100.
137
-
138
- target_acc (int, optional): The target accuracy to stop training early when achieved. Default is None.
139
-
140
- target_loss (float, optional): The target loss to stop training early when achieved. Default is None.
141
-
142
- start_this_act (list, optional): To resume a previously canceled or interrupted training from where it left off, or to continue from that point with a different strategy, provide the list of activation functions selected up to the learned portion to this parameter. Default is None
143
-
144
- start_this_W (numpy.array, optional): To resume a previously canceled or interrupted training from where it left off, or to continue from that point with a different strategy, provide the weight matrix of this genome. Default is None
145
-
146
- neurons_history (bool, optional): Shows the history of changes that neurons undergo during the TFL (Test or Train Feedback Learning) stages. True or False. Default is False.
147
-
148
- neural_web_history (bool, optional): Draws history of neural web. Default is False.
149
-
150
- dtype (numpy.dtype): Data type for the arrays. np.float32 by default. Example: np.float64 or np.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
151
-
152
- Returns:
153
- tuple: A list for model parameters: [Weight matrix, Test loss, Test Accuracy, [Activations functions]].
154
-
155
- """
156
-
157
- from .planeat import define_genomes
158
-
159
- data = 'Train'
160
-
161
- except_this = ['spiral', 'circular']
162
- activation_potentiation = [item for item in all_activations() if item not in except_this]
163
- activation_potentiation_len = len(activation_potentiation)
164
-
165
- # Pre-checks
166
-
167
- if pop_size is None: pop_size = activation_potentiation_len
168
-
169
- x_train = x_train.astype(dtype, copy=False)
170
- y_train = optimize_labels(y_train, cuda=False)
171
-
172
- if pop_size < activation_potentiation_len: raise ValueError(f"pop_size must be higher or equal to {activation_potentiation_len}")
173
-
174
- if gen is None:
175
- gen = activation_potentiation_len
176
-
177
- if strategy != 'accuracy' and strategy != 'f1' and strategy != 'recall' and strategy != 'precision': raise ValueError("Strategy parameter only be 'accuracy' or 'f1' or 'recall' or 'precision'.")
178
- if target_acc is not None and (target_acc < 0 or target_acc > 1): raise ValueError('target_acc must be in range 0 and 1')
179
- if fit_start is not True and fit_start is not False: raise ValueError('fit_start parameter only be True or False. Please read doc-string')
180
-
181
- # Initialize visualization components
182
- viz_objects = initialize_visualization_for_learner(show_history, neurons_history, neural_web_history, x_train, y_train)
183
-
184
- # Initialize progress bar
185
- if batch_size == 1:
186
- ncols = 76
187
- else:
188
- ncols = 89
189
-
190
- # Initialize variables
191
- best_acc = 0
192
- best_f1 = 0
193
- best_recall = 0
194
- best_precision = 0
195
- best_acc_per_gen_list = []
196
- postfix_dict = {}
197
- loss_list = []
198
- target_pop = []
199
-
200
- progress = initialize_loading_bar(total=activation_potentiation_len, desc="", ncols=ncols, bar_format=bar_format_learner)
201
-
202
- if fit_start is False or pop_size > activation_potentiation_len:
203
- weight_pop, act_pop = define_genomes(input_shape=len(x_train[0]), output_shape=len(y_train[0]), population_size=pop_size, dtype=dtype)
204
-
205
- if start_this_act is not None and start_this_W is not None:
206
- weight_pop[0] = start_this_W
207
- act_pop[0] = start_this_act
208
-
209
- else:
210
- weight_pop = [0] * pop_size
211
- act_pop = [0] * pop_size
212
-
213
- for i in range(gen):
214
- postfix_dict["Gen"] = str(i+1) + '/' + str(gen)
215
- progress.set_postfix(postfix_dict)
216
-
217
- progress.n = 0
218
- progress.last_print_n = 0
219
- progress.update(0)
220
-
221
- for j in range(pop_size):
222
-
223
- x_train_batch, y_train_batch = batcher(x_train, y_train, batch_size=batch_size)
224
-
225
- if fit_start is True and i == 0 and j < activation_potentiation_len:
226
- act_pop[j] = activation_potentiation[j]
227
- W = fit(x_train_batch, y_train_batch, activation_potentiation=act_pop[-1], dtype=dtype)
228
- weight_pop[j] = W
229
-
230
- model = evaluate(x_train_batch, y_train_batch, W=weight_pop[j], activation_potentiation=act_pop[j])
231
- acc = model[get_acc()]
232
-
233
- if strategy == 'accuracy': target_pop.append(acc)
234
-
235
- elif strategy == 'f1' or strategy == 'precision' or strategy == 'recall':
236
- precision_score, recall_score, f1_score = metrics(y_train_batch, model[get_preds()])
237
-
238
- if strategy == 'precision':
239
- target_pop.append(precision_score)
240
-
241
- if i == 0 and j == 0:
242
- best_precision = precision_score
243
-
244
- if strategy == 'recall':
245
- target_pop.append(recall_score)
246
-
247
- if i == 0 and j == 0:
248
- best_recall = recall_score
249
-
250
- if strategy == 'f1':
251
- target_pop.append(f1_score)
252
-
253
- if i == 0 and j == 0:
254
- best_f1 = f1_score
255
-
256
- if ((strategy == 'accuracy' and acc >= best_acc) or
257
- (strategy == 'f1' and f1_score >= best_f1) or
258
- (strategy == 'precision' and precision_score >= best_precision) or
259
- (strategy == 'recall' and recall_score >= best_recall)):
260
-
261
- best_acc = acc
262
- best_weights = np.copy(weight_pop[j])
263
- final_activations = act_pop[j].copy() if isinstance(act_pop[j], list) else act_pop[j]
264
-
265
- best_model = model
266
-
267
- final_activations = [final_activations[0]] if len(set(final_activations)) == 1 else final_activations # removing if all same
268
-
269
- if batch_size == 1:
270
- postfix_dict[f"{data} Accuracy"] = best_acc
271
- else:
272
- postfix_dict[f"{data} Batch Accuracy"] = acc
273
- progress.set_postfix(postfix_dict)
274
-
275
- if show_current_activations:
276
- print(f", Current Activations={final_activations}", end='')
277
-
278
- if loss == 'categorical_crossentropy':
279
- train_loss = categorical_crossentropy(y_true_batch=y_train_batch, y_pred_batch=model[get_preds_softmax()])
280
- else:
281
- train_loss = binary_crossentropy(y_true_batch=y_train_batch, y_pred_batch=model[get_preds_softmax()])
282
-
283
- if batch_size == 1:
284
- postfix_dict[f"{data} Loss"] = train_loss
285
- best_loss = train_loss
286
- else:
287
- postfix_dict[f"{data} Batch Loss"] = train_loss
288
- progress.set_postfix(postfix_dict)
289
- best_loss = train_loss
290
-
291
- # Update visualizations during training
292
- if show_history:
293
- gen_list = range(1, len(best_acc_per_gen_list) + 2)
294
- update_history_plots_for_learner(viz_objects, gen_list, loss_list + [train_loss],
295
- best_acc_per_gen_list + [best_acc], x_train, final_activations)
296
-
297
- if neurons_history:
298
- viz_objects['neurons']['artists'] = (
299
- update_neuron_history_for_learner(np.copy(best_weights), viz_objects['neurons']['ax'],
300
- viz_objects['neurons']['row'], viz_objects['neurons']['col'],
301
- y_train[0], viz_objects['neurons']['artists'],
302
- data=data, fig1=viz_objects['neurons']['fig'],
303
- acc=best_acc, loss=train_loss)
304
- )
305
-
306
- if neural_web_history:
307
- art5_1, art5_2, art5_3 = draw_neural_web(W=best_weights, ax=viz_objects['web']['ax'],
308
- G=viz_objects['web']['G'], return_objs=True)
309
- art5_list = [art5_1] + [art5_2] + list(art5_3.values())
310
- viz_objects['web']['artists'].append(art5_list)
311
-
312
- # Check target accuracy
313
- if target_acc is not None and best_acc >= target_acc:
314
- progress.close()
315
- train_model = evaluate(x_train, y_train, W=best_weights,
316
- activation_potentiation=final_activations, dtype=dtype)
317
-
318
- if loss == 'categorical_crossentropy':
319
- train_loss = categorical_crossentropy(y_true_batch=y_train,
320
- y_pred_batch=train_model[get_preds_softmax()])
321
- else:
322
- train_loss = binary_crossentropy(y_true_batch=y_train,
323
- y_pred_batch=train_model[get_preds_softmax()])
324
-
325
- print('\nActivations: ', final_activations)
326
- print(f'Train Accuracy:', train_model[get_acc()])
327
- print(f'Train Loss: ', train_loss, '\n')
328
-
329
- # Display final visualizations
330
- display_visualizations_for_learner(viz_objects, best_weights, data, best_acc,
331
- train_loss, y_train, interval)
332
- return best_weights, best_model[get_preds()], best_acc, final_activations
333
-
334
- # Check target loss
335
- if target_loss is not None and best_loss <= target_loss:
336
- progress.close()
337
- train_model = evaluate(x_train, y_train, W=best_weights,
338
- activation_potentiation=final_activations, dtype=dtype)
339
-
340
- if loss == 'categorical_crossentropy':
341
- train_loss = categorical_crossentropy(y_true_batch=y_train,
342
- y_pred_batch=train_model[get_preds_softmax()])
343
- else:
344
- train_loss = binary_crossentropy(y_true_batch=y_train,
345
- y_pred_batch=train_model[get_preds_softmax()])
346
-
347
- print('\nActivations: ', final_activations)
348
- print(f'Train Accuracy:', train_model[get_acc()])
349
- print(f'Train Loss: ', train_loss, '\n')
350
-
351
- # Display final visualizations
352
- display_visualizations_for_learner(viz_objects, best_weights, data, best_acc,
353
- train_loss, y_train, interval)
354
- return best_weights, best_model[get_preds()], best_acc, final_activations
355
-
356
- progress.update(1)
357
-
358
- best_acc_per_gen_list.append(best_acc)
359
- loss_list.append(best_loss)
360
-
361
- weight_pop, act_pop = optimizer(np.array(weight_pop, copy=False, dtype=dtype), act_pop, i, np.array(target_pop, dtype=dtype, copy=False), bar_status=False)
362
- target_pop = []
363
-
364
- # Early stopping check
365
- if early_stop == True and i > 0:
366
- if best_acc_per_gen_list[i] == best_acc_per_gen_list[i-1]:
367
- progress.close()
368
- train_model = evaluate(x_train, y_train, W=best_weights,
369
- activation_potentiation=final_activations, dtype=dtype)
370
-
371
- if loss == 'categorical_crossentropy':
372
- train_loss = categorical_crossentropy(y_true_batch=y_train,
373
- y_pred_batch=train_model[get_preds_softmax()])
374
- else:
375
- train_loss = binary_crossentropy(y_true_batch=y_train,
376
- y_pred_batch=train_model[get_preds_softmax()])
377
-
378
- print('\nActivations: ', final_activations)
379
- print(f'Train Accuracy:', train_model[get_acc()])
380
- print(f'Train Loss: ', train_loss, '\n')
381
-
382
- # Display final visualizations
383
- display_visualizations_for_learner(viz_objects, best_weights, data, best_acc,
384
- train_loss, y_train, interval)
385
- return best_weights, best_model[get_preds()], best_acc, final_activations
386
-
387
- # Final evaluation
388
- progress.close()
389
- train_model = evaluate(x_train, y_train, W=best_weights,
390
- activation_potentiation=final_activations, dtype=dtype)
391
-
392
- if loss == 'categorical_crossentropy':
393
- train_loss = categorical_crossentropy(y_true_batch=y_train, y_pred_batch=train_model[get_preds_softmax()])
394
- else:
395
- train_loss = binary_crossentropy(y_true_batch=y_train, y_pred_batch=train_model[get_preds_softmax()])
396
-
397
- print('\nActivations: ', final_activations)
398
- print(f'Train Accuracy:', train_model[get_acc()])
399
- print(f'Train Loss: ', train_loss, '\n')
400
-
401
- # Display final visualizations
402
- display_visualizations_for_learner(viz_objects, best_weights, data, best_acc, train_loss, y_train, interval)
403
- return best_weights, best_model[get_preds()], best_acc, final_activations
404
-
405
-
406
- def evaluate(
407
- x_test,
408
- y_test,
409
- W,
410
- activation_potentiation=['linear']
411
- ) -> tuple:
412
- """
413
- Evaluates the neural network model using the given test data.
414
-
415
- Args:
416
- x_test (np.ndarray): Test data.
417
-
418
- y_test (np.ndarray): Test labels (one-hot encoded).
419
-
420
- W (np.ndarray): Neural net weight matrix.
421
-
422
- activation_potentiation (list): Activation list. Default = ['linear'].
423
-
424
- Returns:
425
- tuple: Model (list).
426
- """
427
-
428
- x_test = apply_activation(x_test, activation_potentiation)
429
- result = x_test @ W.T
430
- softmax_preds = np.exp(result) / np.sum(np.exp(result), axis=1, keepdims=True); accuracy = (np.argmax(result, axis=1) == np.argmax(y_test, axis=1)).mean()
431
-
432
- return W, None, accuracy, None, None, softmax_preds